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ABSTRACT:

In this paper, a new classification technique for hyperspectral images (HSIs) based on an augmented active learning (AL) is intro-
duced. The proposed method consists of two main steps: first, a 2-D non-subsampled shearlet transform (NSST) is applied to each
spectral band of HSIs to extract the spatial features. After that, the kernel minimum noise fraction (KMNF) is used to reduce the
spectral dimension. Second, the classification task using an augmented active learning technique is performed. For this purpose, an
iterative process is considered. At each iteration, a discriminative sample selection and augmentation are used to create the training
set. Then, the support vector machine (SVM) is iteratively applied to the training set. In the proposed method, the most informative
samples are selected by a new query function combination of a posterior probability-based uncertainty and angle-based diversity
criteria. The augmentation strategy during the training process is chosen by two-sample Kolmogorov-Smirnov test and the existing
outliers are removed by k-means clustering. Finally, the proposed algorithm is applied to the real datasets and compared with three
state-of-the-art AL algorithms. The obtained results show that the proposed method significantly increases accuracy considering the
most informative samples.

1. INTRODUCTION

Recently, hyperspectral image classification especially supervised
approaches has gained particular attention in many practical ap-
plications such as agriculture, mineralogy, environmental stud-
ies, etc. (Camps-Valls et al., 2014). The accuracy of supervised
techniques is highly dependent on the quality of annotated data-
set which is provided by user. Preparing enough labeled samples
is really time-consuming and an expensive process (He et al.,
2017).

Active learning (AL) approaches could significantly help to in-
crease the classification accuracy by detecting the most inform-
ative pixels during the training and decrease the labeling ef-
fort. In fact, AL selects the most informative unlabeled samples
from a data pool to refine the learning performance (Persello and
Bruzzone, 2014). In recent years, AL has been extensively stud-
ied in the field of hyperspectral image classification. At first,
a semi-supervised multinominal logistic regression model com-
bined with entropy (EP)-based active selection strategy (Li et
al., 2010) was presented. Then, the AL strategies combined
with Bayesian classification method and loopy belief propaga-
tion technique (Li et al., 2011b, Li et al., 2011a) were invest-
igated. After that, an AL framework based on Markov ran-
dom field (MRF) (Sun et al., 2015) was introduced. In addi-
tion, some works based on the combination of the AL strategy
and deep learning have been studied for HSI classification (Li,
2015, Liu et al., 2016, Haut et al., 2018). Particularly, a tech-
nique that integrates a multiclass level uncertainty (MCLU) act-
ive learning criterion with a stacked autoencoder (SAE)-based
neural network (Li, 2015) was designed. In (Liu et al., 2016) a
strategy to join the restricted Boltzmann machine (RBM) with
a weighted incremental dictionary learning criterion was pro-
posed. A method that utilizes six AL sampling criteria, such as
∗ Corresponding author

maximum EP, breaking ties (BT), random acquisition, mutual
information (MI), etc., with Bayesian-convolutional neural net-
work (BCNN) was presented (Haut et al., 2018). In (Paoletti et
al., 2020), the performance of capsule networks (CapsNets) was
enhanced and led to better results of HSI classification by util-
izing a new AL method based on BT criterion. Additionally, a
decoupled network with an active learning strategy (DCN-AL)
is introduced (Bai et al., 2020). This technique considers both
intra-class and inter-class variations and extracts features more
efficiently.

Based on the number of informative samples which are elec-
ted at each iteration, two kinds of strategies for AL algorithms
are considered: the single and batch modes. At each iteration,
sigle mode selects the single most informative sample while the
batch mode selects a batch of the most informative ones. The
batch mode strategy usually achieves higher classification ac-
curacy (Tuia et al., 2009).

Recently, two main criteria called uncertainty and diversity have
been introduced. They are integrated to select the most inform-
ative samples (Patra and Bruzzone, 2011).

The uncertainty criterion selection aims at selecting a batch of
unlabeled samples that have the lowest classification confidence.
The uncertainty based batch mode approaches are divided into
three heuristic categories (Tuia et al., 2009). First, posterior
probability-based techniques such as best versus second best
(BvSB) (Li and Zhang, 2016), BT (Ahmad et al., 2019) and
Kullback-Leibler (KL)-Max strategy (Jun and Ghosh, 2008, Ra-
jan et al., 2008) which calculate the class confidence to evaluate
classification uncertainty of each unlabeled sample (Yu et al.,
2015). A well-known AL method in this category that considers
both spectral and spatial information using maximum a posterior
marginal (MPM) and loopy belief propagation (LB) then util-
izes BT to select informative samples is MPM-LBP-BT (Li et
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al., 2013). Second, large margin based approaches for example
margin sampling (MS) (Tuia et al., 2009) and MCLU (Demir
et al., 2011) which relies on SVM specificities and measures
the distance of samples to hyperplane to determine the uncertain
values. Third, committee-based approaches such as maximum
disagreement (MD)-based criteria (Zhou et al., 2016) which cal-
culates sample uncertainty by considering the incompatible as-
sumption between each committee.

Recently, different diversity approaches based on the closest sup-
port vector (Wang et al., 2017), angle (Demir et al., 2011) and
clustering (Demir et al., 2011) have been considered to reduce
the correlation among the uncertain samples. One of the meth-
ods that utilizes both MCLU uncertainty and angle-based di-
versity (ABD) of data to select the diverse informative samples
is MCLU-ABD (Demir et al., 2011).

In this paper, a new multi-criteria AL method which is called
spectral-spatial augmented AL (SSAAL) has been proposed. It
includes two main steps:

1) The spectral-spatial features are extracted by applying 2-D
non-subsampled shearlet transform (NSST) (Lim, 2010) and ker-
nel minimum noise fraction (KMNF). The 2D-NSST is applied
to each spectral band of HSI to extract the spatial features. After
that, KMNF reduces the spectral dimensions.

2) A new multi-criteria batch mode augmented AL algorithm is
applied to the selected spectral-spatial features in order to de-
termine the most informative samples. These samples are se-
lected by a query function which is a combination of a new pos-
terior probability-based uncertainty and an angle-based diversity
criteria. Data augmentation (DA) is also considered to increase
the informative samples for insufficient labeled classes. DA is
iteratively applied to the selected samples during the training
process and significantly increases the supervised classification
accuracy. The outlier samples are defined by k-means clustering
and reduced.

The proposed method is compared to the well-known state-of-
the-art techniques. The obtained results demonstrate superior
classification performance of the proposed method.

The remainder of this paper is organized as follows: section 2
presents the proposed algorithm. The experimental results are
discussed in section 3. Concluding remarks are provided in sec-
tion 4.

2. PROPOSED METHOD

2.1 Spectral-Spatial Feature Extraction Using NSST and
KMNF

The NSST contains two kinds of non-subsample filter banks that
are iteratively applied to extract spatial features: pyramid and
shearing filters. Pyramid filters divide the image into approxim-
ate and detail images which are the same size as the original im-
age for a predefined level of decomposition. Shearing filters de-
compose the detail images into a number of shearing directional
sub-bands. Also, at each iteration of the process, the obtained
low-frequency sub-band is again divided into a lower scale high-
frequency and low-frequency sub-bands (Soleimanzadeh et al.,
2018).

In this paper, 2D-NSST is applied to each band ofX ∈ RI1×I2×I3

as the HSI with the length of I1, width of I2 and I3 bands. Shear-
let transformation of the bth band of the image is defined as:

XNSST (:, :, b) = NSST (X (:, :, b)) , b = 1, 2, . . . , I3 (1)

After that, in order to reduce the spectral dimension, one of
the most popular nonlinear dimensionality reduction techniques
”KMNF” (Gao et al., 2017) is used. It consists of two consec-
utive principle component analysis (PCA) transformations. At
first, the prior one estimates the covariance matrix of the noise in
the data based on a strong relationship between adjacent pixels
to decorrelate and rescale the noise from the data. Then, the
latter is a standard PCA transformation which is applied to the
matrix and arranges the bands with respect to the signal to noise
(Priyadarshini et al., 2019). KMNF is applied to XNSST as fol-
lows:

XKMNF = KMNF (XNSST ) (2)

In the proposed method the important shearlet coefficients that
contain 99% of the energy are preserved and the rest of them are
discarded.

2.2 Augmented AL Algorithm

The obtained spectral-spatial features of the previous step are
used as the input of augmented AL algorithm. These features
are randomly divided into three categories: initial training set
L, unlabeled pool U , and testing set T . During the augmented
AL process, at each iteration of algorithm, a batch of mmost in-
formative samples among the samples inU is selected by a query
function, it is added to the augmented initial training set LA and
trained until the maximum number of iterations is achieved. In
the following, the algorithm will be explained in more detail.

2.2.1 Uncertainty Criterion A one-against-all SVM is sim-
ultaneously used to determine uncertainty criterion and perform
the supervised classification (Melgani and Bruzzone, 2004). The
class membership probability-based uncertainty (CMPU) criterion
is applied to the unlabeled samples in U to define the samples
which are confused with the class membership. The uncertainty
measure of each unlabeled sample x ∈ U is related to its clas-
sification confidence. For this aim, c binary SVM classifier cor-
responding to c information classes is iteratively applied to the
labeled samples. After training, based on the c obtained de-
cision hyperplanes of SVM, c functional Euclidean distances
fq (x) , q = 1, 2, ..., c for each sample to c hyperplanes are cal-
culated. By utilizing Platt scaling (Lin et al., 2007) and fitting a
Sigmoid model to these functional distances, the probability of
class membership for each x is calculated. The produced class
probabilities in this way can be denoted as:

P (y|x) = 1

1 + exp(afq(x) + b)
q=1,...,c

P (y′|x) = 1

1 + exp(afq′(x) + b)
q′=1,...,c
q′ 6=q,y′ 6=y

(3)

where P (y |x ) defines the best class membership probability of
sample x and P (y′ |x ) denotes the second best class member-
ship probability of it. They are the class probabilities between
the most confused classes y and y′. a and b are two scalar para-
meters.

By measuring the ratio of these values, CMPU criterion is ob-
tained. This criterion defines classification confidence of samples
and the ones which have the lowest value of it are selected as the
most uncertain samples. CMPU is defined as:

CC(x) = P (y|x )
P (y′|x ) (4)
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2.2.2 Diversity Criterion It is used to select the samples
with low redundancy among n uncertain samples. In this paper,
ABD in the kernel space (Demir et al., 2011) is used to calculate
the diversity of uncertain sample as follows:

ABD(xi, xj) =
K (xi, xj)√

K (xi, xi)K (xj , xj)
i,j=1,...,n i6=j

(5)

where K (xi, xj) is a nonlinear kernel map function between
two samples xi and xj .

2.2.3 Query Function In the proposed method, a weighted
query function based on integration CMPU and ABD criteria
for defining a batch of m(m < n) most informative samples is
considered.

(6)F (x1, x2, ..., xm)

= argmin

m∑
i=1

{
λ [CC (xi)] + (1− λ)

n∑
j=1

[
max
i6=j

(ABD (xi, xj))

]}

By exploiting objective function (6), the most informative samples
(x1, x2, ..., xm) are extracted at each iteration of SSAAL al-
gorithm. In this function, the parameter λ, (0 ≤ λ ≤ 1) controls
the relation importance of the two terms and the optimal value
of it for each dataset is utilized. The details of selecting optimal
λ are discussed in section 3.2.

2.2.4 Data Augmentation (DA) Transformation such as scal-
ing, flipping and rotating are used to increase the insufficient
labeled samples during the training process. In the proposed
technique, to reduce the running time and prevent overfitting, a
new approach of DA is applied to the initial training samples
and the most informative samples that are selected at each iter-
ation by query function (6). For this purpose, the non-selective
samples of HSI become zero and a new hyper-cube is created.
Then, different augmentation methods are applied to the hyper-
cube and the obtained non-zero pixels are extracted and added
to the training samples. In addition, the same distribution of the
original and the augmented samples is an important point that
should be considered. Therefore, the two-sample Kolmogorov-
Smirnov test (Labadi et al., 2014) is considered for selecting the
most effective augmentation methods. It measures the difference
between cumulative distribution functions (CDFs) of two exist-
ing training and augmented sample vectors and uses the max-
imum absolute value of it. It can be defined as follows:

d = sup |F1(xt)− F2(xa)| (7)

where xt and xa are training and augmented sample vectors with
sizes t and a, respectively. F1(xT ) and F2(xA) are their corres-
ponding CDFs.

If d is lower than the critical value da,t (Knuth, 2014) at a signi-
ficant level α = 0.05, xt and xa belong to the same distribution
and the augmented samples can be added to the training samples.
This critical value can be denoted as:

da,t =

√
− ln

(α
2

)
.
1 + t

a

2t
(8)

Some of the augmented samples are outliers. These samples
have a high uncertainty. However, they can decrease the classi-
fication accuracy. Therefore, in the proposed method k-means

clustering is used to reduce the outlier effect (Wu and Prasad,
2016). This method allocates samples to k clusters and removes
the samples that belong to the smallest cluster by considering
equation (9):

CR1 = C1
C2

ACR = 1
k−2

k−1∑
r=2

Cr

th = CR1
ACR

(9)

In this equation, C = [C1, C2, ..., Ck] is an ascending order set
that represents the number of cluster members for k cluster and
the members of the smallest cluster are outliers if only th < 0.5.

The pseudo-code of SSAAL algorithm is summarized in the Al-
gorithm 1.

3. EXPERIMENTS

3.1 Datasets

The proposed technique has been applied to the three real data-
sets.

3.1.1 Indian Pines Scene (IP) It is acquired by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in 1992.
This dataset is composed of 220 spectral bands with wavelength
varying 0.4–2.5µm and 145 × 145 pixels with a spatial resolu-
tion 20m× 20m. In our experiment 20 bands due to noises and
water absorption are eliminated, resulting in 200 bands. This
dataset contains 10249 total available samples belonging to 16
classes (see Table 1). The false color composition of this data-
set as well as ground reference classification map are shown in
Fig. 1.

Figure 1. Hyperspectral Indian pines image and its ground-truth map.

3.1.2 Kennedy Space Center (KSC) It is collected over the
KSC, Florida, USA, in 1996 (see Fig. 2). This dataset includes a
spatial coverage of 512× 614 pixels with a spatial resolution of
18m and 224 spectral band in the wavelength range from 0.4 to
2.5µm. By removing water absorption and low signal-to-noise
bands, the number of spectral bands is reduced to 176. This
dataset contains the total number of 5211 samples belonging to
15 classes (see Table 2).

3.1.3 Pavia University Dataset (PU) It is acquired by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor
over the urban area of the University of Pavia, Italy, 2003. This
dataset consists of 610 × 340 pixels with a spatial resolution of
1.3m (see Fig. 3). The number of spectral bands is 115 with
spectral ranging from 0.43 to 0.86µm. 12 noisy bands are re-
moved; the remaining 103 spectral bands are used in the exper-
iment. Table 3 depicts the number of total available pixels in
each class in Pavia University dataset.
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Algorithm 1: SSAAL Technique
Inputs: HSI dataset X = {x1, x2, ..., xh}, Number of shearing directions,Batch size (m), Number of iterations (it), Number of
clusters (k), CMPU parameters (a,b)
I) Extract spectral-spatial features:
a) Apply 2D-NSST to each spectral band of HSI.
b) Apply KMNF to reduce the spectral dimension.
II) Augmented AL process:
a) Generate the initial training labeled set L, unlabeled pool U and testing set T .
b) Augment L and preserve the original and augmented samples in LA.
c) For i=1:it

1: Train LA with SVM.
2: For each x ∈ U compute its CMPU value.
3: Select n samples from U that have the lowest CMPU.
4: Select a batch of m most informative samples from the n(= 10m) samples using query function (6).
5: Specify labels to the m selected samples.
6: Augment the m obtained samples considering the selected method by two-sample Kolmogorov-Smirnov test.
7: Allocate m selected samples and their augmentations to k clusters and remove the outliers considering th.
8: Include non-outlier samples into LA.
9: Remove the selected samples in step 4 from U .

d) end
Output: Classification results of HSI Ŷ = {ŷ1, ŷ2, ..., ŷn}

Class no. Class name No. total samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-min 830
4 Corn 237
5 Grass/pasture 483
6 Grass/trees 730
7 Grass/pasture-mowed 28
8 Way-windrowed 478
9 Oats 20
10 Soybeans-notill 972
11 Soybeans-min 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-grass-tree-drives 386
16 Stone-steel towers 93
Total 10249

Table 1. Indian pines dataset: class numbers, class names, and number
of observations for each class

Class no. Class name No. total samples
1 Scrub 761
2 Willow swamp 243
3 Cabbage palm hammock 256
4 Cabbage palm/oak hammock 252
5 Slash pine 161
6 Oak/broadleaf hammock 229
7 Hardwood swamp 105
8 Graminoid marsh 431
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927
Total 5211

Table 2. KSC dataset: class numbers, class names, and number of
observations for each class

3.2 Experimental Setup

Results of the proposed method are compared with two batch
mode state-of-the-art AL algorithms: MUCLU-ABD (Demir et
al., 2011) and BvSB (Li and Zhang, 2016), and one well-known
spectral-spatial AL technique MPM-LBP-BT (Li et al., 2013).

For a fair comparison, the same spectral-spatial feature selection
algorithm for MCLU-ABD, BvSB, and the proposed method
based on NSST-KMNF is considered. In this experiment, NSST

Figure 2. Hyperspectral Indian pines image and its ground-truth map.

Class no. Class name No. total samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-blocking bricks 3682
9 Shadows 947
Total 42776

Table 3. Pavia university dataset: class numbers, class names, and
number of observations for each class

Figure 3. Hyperspectral Pavia University image and its ground-truth
map.

with five levels decompositions is used. Also, the important
shearlet sub-bands that contain 99% of energy are preserved.
For, Indian Pines, KSC, and Pavia University, the number of
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shearing directions at four scales and the number of remain-
ing shearlet sub-bands after applying KMNF are presented in
Table 4.

Dataset No. shearing directions
No. remaining

shearlet
sub-bands

Indian Pines [2 2 4 4] 72
KSC [2 2 2 2] 67
Pavia University [2 2 2 2] 50

Table 4. NSST-KMNF setup of three datasets

Figure 4. Overall classification accuracy versus the sampling weight
parameter (λ)

The same initial training set (L), unlabeled pool (U), testing set
(T), number of iterations (it), and batch size (m) are considered
for all AL algorithms.

The total samples of each dataset are considered as T. L is con-
structed by randomly selecting three samples per class and the
remaining samples of each dataset are preserved in the U. At
each iteration of AL process, m samples from U are selected,
they are augmented by DA methods and added to the augmented
initial training set LA. Also, the number of clusters k are equal
to the number of classes for each dataset plus one. The SSAAL
parameter settings of three datasets are demonstrated in Table 5.

The effect of the sampling weight parameter λ in (6) is evaluated
in terms of overall classification accuracy (see Fig. 4). As is
shown, the optimal value of λ for each dataset is selected among
a range of λ = [0, 0.1, 0.2, ..., 1]. The optimal values show that
although both uncertainty and diversity criteria have important
roles on the obtained classification accuracy, the importance of
each of them for each dataset is different.

The AL classification algorithms were implemented in MAT-
LAB (R2020a) on a computer with two core processor (2.60
GHz), 40 Gb of memory, and a 64-bit operating system.

LIBSVM is adopted to implement SVM. One against all (OAA)
SVM with radial basis function (RBF) kernel has been used
(Chang and Lin, 2011). The SVM hyperparameters C and γ
were optimized by applying a grid search according to a three-
fold cross-validation technique. To obtain better results, these
parameters were updated once during the AL iterations. The
overall accuracy (OA), average accuracy (AA), Kappa coeffi-
cient (Kappa), and classification accuracy of each class are cal-
culated to evaluate the classification performance.

3.3 Experimental Results

Figure 5 depicts the overall classification accuracy for three
datasets. In this experiment, the initial accuracy achieved by

SSAAL is higher than the other techniques for Indian Pines and
University of Pavia datasets, while KSC obtains the best accur-
acy after three iterations. Tables 6-8 summarize the classifica-
tion accuracy, overall accuracy, average accuracy, Kappa coef-
ficient, and computation time. The classification maps of all
methods are shown in Figs. 6-8. From Tables 6-8, it can be eas-
ily observed that the SSAAL achieves the best performance in
terms of AA and OA measures in comparison to MCLU-ABD
(Demir et al., 2011), BvSB (Li and Zhang, 2016), and MPM-
LBP-BT (Li et al., 2013) methods. In most of the classes, the
classification accuracy of SSAAL is higher than the other tech-
niques.

(a) Indian Pines (b) KSC

(c) Pavia University

Figure 5. Overall classification accuracy versus the number of training
samples.

The computation time of SSAAL method is lower than MPM-
LBP-BT and close to MCLU-ABD and BvSB techniques.

The obtained results show that utilizing the combination of NSST
and KMNF in the proposed method can extract spectral and spa-
tial features of HSI with low redundancy, effectively. Addition-
ally, the integration of the extracted features, the operative query
function in exploiting the most informative and distinct samples,
optimal data augmentation during the training process, and out-
lier elimination can lead to accurate and consistent classification
results, significantly.

4. CONCLUSIONS AND FUTURE WORK

In this paper, a new augmented AL algorithm for spectral-spatial
HSI classification with limited labeled samples has been presen-
ted. The proposed method extracts the spatial features using
NSST and reduces the dimensionality of the spectral features
using KMNF. After that, a multi-criteria batch mode AL method
based on a new query function which integrates CMPU uncer-
tainty and ABD diversity criteria is applied to the extracted spatial-
spectral features to select the most informative ones. The de-
termined samples are iteratively trained by SVM. It is note worthy
to mention that the selected training samples are augmented us-
ing the determined methods by two-sample Kolmogorov-Smirnov
test and the existing outliers are removed by k-means clustering.
Experiments on three real HSI datasets are performed for valida-
tion. Based on the visual and qualitative results, in the proposed
method the classification accuracy is significantly enhanced in
comparison with three state-of-the-art AL algorithms.
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Datasets
No. L

samples
No. U

samples
No. T

samples

No. total
training
samples

NO. LA
samples

No.
iterations

(it)
DA

Batch
size
(m)

No.
clusters

(k)

Sampling
weight

parameter
(λ)

IP 48 10201 10249 488 1948 22
rotating 90◦,180◦,
flipping vertically 20 17 0.6

KSC 39 5172 5211 439 1728 20
rotating 180◦,

flipping horizontally,
vertically

20 14 0.1

PU 27 42749 42776 427 1708 20
rotating 180◦,

flipping horizontally,
rescaling to 0.9

20 10 0.9

Table 5. Parameter settings for the three HSI datasets

Class MCLU-ABD BvSB MPM-LBP-BT SSAAL
1 97.83 97.83 95.24 97.83
2 87.61 94.26 95.51 99.72
3 91.33 95.42 99.74 99.40
4 91.98 91.14 100 100
5 97.93 94.82 100 100
6 97.67 98.22 100 100
7 100 100 100 100
8 100 99.58 100 100
9 100 100 100 100
10 94.03 93.93 99.89 100
11 93.12 94.79 98.14 99.55
12 97.81 95.45 100 99.49
13 100 99.02 99.50 100
14 99.68 98.81 99.92 100
15 93.78 96.37 99.72 100
16 100 100 93.10 100
OA(%) 94.50 (0.86) 95.83 (0.33) 98.79 (0.21) 99.80 (0.05)
AA(%) 96.42 96.85 98.80 99.75
Kappa 0.937 0.953 0.988 0.998
Time(min) 9.58 9.06 15.63 10.17

Table 6. Classification accuracies and computation time obtained by different AL techniques on Indian Pines dataset.

(a) MCLU-ABD (b) BvSB (c) MPM-LBP-BT (d) SSAAL

Figure 6. Classification maps obtained by different AL techniques on the Indian Pines dataset.

Class MCLU-ABD BvSB MPM-LBP-BT SSAAL
1 97.50 90.67 99.45 100
2 100 100 100 100
3 95.31 97.66 100 100
4 82.14 100 86.67 100
5 98.14 100 100 100
6 82.53 94.32 100 99.13
7 72.38 100 100 100
8 100 99.07 100 100
9 100 100 100 100
10 100 100 100 100
11 100 100 95.53 100
12 100 100 100 100
13 100 100 100 100
OA(%) 97.16 (0.34) 98.20 (0.18) 98.99 (0.1) 99.96 (0.03)
AA(%) 94.46 98.59 98.59 99.93
Kappa 0.968 0.980 0.989 0.999
Time(min) 9.62 9.16 196.29 10.66

Table 7. Classification accuracies and computation time obtained by different AL techniques on KSC dataset
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Figure 7. Classification maps obtained by different AL techniques on KSC dataset.

Class MCLU-ABD BvSB MPM-LBP-BT SSAAL
1 99.16 98.51 96.17 99.73
2 98.36 99.44 96.39 99.75
3 94.66 95.52 51.02 98.81
4 98.24 96.31 92.04 99.05
5 99.93 99.85 94.28 99.93
6 99.80 95.82 92.04 99.98
7 99.62 96.99 14.87 99.77
8 98.07 91.44 81.76 98.29
9 99.58 97.04 97.67 99.68
OA(%) 98.56 (0.37) 97.65 (0.6) 89.52 (3.89) 99.67 (0.02)
AA(%) 98.60 96.77 79.58 99.44
Kappa 0.981 0.969 0.860 0.994
Time(s) 11.26 11.46 128.25 13.20

Table 8. Classification accuracies and computation time obtained by different AL techniques on Pavia University dataset.

(a) MCLU-ABD (b) BvSB (c) MPM-LBP-BT (d) SSAAL

Figure 8. Classification maps obtained by different AL techniques on Pavia University dataset.
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