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ABSTRACT: 
 
Land subsidence (LS) is one of the most challenging natural disasters that has potential consequences such as damage to infrastructures 
and buildings, creating sinkholes, and leading to soil destruction. To mitigate the damages caused by LS, it is necessary to determine 
the LS-prone areas. In this paper, LS susceptibility was assessed for Kashan Plain in Iran using Random Forest (RF) and XGBoost 
machine learning algorithms. For the susceptibility analysis, twelve influential factors including elevation, slope, aspect, curvature, 
topographic wetness index (TWI), groundwater drawdown (GWD), normalized difference vegetation index (NDVI), distance to stream 
(DtS), distance to road (DtR), distance to fault (DtF), lithology, and land use were taken into account. 291 LS points were used in this 
study which was divided into two parts of 70% and 30% for training and testing the models, respectively. The prediction power of the 
models and their produced LS susceptibility maps (LSSMs) were validated using the Root Mean Square Error (RMSE), R-Squared 
(R²), and Mean Absolute Error (MAE) values. The results showed that the XGBoost had a higher R² equal to 0.9032 compared to that 
of the RF which was equal to 0.8355. XGBoost model had an RMSE equal to 0.3764 cm compared to that of the RF model which was 
equal to 0.4906 cm. MAE for the XGBoost model was 0.1217 cm and for the RF model was 0.3050 cm. Therefore, the achieved results 
proved that XGBoost had better performance in this research for predicting LS values based on the measured ones. 
 
  

1.  INTRODUCTION 

Land subsidence (LS) is one of the most challenging natural 
disasters that has potential consequences of damage to 
infrastructures, creating sinkholes, leading to soil 
destruction and so on (Raspini et al., 2016; Shi et al., 2020). LS 
is an apparent and slow deformation or collapse of the earth 
surface which is caused by a number of natural and human factors 
(Ng et al., 2015; Zhou et al., 2017). LS can be a natural result of 
a number of natural and man made disasters such as earthquakes, 
dissolution of carbonate rocks, movement of faults, or an increase 
in the depth of groundwater (Arabameri et al., 2021a; Yang et al., 
2012). LS has become a global threat, which has occurred in 
various countries such as China, Mexico, Italy, the United States 
of America, Spain, and Iran (Brown and Nicholls, 2015; 
Chaussard et al., 2014; Corbau et al., 2019; Galloway and 
Burbey, 2011; Tung and Hu, 2012). In recent decades, the rate of 
LS in Iran has increased widely (Motagh et al., 2008; Tarighat et 
al., 2021). One of the greatest causes of LS in Iran is the 
indiscriminate exploitation of groundwater for agricultural 
purposes (Foroughnia et al., 2019; Mohammady et al., 2019). 
Water is essential to sustain life on earth. However, its 
availability is not the same in space and time. Groundwater meets 
a major part of water demand, and the increasing dependence on 
this source has led to the depletion of groundwater in different 
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parts of the world. For decades, groundwater has been widely 
exploited for domestic, agricultural, and industrial purposes 
(Foroughnia et al., 2019; Mohammady et al., 2019). This requires 
artificial recharge to balance groundwater depletion and control 
LS. Water resources are a critical requirement for a sustainable 
food supply. The increase in temperature and the change in 
precipitation patterns in space and time due to climate change 
lead to frequent and severe droughts and floods, which reduce the 
ability to absorb and store water (Mirza, 2003). Population 
growth and the industrialization of societies have increased the 
demand for water resources and this trend will continue, as 
increasing amounts of water are needed to sustain societies 
(Dalin et al., 2017; Wada et al., 2010). Faced with the growing 
demand for access to fresh water, the use of groundwater is used 
as a vital resource to meet agricultural, industrial, and drinking 
water demands. The increase in water demand has led to a 
decrease in groundwater in many parts of the world including 
Iran (Foroughnia et al., 2019; Mohammady et al., 2019). In many 
areas, this issue has led to LS, which causes permanent loss of 
underground water storage (Smith et al., 2017), damage to 
infrastructure and arsenic contamination (Erban et al., 2013; 
Smith et al., 2017). Advances in remote sensing, geospatial 
information system (GIS) spatial analyses and artificial 
intelligence (AI), have helped in the modeling of several natural 
hazards such as LS to determine the LS prone areas. Machine 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-129-2023 | © Author(s) 2023. CC BY 4.0 License.

 
129



 

          Figure 1. Map of the study area and location of the employed LS sample points 

          Figure 1. Study area and location of the employed LS sample points. 

Learning (ML) methods are particularly important in natural 
hazard modeling due to their capacity to handle complex real 
world problems, as well as due to their high accuracy and 
efficiency. (Arabameri et al., 2021a; Chen et al., 2019; Ebrahimy 
et al., 2020; Feng et al., 2020; Lee et al., 2012; Yang et al., 2012). 
Previous research has verified that twelve factors that have the 
most important influence on LS are elevation, slope, aspect, 
distance to road (DtR), distance to fault (DtF), distance to stream 
(DtS), groundwater drawdown (GWD), normalized differentiate 
vegetation index (NDVI), topographic wetness index (TWI), 
curvature, lithology and land use (Arabameri et al., 2021b; 
Ebrahimy et al., 2020; Ranjgar et al., 2021). ML is a branch of 
AI (Zhou, 2021). ML has been used in various fields such as 
landslide (Arabameri et al., 2020), effects of climate change on 
the environment (Seyed Mousavi et al., 2022) and so on. In the 
previous study of  LS, ML has been widely used to determine  the 
relationship between the influencing factors and subsidence of 
the area (Ranjgar et al., 2021; Shi et al., 2020) and to estimate 
and predict LS (Mohammady et al., 2019; Ranjgar et al., 2021; 
Shi et al., 2020). In previous studies, the XGBoost model was 
once used to model the LS of the Beijing Plain, China (Shi et al., 
2020), however, the influencing factors used in this study except 
groundwater level had not been taken into consideration. In this 
research, we have considered these influential factors as well in 
the modeling phase. Ensemble learning algorithms such as 
XGBoost and Random Forest (RF) improve the performance of 
the model by reducing the overall error rate (Zhou, 2012). 
Compared with traditional ML models such as SVM and ANN, 
XGBoost and RF have faster calculation speed and compared 
with deep  learning algorithms,  these models are good for tabular  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3.  METHODOLOGY 

The research methodology consists of four steps as follow which 
are illustrated in Figure (2): 
 
• Selecting 291 LS points. 

data with fewer features (Shi et al., 2020). In this study, We  have 
considered the twelve influencing factors in LS, and also a 
number of the sample points of subsidence were collected using 
radar interferometry. The data was divided into two parts, 
including training and test to train XGBoost and RF models and 
evalaute their results. The final evaluation of the model was 
undertaken using Root Mean Square Error (RMSE), R-Squared 
(R²), and Mean Absolute Error (MAE) values. Finally, the LS 
susceptibility map of the study area was produced from the two 
models and a comparison was made between them.  
The remaining parts of the paper is as follows. Section 2 has 
concentrated on the discription of study area. Section 3, presents 
the research methodology. Section 4  elaborates the research 
results. Finally, section 5 concludes the paper and suggests some 
directions for future research. 
 

2. DESCRIPTION OF THE STUDY AREA 

Kashan plain is a part of Kashan city, which ends at Karkas 
mountain from the south and is located about 240 kilometers 
south of Tehran between the Longitudes of 51.05 and 51.54 
degrees and the Latitudes of 33.45 and 34.23 degrees (Figure 1). 
Kashan plain with an area of 1570 Square Kilometers includes 
the city of Kashan, its central part, the cities of Aran and Bidgol 
and agricultural lands located in the plain. Kashan Plain is one of 
the least rainfall regions of Iran. The climate of the study area has 
two classes of arid and semi-arid. The temperature in this area  
ranges from 16◦C to 22◦C. Moreover, Elevation is between 799 m 
and 1336 m above mean sea level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

• Data preprocessing and production of maps of the twelve 
influencing factors in LS. 

• Employing RF and XGBoost ML algorithms to map the LS 
susceptibility. 

• Validation of the performance of each model using RMSE,  
R² and MAE. 
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3.1 Selecting LS points 

the spatial distribution of several LS regions was shown in Figure 
(1). The interferometric sysnthethic aperture radar (InSAR) map 
produced by the Geological Survey and Mineral Exploration of 
Iran (GSI) with centimeter accuracy in the first half of 2016 was 
used to prepare sample points of subsidence in the study area.  
 
3.2 LS influential Factors 

The twelve LS influential factors have been selected to produce 
the LSSM for this area (Table 1) which are illustrated in Figure 
(3). Various data sources were used to produce these influencing 
factors. For the digital elevation model (DEM), ALOS PALSAR 
RTC HR which has a 12.5 Meter spatial resolution was used to 
produce slope, aspect, elevation, carvature and TWI data layers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 

To produce the land use and land cover map, Sentinel 2A images 
were used on Google Earth Engine platform and then classified 
in four classes including urban  area, agricultural, barren land and 
poor range land. The land use map of the region was produced 
which is illustrated in Figure (3k). Sentinel 2A images were also 
used to produce NDVI map of the region (Figure 3d). The NDVI 
is calculated using Eq. (1)  (Rouse et al., 1974): 
 

NDVI = 
NIR-Red
NIR+Red

 
 
where  Red = stands for the spectral reflectance measurements 
                          acquired in the red (visible) regions 
 NIR = stands for the spectral reflectance measurements  
                           acquired in the near-infrared regions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   
   

Figure 2. Flowchart of research methodology. 
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Spatio-Temporal  Data Pre-
Processing 

(1) 

Factors Source Scale Resolution (m) 

Slope ALOS PALSAR RTC HR Dem  12.5 * 12.5 

Aspect ALOS PALSAR RTC HR Dem  12.5 * 12.5 

Elevation ALOS PALSAR RTC HR Dem  12.5 * 12.5 

Curvature ALOS PALSAR RTC HR Dem  12.5 * 12.5 

TWI ALOS PALSAR RTC HR Dem  12.5 * 12.5 

Land Use Sentinel - 2  10 * 10 

NDVI Sentinel - 2  10 * 10 

DtR GSI 1:100,000  

DtS GSI 1:100,000  

DtF GSI 1:100,000  

Lithology GSI 1:100,000  

GWD Regional Water Company of Kashan  12.5 * 12.5 
 Table 1. The details of the input influentioal  factors. 
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a b c 

d e f 

Figure 3. LS conditioning factors: (a) Elevation, (b) Slope, (c) Aspect, (d) NDVI, (e) Curvature, (f)  DtR, (g) DtF, (h) DtS, (i) Lithology, (j) TWI, (k) Land 
use, and (l) GWD. 
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Maps of roads, faults, and stream at a scale of 1:100,000 were  
produced by GSI, and the maps of DtR, DtF, and DtS were 
produced (Figures 3f-h) in this research. the TWI is a secondary 
topographic variable (Figure 3j). The TWI is calculated using Eq. 
(2)  (Beven and Kirkby, 1979): 
 
                                       TWI = ln 
                           
where          a = the local upslope area draining through a  
                               certain point per unit contour length 
 b = the local slope in radians 
                                             
The TWI map was produced using the DEM on the ArcGIS 10.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
-ing data (Breiman, 2001). Grid Search was used to adjust the 
parameters. n_estimator is the number of trees in the RF, and 
max_features is the number of features to consider when looking 
for the best split (Huang et al., 2016).  
  
3.3.2 XGBoost regression 

XGBoost is one of the quickest implementations of gradient 
boosted trees (Lu and Ma, 2020). XGBoost is an iterative 
decision tree algorithm, which uses residuals to improve the 
model. First, XGBoost supports parallel computing, second, it 
also supports regularization, which prevents model overfitting 
(Huang et al., 2022). Although the model is highly accurate, it   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

platform whose value ranges from 2.33 to 18.07. The Lithology 
map of the study area was produced by GSI (Figure 3i). There 
are ten different classes of Geo Unit in this area (Table 2). The 
curvature map was shown in Figure (3e) whose values range from 
−12.16 to 10.24. Finally, the map layers had created in grids of 
20 Meter * 20 Meter size in order to harmonize the data. 
 
3.3 Employing RF and XGBoost  

3.3.1 RF regression 

RF is developed by Breiman (Breiman, 2001; Wang et al., 2020). 
RF Regression is a supervised ML decision tree-based algorithm, 
where the decision trees form with random samples from the train  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
can be easily overfit. For this purpose, n_estimators must be 
Controlled. The eta is used to control the rate of iterations and 
prevent overfitting. Subsample controls the proportion of the 
extraction of example. xgb_model parameter is used for selecting 
a weak evaluator. The objective, max_depth, the alpha and 
lambda are used to select the loss function, specifies the 
maximum depth of each tree, control L1 and L2 regularization 
terms, respectively. We used Grid Search method to adjust the 
parameters (Table 3). Finally, to find the most important 
influential factors of the LS susceptibility, mean decrease in 
impurity (MDI) was calculated for RF (Figure 4) and XGboost 
models (Figure 5). The results showed that DtF, elevation and 
GWD hold the greatest impact on the LS occurrence. 

 

 
 
 
 

 
 

(2) 

Figure 4. RF Feature importance based on MDI. 
0.00 0.05 0.10 0.15 0.20 0.25 

a
tan b

 

Table 3. The XGBoost parameters. 
 

n_estimators Eta Subsample xgb_Model Objective Alpha Lambda max_depth 

1000 0.1 0.6 gbtree reg:squarederror 0.1 1 10 
 

DtF 
Elevation 

GWD 
DtS 
DtS 

NDVI 
Slope 
TWI 

Land use 
Aspect 

Curvature 
Lithology 

 

Table 2. Lithology of the study area. 
 

Geo unit Description Age Area 

Mur Pale-yellow to red sandstone and gypsiferous marl, siltstone and shale 
(Upper Red Fm.) Miocene 1301 

Murc Conglomerate and sandstone Miocene 810 

Olgy Gypsum Oligocene 232 

OMql Massive to thick-bedded reefal limestone Oligocene-Miocene 127 

Plc Poorly sorted, moderatly consolidated, conglomerate, sandstone and 
mudstone Pliocene 1886 

Qal Stream channel, braided channel and flood plain deposites Quaternary 2330 

Qcf Clay flat Quaternary 2371 

Qf,t1 High level piedmont fan and valley terrace deposits Quaternary 2599 

Qf,t2 Low level piedment fan and valley terrace deposits Quaternary 123814 

Qs,sd Unconsolidated wind blown sand deposite including sand dunes Quaternary 36624 
 Table 2. Lithology of the study area. 

 

 

Elevation 
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Land use 
NDVI 

Curvature 
Aspect 
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 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 

Figure 5. XGboost Feature importance based on MDI. 
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3.4 Validation 

To assess the efficiency of the models,  R², RMSE, and MAE 
were employed (Equations (3-5)). R-squared will give an 
estimate of the relationship between movements of a dependent 
variable based on an independent variable's movements. It 
represents the possible bias in the data and predictions. It does 
not mean whether the selected model is good or bad. The closer 
the R-squared to one, the better (Cameron and Windmeijer, 
1997).  
             

R2 = 1 −  
∑ (yi −  y�i) 2n
i=1

∑ (yi −  y��i) 2n
i=1

 
 
Root Mean Square Error (RMSE) is the standard deviation of the 
residual (prediction errors) which is one of the most  commonly  
used measures for evaluating the quality of  predictions. It tells  
 
 
how concentrated the data is around the line of best fit. Naturally 
lower values indicate a better fit for the model (Barnston, 1992).  
             

RMSE = 
1
n
� �yi- y�i�

2n

i=1
 

 
MAE is the mean of the absolute errors which is the absolute 
value of the difference between the predicted and the measured 
values (Eq. 5) (Willmott and Matsuura, 2005). 

 

MAE = 
∑ �y�i-yi�

n
i=1

n
 

 

 
where  y� i = vector of predicted dependent variables with n data  
                       points 
 yi = vector of observed values of the variable being 
                        predicted 
 y�i  = mean of the observed dependent variables 
 

4.  RESULTS AND DISCUSSION 

By utilizing the twelve influential factors maps produced, the 
selected LS points and the methods mentioned in Section 3.3, the 
mapping and assessment of LS susceptibility for Kashan plain 
were undertaken. RMSE, R², and MAE were calculated for RF 
and XGboost models. Table (4) demonstrates the comparison of 
RMSE, R², and MAE for each models used. The results showed 
that the XGBoost had higher R²  (0.9032) compared with that of 
the RF ( 0.8355). XGBoost model had less RMSE (0.3764 cm) 
than that of the RF model (0.4906 cm). MAE for the XGBoost 
model was equal to 0.1217 cm and for the RF model was equal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to 0.3050 cm. Figure (6) demonstrates the compatibility between 
the measured data and the predicted data. As a result, the 
XGBoost model has a higher prediction accuracy than that of the 
RF model. 
 
 

4.1 Results of the LS susceptibility Maps (LSSMs) 

After applying the models and evaluating the accuracies, the 
maps of the twelve influencing factors, in the form of a stack on 
QGIS 3.16 platform was produced to be used as the model input. 
Then the LSSMs were produced. The values of the LSSMs 
prepared from the models were in the range of 1.441 cm to -7.497

Figure 6. Compatibility between the measured data and the predicted data (a) XGBoost,  (b) RF. 

a b 

(4) 

(5) 

(3) 

  

Model Parameter Validation 

 RMSE (cm) 0.4906 

Random forest R² 0.8355 

 MAE (cm) 0.3050 

 RMSE (cm) 0.3764 

XGBoost R² 0.9032 

 MAE (cm) 0.1217 
 Table 4. Validation. 
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cm. These LSSMs were then classified into five classes, using a 
natural break algorithm (Jenks and Caspall, 1971) illustrated in 
Figure (7). 
 

5.  CONCLUTION 

Iran Natioal Cartographic Center (NCC) reports show that the 
annual average subsidence rate has increased in Iran 
(https://www.ncc.gov.ir/en/). therefore, LS is an important issue 
in Iran. LS was affected by a number of factors. We selected the 
most important influencing factors to predict the LS rate in the 
Kashan Plain, and investigate the relationship of parameters in LS 
modeling. The conclusions are as follows: 
• Phenomenon of LS is one of the most threatening natural 

hazards of the earth, which has great losses on the economy. 
For proper assessments of this issue, it is necessary to develop 
a suitable model of LS that can be used in any region. In 
previous studies, the XGBoost model was once used to model 
the LS of the Beijing Plain, China (Shi et al., 2020), however, 
the influencing factors used in this study except groundwater 
level had not been taken into consideration. In this research, 
we have considered these influential factors as well in 
modeling. The achieved results prove that the model is well 
established. 

• The results have indicated that the XGBoost model had less 
RMSE (0.3764 cm) than that of the RF model (0.4906 cm). 
MAE for the XGBoost model was equal to 0.1217 cm and for 
the RF model was equal to 0.3050 cm. XGBoost had higher 
R² which was equal to 0.9032 compared to that of the RF 
which was equal to 0.8355 indicating better compatability 
between the predicted and measured LS. 

• As can be seen in both of the models used in this study, the 
highest rate of LS is in the northwest and west of Kashan Plain 
and the lowest rate of LS is observed in the south of Kashan 
Plain. In addition, in places where the DtR, the DtF and DtS 
are less, a higher LS rate has been observed. According to the 
GWD map, in the southwestern and the northwestern parts of 
the study area, the maximum GWD can be observed. 
Furthermore, in the southwest of Kashan plain, a high 
subsidence rate has been occured. 

• The major strength of this study was quality of the ensemble 
ML algorithms and their optimum prediction results in the LS 
mapping. There were some limitations in this research such as 
lack of implementing hydrological modelings which will be 
considered in our future research. 
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