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ABSTRACT: 

 

Accurate and automatic building footprint extraction from single UAV images has become essential in many photogrammetry and 

remote sensing applications such as 3D building modeling, smart city, monitoring, disaster management, and urban planning. In this 

paper, the capability of U-Net architecture with ResNet as the backbone of the network is investigated to extract the building footprints 

from UAV-based orthophotos and normalized Digital Surface Models (nDSMs) considering the complementary nature of RGB and 

height information. The data has been captured from five non-overlapping rural scenes of Yazd province, Iran. After pre-processing, 

the training and test datasets are prepared to evaluate the performance of U-Net using different hyperparameters and input channels 

such as RGB (only orthophotos) and RGBD (orthophotos and nDSMs). The experiments highlight the effectiveness of height 

information to detect and extract the building footprints with significant improvements in precision from 89% to 97% and in recall 

from 77% to 91%. 

 

 

1. INTRODUCTION 

Building detection and footprint extraction from high-resolution 

images are one of the most challenging tasks in many 

applications such as urban planning, mapping, 3D building 

modeling, and change detection analysis (Yuan, 2016; Liu et al., 

2019). Challenges in building extraction include but are not 

limited to the complexity of the shape, size, texture, color, and 

materials of buildings, and the existence of obstacles such as trees 

and shadows in RGB images (Sun et al., 2019). Nowadays, 

Unmanned Aerial Vehicle (UAV)-Photogrammetry offers an 

affordable, effective and fast approach to real-time acquisition of 

high-resolution RGB images. The UAV images are a rich source 

of not only 2D but also 3D information about a scene, thanks to 

photogrammetric algorithms and software packages. The 

generated DSMs and DTMs from UAV-based images provide 

invariant geometric features to localize the boundary of buildings 

and reduce the complexity of building extraction from non-

ground objects including vegetation covers, yards and garages. 

There are numerous methods and algorithms for building 

extraction from RGB images which can categorized into two 

general methods as conventional and Deep Learning (DL) 

methods. Manually digitizing of buildings from images is a hard 

effort and time-consuming task. On the other hand, conventional 

methods which are based on rules and thresholds on features 

including edges, shapes, and roof types have to deal with the 

complexity of a building’s appearance in dense man-made 

structures as well as noise and errors in data (Sun et al., 2019). In 

the past two decades, machine learning and deep learning 

algorithms such as Support Vector Machines (SVMs) and 

Convolutional Neural Networks (CNNs) have shown promising 

results in automatic extraction of buildings from remotely sensed 

data (Bittner et al., 2018; Shi et al., 2019; Sun et al., 2019). In 

contrast with conventional methods, features in DL are extracted 
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automatically by using convolutional layers and they are 

remarkably effective in dealing with large amounts of complex 

data (Chollet, 2018). However, the performance of CNNs 

depends on the quality of the training data and learning 

parameters, and therefore, finding the optimum hyperparameters 

is vital to achieving higher accuracy in building extraction.  

This study aims to automatically extract the building’s footprints 

in rural areas. The old or destroyed building structures, inaccurate 

ground truth, and texture similarities between building roofs and 

surrounding roads are major challenges of building detection in 

rural areas. The present paper investigates the capability of the 

U-Net network (Ronneberger et al., 2015) in building extraction 

using a combination of single images and height information 

(nDSMs) and contributes to the literature in three aspects: 

• In this paper, we train a well-known CNN on a non-standard 

and non-benchmark remotely sensed data from rural scenes, 

and therefore, propose the most important pre-processing 

steps to prepare the training data with sufficient quality. 

• To enhance the performance of building extraction, a weight 

map and a modified loss function are designed to force the 

estimator to pay more attention to boundaries of buildings. 

• The hyperparameters such as the learning rate, 

regularization factor, input channels and iterations are 

optimized for the custom dataset. 

 

2. RELATED WORK 

In recent years, there are remarkable studies on building footprint 

extraction based on deep learning algorithms. Bittner et al. 

(Bittner et al., 2018) developed fused-FCN4s to fuse three types 

of remotely-sensed data including RGB and PAN images as well 

as nDSMs for building semantic segmentation. Their results 

showed that the fusion of nDSMs with spectral images can 
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provide accurate boundaries. Xu et al. (Xu et al., 2018) proposed 

a ResU-Net model to extract buildings accurately, and guided 

filters to fine-tune the output of the neural network. Alidoost et 

al. (Alidoost et al., 2019) employed a multi-scale FC-CNN with 

the combination of Active Contour Models (ACMs) for boundary 

extraction of buildings from single aerial images with an 

accuracy of 68%. To extract buildings from very high-resolution 

panchromatic satellite images and DSMs, Schuegraf and Bittner 

(Schuegraf and Bittner, 2019) proposed a hybrid FCN model 

including two U-Net architectures to extract depth and spectral 

information and then to fuse the extracted information to detect 

buildings with accuracy of 97%. Liu et al. (Liu et al., 2019) used 

two chained CNNs for building footprint extraction and four-

channel images composed of UAV-based images and DSMs as 

the input of the network. Wei et al. (Wei et al., 2019) trained a 

Multiscale Aggregation Fully Convolution Network (MA-FCN) 

using aerial images and then applied two post-processing 

algorithms to refine the output. Yu et al. (Yu et al., 2020) 

employed a MA-FCN for building footprint extraction using 

aerial images and corresponding DSMs. For more accurate 

results, the DSM was classified into buildings and non-buildings 

and then contour extraction and regularization were applied to 

extract structured boundaries with the precision of 74%.  

Recently, Alsabhan and Alotaiby (Alsabhan and Alotaiby, 2022) 

compared two types of the backbones for U-Net network such as 

ResNet50 and ResNet152 to extract building footprints with an 

accuracy of 90%. Their results show that ResNet50 is sufficient 

for the building extraction task. Also, Buyukdemirciog et.al. 

(Buyukdemircioglu et al., 2022) trained U-Net and LinkNet 

architectures using different backbones such as ResNet18, 

ResNet50 and SeResNet50 to investigate the effect of different 

architectures on the building extraction. The higher accuracy was 

obtained by U-Net and ResNet50. 

 

3. PROPOSED METHOD 

In this paper, a sequential workflow is utilized for automatic 

extraction of building footprints based on supervised image 

segmentation techniques (Figure 1). Therefore, the first step of 

the proposed approach is to prepare train and test datasets as well 

as annotated data using high-resolution UAV images. Since the 

datasets are not standard or benchmark data, different pre-

processing methods are vital which will be explained in details in 

the next sub-sections. After data-preparation, a U-Net 

architecture (Ronneberger et al., 2015) is trained using 

augmented training dataset. In this step, hyperparameters for 

training as well as the loss function are optimized to improve the 

performance of the U-Net on the custom dataset which will be 

explained in the following sub-sections.   

 

3.1 Data Preparation 

In this paper, 2D Ortho Image Mosaics (OIMs) are enriched with 

height information of buildings which is particular useful to have 

a robust network to detect the building footprints from non-

ground and non-building footprints. To aim this, the outlier and 

errors should be first eliminated from the generated DSMs. 

To remove noises from generated DSM, the 3-sigma rule is 

applied to the points and the points with the height variation 

higher than 3*SD (i.e. Standard Deviation) are removed as 

outliers. In the next step, Digital Terrain Models (DTMs) are 

generated from DSMs using the LAStool (Isenburg, 2014) and 

LidR tool (Roussel and Auty, 2021). Finally, the nDSM is the 

difference between DSMs and DTMs.  

To generate the annotated data, a 3D vector GIS map is first 

generated from stereo images, manually. Next, the 3D Vector 

MAPs (VMAPs) of buildings are selected to prepare the ground 

truth. The VMAPs are manually corrected for missing buildings 

by overlaying the OIMs and corresponding DSMs. Then, the 

VMAPs are rasterized using GDAL (GDAL/OGR contributors, 

2022). The results are stored as Rasterized MAPs (RMAPs) in 

which 0 and 1 values represent non-building and building pixels, 

respectively. To evaluate the effect of input layers of the CNN on 

the final segmentation results, RGB orthophos and corresponding 

nDSMs are combined as a four channel raster image (RGBD). 

Next, the RGBD images and the corresponding ground truths are 

cropped to different sizes as 512×512, 1024×1024, and 

1536×1536 image tiles with 25% overlap and then resized to 

512×512 pixels. Finally, to increase the training datasets, data 

augmentation techniques like randomly rotating, scaling, and 

vertical and horizontal flipping are applied to training data. 

 

 

Figure 1. The proposed method. 

 

3.2 Footprint Extraction 

Among many choices for a CNN architecture, the U-Net 

architecture is selected to train aerial images. U-Net is one of the 

most common networks for semantic segmentation that was first 

introduced on biomedical images (Ronneberger et al., 2015). The 

U-shaped network contains two main parts such as the 

concatenating path (encoder) and the expanding path (decoder). 

The concatenating path contains convolution layers and down-

sampled feature maps to capture the context information. The 

expanding path is to up-sample the feature maps to the original 

resolution.  An important part of the U-Net model is the skip-

connection layer that connects the concatenation path to the 

expanding path. It helps the decoder path to learn better-localized 

information from the encoder (Ronneberger et al., 2015). 

Moreover, the U-Net-based feature extractor needs to be deep 

enough to extract complex features from high-resolution aerial 

images. Therefore, we utilized the ResNet-50 (He et al., 2015) as 

the encoder (Khoshboresh-Masouleh et al., 2020; Abdollahi and 

Pradhan, 2021; Dixit et al., 2021). Besides, the weights are 
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initialized based on the pre-trained ImageNet model (Deng et al., 

2009). Totally, there are 32,564,253 parameters in the model and 

32,516,693 of them are trainable parameters. To train the CNN, 

a customized loss function is proposed by Equation 1. 

 

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑤𝑏𝑐𝑒 + 𝐿𝑤𝑑𝑖𝑐𝑒 (1) 

 

where Lwbce is the weighted binary cross-entropy function 

(Ronneberger et al., 2015) and Lwdice is the weighted dice loss 

function (Sudre et al., 2017), given by Equations 2 and 3.  

 

𝐿𝐵𝐶𝐸 =
1

𝑁
 ∑ −(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖))

𝑁

𝑖=1

 (2) 

𝐿𝑑𝑖𝑐𝑒 = 1 − 2
∑ ∑ 𝑝𝑐(𝑥𝑖)𝑟𝑐(𝑥𝑖)𝑥𝑖∈𝑋𝑐∈𝐶

∑ ∑ (𝑝𝑐(𝑥𝑖) + 𝑟𝑐(𝑥𝑖)) + 𝜀𝑥𝑖∈𝑋𝑐∈𝐶

 (3) 

 

where     N = number of pixels in one patch 

 yi = true labels 

                pi = predicted labels 

                p = softmax prediction of class c 

                = small number to avoid the zero division. 

  

If the predicted class for a pixel is c, rc is equal to 1 and otherwise, 

it is equal to 0 (Sudre et al., 2017). To force the model to learn 

the boundaries of the buildings, the weight map is computed by 

Equation 4. 

 

𝑤(𝑥) =  𝑤𝑐(𝑥) + 𝑤0 ∗ exp (−
(𝑑1(𝑥) + 𝑑2(𝑥))2

2𝜎2
) (4) 

 

where      𝑤𝑐  = weight of the current class 

                𝑤0 = weight for boundary pixels 

                𝜎 = width for boundary pixels. 

 

The weight maps are generated for the training dataset in the size 

of 512×512×1 pixels, given by Equation 2. The parameters of 𝜎 

and 𝑤0 are experimentally set to 20 and 10, respectively. The 

weights (e.g. 𝑤𝑐 ) for building and non-building classes are 

computed by Equation 5. 

 

𝑤𝑐 =  
𝑛𝑡

2 ∗ 𝑛𝑐
 (5) 

 

where      𝑛𝑡 = number of pixels in the training dataset  

                𝑛𝑐 = number of the pixels belonging to the class c.  

 

 

 

In this study, 𝑤𝑐  for building and non-building classes are 3.5 and 

0.5, respectively. To evaluate the performance, the quality 

measures of precisions (or correctness), recall (or completeness) 

and F1-score is calculated by Equation 6 using the predicted 

footprints (A2DRMAP in Figure 1) and the ground truth. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

(6) 

 

where       TP = True-positive 

                 FP = False-positive 

                 FN = False-negative 

 

TP refers to the pixels that are truly classified. FP refers to the 

pixels that are not classified as true. FN refers to the pixels that 

are wrongly classified as true.  

 

4. EXPERIMENTS AND RESULTS 

The main dataset consists of aerial UAV photogrammetric 

images from five rural areas in Yazd city, Iran. The RGB images 

are captured by a Phantom 4 Pro UAV with a GSD of 5 cm over 

Aghda, Zardin, Haftabad, Kahduiyeh, and Karimabad, as shown 

in Figure 2. The first four villages including 4720 buildings are 

considered for training and validation datasets which are divided 

by a 70% to 30% ratio, while the last village (e.g. Karimabad) 

including 917 buildings is a test data to evaluate the trained 

model. Besides, DSM and DTM are generated with a GSD of 10 

cm. The image tiles are pre-processed and copped to a size of 

512×512 pixels with four channels as RGB and corresponding 

nDSM, as shown in Figure 3. After applying data augmentation, 

the training dataset is increased from 4333 to 9976 images. 

To optimize the hyperparameters for training, several tests are 

designed using U-Net and RGBD data, as shown in Table 1. 

According to the precision and recall results on validation data, 

hyperparameters such as the Learning Rate (LR), L2 

regularization, number of epochs, and batch size are set to 

0.0001, 0.01, 50, and 4, respectively. In addition, the Adam 

algorithm is employed as the optimizer with the parameters of 

beta 1 of 0.9 and beta 2 of 0.999. The L2 regularization is also 

applied to prevent overfitting. The optimized learning settings are 

reported in Table 2. The proposed model is trained using 

Tensorflow Keras Framework on Nvidia Geforce RTX 2080 Ti. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of training and test datasets. 
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Figure 3. Test (the first row) and train (the second row) data. 

 

Parameters 1 2 3 4 5 6 

LR 0.01 1e-4 1e-4 1e-4 1e-4 1e-4 

L2 - - 1e-2 - 1e-2 1e-2 

Early Stop - - - yes yes yes 

Epoch 50 50 50 6 24 16 

Precision (%) 98 93 91 83 91 94 

Recall (%) 18 59 72 82 89 90 

IoU (%) 18 56 67 70 81 85 

Table 1. Tests on validation data to find the optimum 

hyperparameters. 

 

Settings Values 

Network U-Net 

Backbone ResNet50 

Initial weight ImageNet 

Learning rate 0.0001 

Optimizer Adam 

Regularization (L2) 0.01 

Batch size 4 

Epoch 50 

Input size (512,512,4) RGBD, (512,512,3) RGB 

Table 2. The selected learning parameters. 

 

To select an appropriate loss function and evaluate the effect of 

the dice loss function, one network is trained using a weighted 

cross-entropy loss function with and without the dice component. 

As shown in Figure 4, the accuracy of prediction on the validation 

data are significantly improved by adding the dice loss function. 

 

 

Figure 4. Accuracy comparison between two models trained 

using cross entropy and dice loss functions. 

 

The color, textural, and structural similarities between buildings 

and other 3D objects make it difficult to distinguish buildings 

when attempting to extract building footprints using only spectral 

features, and building shadows cause color differences and 

confuse the CNN model. On the other hand, if the height 

information is only employed in the input layer, any elevated 

object could be extracted as a building. To retain the advantages 

of both spectral and height data, RGB images and nDSMs are 

concatenated. Besides, the building edges are extracted more 

accurate and sharper in nDSMs. Therefore, two strategies are 

designed to investigate the effect of height information on the 

footprint extraction as the RGB model to use only RGB images 

to train the model and the RGBD model to fuse the spectral and 

height data as the input layer for the network (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. The results of RGB and RGBD models on the test samples. 
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As shown in Table 3, the average of precision and recall measures 

using RGBD model are about 97% and 91% respectively, while 

these values are about 89% and 77% for the RGB model.  

 

Metric RGB model RGBD model 

Loss 0.0765 0.0346 

Accuracy (%) 95 98 

Precision (%) 89 97 

Recall (%) 77 91 

IoU (%) 70 88 

Table 3. The results of footprint extraction on the test dataset.  

 

The experimental results in Figure 5 show that the trained model 

based on RGB image and nDSMs can reliably extract the 

building footprints in different areas and non-building objects 

such as tress, roads as well as closed areas including walls are 

correctly detected as background values. The error map is shown 

in Figures 6 and 7 to present the differences between the ground 

truth and the predicted map using the RGBD model for two 

different areas. According to the error maps, the green areas are 

the locations of buildings in the ortho images that are not in the 

ground truth due to the digitization errors, and therefore, they 

were detected by the netwek, correctly. On the other hand, the 

red areas (e.g. FN pixels) are incorrectly detected as the buildings 

which are mostly in the boundaries of the buildings. As a 

conclusion, all large buildings are extracted completely. 

Compared to similar studies (Khoshboresh-Masouleh et al., 

2020; Xu et al., 2018) the building footprints are extracted more 

accurately in the present study. However, the model has some 

problems with the prediction of footprints for small buildings.  

 

5. CONCLUSION 

The aim of this study was to evaluate the performance of the U-

Net for building footprint extraction based on the combination of 

spectral (e.g. RGB orthophotos) and geometrical features (e.g. 

nDSMs). Several test scenarios are designed to first optimize the 

hyperparameters in the training step and the best model is then 

trained using a custom dataset. The qualitative and quantitative 

assessments indicate that quite promising results with significant 

high completeness and correctness rates are obtained for the 

RGBD model. Since the nDSM data provides a rich source of 

geometrical information, the height values of building roofs can 

be embedded into the model using RGB images for learning 

CNN, and therefore, extracting more accurate and 

distinguishable features to improve accuracy building footprints. 

The buildings footprints have been extracted with the precision 

of 97% and recall of 91% for Karimabad village. In order to 

improve the results of boundries, more investigations on deeper 

networks such as Deeplab-v3(Chen et al., 2017) is suggusted for 

the future work. 
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Figure 6. The error map between the ground truth and the 

predicted map using the RGBD model for the sample area 1. 
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Figure 7. The error map between the ground truth and the 

predicted map using the RGBD model for the sample area 2. 
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