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ABSTRACT:  

 

Forest fires are natural events that occur in numerous ecosystems worldwide and cause significant damage to human, ecological and 

socio-economic factors. It is also crucial to obtain useful information on the distribution and density of burned areas on large scale. 

An efficient way to map large regions is through remote sensing (RS). Nevertheless, the complex scenario and similar spectral 

signature of features in multispectral bands can lead to many false positives, making it difficult to extract the burned areas accurately. 

Multispectral data from Sentinel-2 satellite images allow the development of novel burned area indices, as more spectral data is 

recorded in the Red-Edge region. This research aims to develop a new burned area detection index (BADI) at 20 m spatial resolution 

in the google earth engine platform to detect the wildfire-affected areas in southwest of Iran using Sentinel-2 satellite imagery. The 

BADI spectral index has been specially designed to take benefit of the Sentinel-2 spectral bands and use a spectral combination of 

bands that are reasonable for post-fire burned regions detection. The final results indicated that the proposed index by applying a 

post-processing stage works well in the case of the study area to identify the burned areas. At the same time, it can satisfactorily 

suppress the complicated and irrelevant changes in the scene. Furthermore, the BADI index is rapid and can provide the burned areas 

map in near real-time. According to the Copernicus Emergency Management Service (EMS) reference data, maps of the burned areas 

were produced with a kappa coefficient of 0.92 and an overall accuracy of 92.15%, which demonstrated a good result in comparison 

to similar spectral indices. 
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1. INTRODUCTION 

 

Vegetation fires are a common disaster in farms, and forests, 

wreaking havoc on human life and property, the environment, 

and wildlife. Every year, a high amount of forests and other 

regions are burned by fires in the entirety of the world, 

especially in Iran. Climate conditions, slopes, and vegetation 

areas all influence the direction, size, and power of wildfires 

(Thonicke et al., 2001). In order to manage an emergency, 

detailed products on the temporal and spatial distribution of 

burned areas are (BA) essential (Keane et al., 2001; Farhadi et 

al., 2022b). Because of complicated topography, extensive 

scenes, and poor weather conditions, traditional ground surveys 

can be costly and challenging. Analysis of multitemporal and 

multispectral imagery can quickly locate the BA using remote 

sensing (RS) (Tansey et al., 2008; Lizundia-Loiola et al., 2020; 

Farhadi et al., 2022b). 

 

The extent of a wildfire can be determined both spatially and 

temporally using satellite images. Satellite sensors with 

multispectral capability such as Landsat-1 to 9, Sentinel-2 

multispectral instruments (MSI), and MODIS provide reliable 

data in a short timeframe and medium spatial resolution (Giglio 

et al., 2018; Farhadi and Najafzadeh, 2021). Consequently, RS 

technology can provide valuable image data for burnt area 

monitoring. However, it is critical for fire suppression, and 

prevention of fire spread that fire-affected regions are mapped 

quickly and accurately after the fire (Farhadi et al., 2022b). 

 

The Sentinel-2 optical satellite imagery has been used to create 

new spectral indices for BA detection recently (Filipponi, 

2018). In recent studies, Sentinel-2 imagery's Red-Edge (RE) 

bands have been successfully applied to create a spectral index 

for assessing and detecting fire severity (Quintano et al., 2018; 

Liu et al., 2020). Following are several studies that used 

Sentinel-2 images to detect the BA. 

 

Research on the severity of fires has become increasingly 

interesting in recent years. There are principally two kinds of 

spectral indicators that can be used to detect BA, including the 

vegetation index and the BA index (Patterson and Yool, 1998). 

The traditional method of BA detection is based on the 

composite burn index (CBI), which is a ground-based measure 

proposed by (Key, 2004). The CBI index remains the standard 

index used in field surveys and wildfire severity assessments by 

the United States Forest Service (USFS). The Normalized Burn 

Index (NBR) was first proposed by (García and Caselles, 1991) 

as an alternative to the Normalized Difference Vegetation Index 

(NDVI), where the red (R) band in the NDVI calculation 

formula is replaced by the short-wave infrared (SWIR) band. 

Further studies have demonstrated that the differential NBR 

(dNBR) index can better represent the spatial distribution of 

forest fire severity compared to the NBR index (TAN et al., 

2016; Farhadi and Najafzadeh, 2021). Previous studies have 

shown that the NBR index is more sensitive to changes in 

chlorophyll and water content of vegetation, and have 

concluded that this index is the most practical RS approach for 

assessing fire severity. Despite the long relative success and 
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their common usage, NBR/dNBR spectral indices have some 

drawbacks in use. A first point to note is that the NBR/dNBR 

burned area detection index stays positively responsive to 

spectral variations other than those associated with wildfires 

(Roy et al., 2006). secondly, the connection between 

NBR/dNBR and fire severity becomes saturated for plots where 

the severity is high. This issue can also happen within field-

observed indices when field observations are taken in a little 

range. This issue is hampering the NBR/dNBR index's ability to 

distinguish subtle differences between high severity plots. 

Thirdly, the association between NBR/dNBR and fire severity is 

environmentally-related, so field observations are needed to 

calibrate the NBR/dNBR (Alonso-Canas and Chuvieco, 2015). 

However, there is no consensus on which index performs 

agreeably in detecting the BA and considering wildfire severity, 

and under which situations it should be selected (Filipponi, 

2018; Farhadi et al., 2022b). 

 

Most studies to date on fire severity using RS images have been 

based on the SWIR, near-infrared (NIR), and red (R) spectral 

regions (Ruckstuhl and Norris, 2009). However, few 

investigations have associated the RE spectral band with 

wildfire severity. Filipponi, 2018 proposed the BA index for 

Sentinel-2 (BAIS2) based on the RE band of Sentinel-2 data 

(Filipponi, 2018). A study by Fernández-Manso et al. (2016) on 

fires in the Sierra de Gata in mid-western Spain in 2015 found 

that the RE band of Sentinel-2 data is very useful for estimating 

the extent of damage caused by fires and for monitoring post-

fire reconstruction. 

 

For the detection of BA, in addition to spectral indices, some 

other approaches have been used, including supervised 

classification using decision trees (DT), support vector 

machines (SVM), neural networks (NN) (Silva et al., 2005; 

Kontoes et al., 2009), and linear transformations (Patterson and 

Yool, 1998), spectral unmixing strategies (Lizundia-Loiola et 

al., 2020), and linear regression models (Koutsias and Karteris, 

2000). In addition to being faster than other strategies, spectral 

indices-based methods can detect the BA without training 

samples (Chongo et al., 2007; Farhadi et al., 2022b). Despite 

this, the thresholds of the spectral indices need to be adjusted 

depending on the environmental attributes of the case study 

(Smith et al., 2007). Roteta et al. (2021) provided an application 

to map the BA using Sentinel-2 and Landsat satellite imagery 

on the GEE environment, based on supervised techniques. The 

results indicated that the method was efficient, with commission 

and omission errors of less than 12 percent. Therefore, due to 

the decrease in vegetation in satellite imagery before and after 

the fire, existing vegetation spectral indices can accurately 

determine differences in the BA. There is, however, the 

possibility that there are differences in spectral characteristics 

between different ground covers, such as soil, in some bands, 

such as SWIR and NIR. 

 

In recent years, the wide availability of medium spatial 

resolution of optical imagery such as the Sentinel-2 satellite 

images equipped with dedicated spectral bands to collect data in 

the RE spectral region, which is one of the nicest radiation-

based identifiers of chlorophyll and vegetation water amount 

(Curran et al., 1990), has paved the way for the development 

and application of novel spectral indicator to discriminate burnt 

severity. Recent investigations have proven successful in 

estimating the severity of burns using Sentinel-2 images by 

comparing satellite imagery taken before and after the fire 

(Fernández-Manso et al., 2016; Navarro et al., 2017; Mallinis et 

al., 2018; Quintano et al., 2018) and have demonstrated the 

usefulness of current RE spectral indicators for discriminating 

burned severity and Sentinel-2 MSI data for detecting the BA 

(Mallinis et al., 2018). This is indicative of the need for further 

analysis to produce a map of the BA using the Sentinel-2 

images. 

 

It is important to note that the RE and SWIR spectral bands are 

largely unaffected by aerosols, which makes them an excellent 

tool for monitoring vegetation as well as burned vegetation. in 

addition, the SWIR spectral bands contribute to an improved 

distinction between burnt and non-burned pixels (Giglio et al., 

2018). SWIR reflectance is impacted by water absorption, 

which makes the SWIR spectral bands positively sensitive to 

the presence of water within vegetation. The reflectance of 

burned pixels will therefore be relatively high in the RE and 

SWIR bands, in contrast to the very low reflectance that is 

depicted in the NIR bands (Giglio et al., 2018). Moreover, when 

shifting from the NIR to SWIR spectral region, the reflectance 

differences between burned and non-burned pixels are 

significantly increased. The current study presents the novel 

BADI (Burned Area Detection Index) spectral index for the 

identification and mapping of the BA. The aforementioned 

index has been specially developed to take benefit of the 

Sentinel-2 spectral bands and use a spectral combination of 

bands that are reasonable for post-fire burned regions detection. 

The derived difference BADI (dBADI) index is based on the 

arithmetic difference between the before and after the fire BADI 

index estimate. BADI and dBADI were used to map fires that 

occurred in May 2020. The outcomes were compared with the 

reference indices and the Copernicus EMS outcomes. 

Ultimately, the development of a processor-based on BADI and 

dBADI indicators for the BA mapping is presented. The process 

of creating the map of the BA in the present work was carried 

out entirely using the web-based platform GEE. This platform 

may handle extensive processes in less time (Farhadi et al., 

2022a). The GEE platform is used in other environmental 

scopes, including natural resource applications, agriculture, 

mapping and monitoring natural disasters (Kumar and Mutanga, 

2018). Results of the mentioned effective index can be used in 

applications assessing fire hazards and estimating destruction 

due to it. 

 

In general, the present study organization begins with an 

introduction to the study area and data sets in section 2. A 

detailed description of the proposed methodology is provided in 

the third section of the paper. Next, the outcomes are analysed 

qualitatively and quantitatively and compared with some of the 

recent studies. Ultimately, the main results are delivered in the 

conclusions section. 

 

2. STUDY AREA AND DATA 

 

2.1 Study Area 

 

The fire event considered in this research occurred from 3 to 13 

May 2020 in southwestern Iran and southwestern Fars province 

and 5 km from the town of Farashband (Figure 1). The study 

area is related to the Zone 39N of the UTM coordinate system. 

This place, located in Zagros Mountain, fire-damaged dozens of 

natural resources, including local flora and fauna. The Zagros 

Mountains on the western border of Iran, are dwelling of 

numerous individual kinds of fauna and flora. 40 % of herbs 

used for medicinal aims are found in this area. Nevertheless, 

drought and over-consumption of resources have harmed the 

region's woodlands, and nowadays forest fires are also 

threatening the region. Several local authorities reported that the 

wildfire caused severe damage to soil texture, biodiversity, 
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standard ecological functions, and losses among firefighter 

personnel. Also, elevation ranges from 750m to 1300m above 

sea level. 

 

Figure 1. location of the study areas by the Slope model. 

The reason for choosing this region as a study area is the 

happening of successive wildfires in that. In May 2020, a fire 

damaged 2055 hectares of forest land in the Farashband region, 

according to the Emergency Management Service (EMS). The 

current research utilised EMS wildfire maps with ID: 

EMSN079 as a test data map to assess the outcome of the 

proposed spectral index, as depicted in Figure 2. It is worth 

noting that the fire occurred on steep slopes. 

2.2 Satellite Data 

Cloud-free optical satellite images obtained by the Sentinel-2 

satellite were used in the present study. There are two satellites 

in the Sentinel-2 constellation and the revisit time is five days. 

The Sentinel-2A satellite was launched in June 2015, while 

Sentinel-2B was launched in July 2016. Satellite imagery from 

Sentinel-2 provides 13 spectral bands, covering the visible, 

NIR, and short-wave infrared (SWIR) regions with spatial 

resolutions from 10 meters to 60 meters. The spectral and 

spatial information for the Sentinel-2 satellite can be found in 

Table 1. 

 

Figure 2. The EMS map to evaluate the result. 

In the current research, the Level-1C products available at GEE 

(Dataset ID: "COPERNICUS /S2_SR") were used. In the first 

phase, the Sentinel-2 dataset was mosaicked in the GEE web-

based platform to fully cover the study region. Subsequently, 

mosaicked images were atmospherically restored to the 

reflectance of the L-2A bottom of atmosphere (BOA) using the 

Sen2cor (Farhadi et al., 2022b), and resampled to a spatial 

resolution of 20 m. Ultimately, atmospherically corrected 

images were used for the calculation of the spectral index. The 

used Sentinel-2A image scenes related to before and after the 

fire is shown in Figure 3. 

Description Wavelength Resolution Name 

Aerosols 443.9 nm 60 meters B1 

Blue 496.6 nm 

10 meters 

B2 

Green 560 nm B3 

Red 664.5 nm B4 

Red EDG 1 703.9 nm 

20 meters 

B5 

Red EDG 2 740.2 nm B6 

Red EDG 3 782.5 nm B7 

NIR 835.1 nm 10 meters B8 

Red EDG 4 864.8 nm 20 meters B8A 

Water Vapor 945 nm 
60 meters 

B9 

Cirrus 1373.5 nm B10 

SWIR-1 1613.7 nm 
20 meters 

B11 

SWIR-2 2202.4 nm B12 

Table 1. Characteristics of the Sentinel-2A MSI bands. 
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Figure 3. Sentinel-2 images, pre-fire (A), and post-fire (B). 

 

3. METHODOLOGY 

 

The current research provides a robust spectral index for the 

accurate and rapid detection of BA using Sentinel-2 imagery in 

the GEE environment. After importing the Sentinel-2 imagery 

related to pre-fire and post-fire and applying the required 

preprocessing stages in the GEE platform, the novel Sentinel-2 

burned area detection index (BADI) was used to create a map of 

the primary burned regions (PBR). In the following phase, to 

enhance the BA identification accuracy, NDWI (normalised 

difference water index) and NDVI indices were used to mask 

the pixels associated with permanent water bodies and live 

vegetation. To compute the optimal threshold of the index 

automatically, we used the Otsu histogram thresholding 

technique (Otsu, 1979). Ultimately, the final burned regions 

(FBR) are obtained by subtracting the pre and post-fire water 

and vegetation pixels from the PBR. The procedures for 

carrying out the proposed index are shown in Figure 4. The 

details are provided below. 

 

 

Figure 4. Flowchart of the novel BADI index for burned area 

detection. 

 

3.1 Proposed Burned Area Detection Index (BADI) 

Different spectral signatures from the visible to the SWIR range 

have different trends for a given phenomenon before and after 

the fire periods. Because of the high importance of SWIR, NIR, 

and R bands in spectral indices, the ratio of mentioned bands 

was used in most previous studies. Figure 5 shows a scatter plot 

of the vegetation pixel values in the different spectral bands, 

related to the time before (Figure 5a) and after the fire (Figure 

5b). As shown in Figure 5a, the vegetation pixel values in the 

SWIR-1 band do not overlap with other bands. On the other 

hand, the RE1 band has a significant reflective distance 

compared to the SWIR-1 band. Although the SWIR-2 band 

before the fire contains the same information as the other bands, 

in the post-fire time both the SWIR-1 and SWIR-2 bands have 

provided useful information to better distinguish the BA. 

Therefore, using visible, RE, NIR and SWIR bands can provide 

useful information in identifying the BA. 

 

 
Figure 5. Scatter plot for vegetated areas in the different 

spectral bands; pre-fire (a), post-fire (b). 

 

The novel BADI spectral index for burned area detection can be 

estimated using Equations 1-3. To identify wildfire-impacted 

areas, mentioned index utilizes the spectral components of the 

NIR and RE bands. 
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+ − +
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+ + +

 
 
 

             (1) 
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1 2BADI F F=                          (3) 

 

In Equation (1-2), B4, B5, B6, B7, B8, B8A, B11, and B12 are 

the corresponding bands of Sentinel‐2 images and BADI 

represents the novel burned area index in before and after 

images.The dBADI index between the two images at different 

periods is computed by subtracting the BADI indices before and 

after the fire (Equation 4). The PBR map is generated after the 

automatically Otsu thresholding technique has been applied to 

the dBADI index. 

 

Pre PostdBADI BADI BADI= −                   (4) 

 

3.2 FBR Map by Water and Vegetation Mask 

The BADI index for burnt area detection is sensitive to 

vegetation and water classes due to the spectral bands used. 

Since the properties of vegetation and water land cover classes 

are different pre and post-fire, the areas containing vegetation 

and water are identified as burnt pixels. To solve this problem, 

misidentified pixels should be recognized over time (before, 

during and after the wildfire) and removed from the PBR map 

result. To distinguish water pixels from other land cover classes 

like vegetation, bare soil, and burned pixels, the useful NDWI 

index was used in this study. In the index mentioned above, 

positive values ( 0)NDWI = were categorized as water 

pixels, while negative values ( 0)NDWI  , were determined 

as non-water pixels (McFeeters, 1996; Farhadi et al., 2022b). 

The NDWI spectral index for water area detection can be 

estimated using Equation 5; where B3 and B8 are the 

corresponding bands of the sentinel-2 images. 

 

( 3 8) / ( 3 8)NDWI B B B B= − +                (5) 

 

Another class that complicates the identification of burnt areas 

is healthy vegetation, which must be masked from PBR map 

results. In the current research, NDVI was used to detect the 

vegetated pixels, which can be calculated using Equation 6. The 

NDVI index value ranges between -1 and +1, which NDVI 

greater than 0.2 being decided as vegetation. B4 and B8 are the 

corresponding bands of the sentinel-2 images (Tucker, 1979; 

Farhadi et al., 2022a). 

 

( 4 8) / ( 4 8)NDVI B B B B= − +               (6) 

 

Possible water (NDWI) and vegetation pixels (NDVI) are 

removed from the PBR map recognized as primarily burnt 

regions to obtain the FBR map. Therefore, an FBR map can be 

calculated for each image pair (before and after the wildfire) 

according to Equation 7. 

 

( )FBR PBR NDVI NDWI= − +               (7) 

 

3.3 Evaluation of the Results 

An evaluation of the proposed BADI index was conducted 

based on the EMS reference map. According to a visual 

interpretation of the extant EMS map, sampling was carried out 

in two sets of burnt and unburnt points or polygons. A random 

sample of 200 pixels was assigned to each class (burned or 

unburned) for testing. In addition, in the current study, the 

confusion matrix (CM) of the map of the burnt area was used 

for the statistical evaluation of accuracy. As shown in Table 2, 

four measures of accuracy (Equations 9-12) obtained from the 

CM were used to evaluate the outcomes: producer accuracy (PA 

%), user accuracy (UA%), overall accuracy (OA%), and kappa 

coefficient (KC). Where, Xii: number of observed samples in 

row i and column i, Xjj: number of observed samples in row j 

and column j, c: number of land cover class, N: total number of 

samples, r: number of rows, and Xi+, X+j: the marginal totals 

for row i and column j, respectively. In addition, a comparison 

between the performance of the suggested index and spectral 

indices used in burnt area detection (Table 3) was conducted by 

the separability index (SI). SI can be calculated for each image 

pair (before and after the wildfire) according to Equation 8. 

 

( )

M Mb ub
SI

S Sb ub

−
=

+
                                     (8) 

 

Where Mb and Sb depict the average and standard deviation of 

the samples from the burnt regions and Mub and Sub for the 

average and standard deviation of the samples from the non-

burnt areas. Therefore, 1SI  depicts fine separation, whereas 

values of 1SI   representing lousy separation(Mallinis et al., 

2018; Farhadi et al., 2022b). 

 

To compare the BADI index with the reference spectral 

indicators used for mapping the BA, BAIS2, NBR, normalized 

difference SWIR (NDSWIR), and mid-infrared bispectral index 

(MIRBI) were calculated according to Table 3; where, B4, B8, 

B11 and B2 are the corresponding bands of the sentinel-2 

images. 
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=
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      (10) 

UA 

1

% 100
c

i

X jj
UA

j
X ij

=

= 



           (11) 

PA 

1

% 100
c

j

X ii
PA

i
X ij

=

= 



            (12) 

Table 2. Accuracy evaluation benchmarks from CM. 

 

4. RESULTS AND DISCUSSIONS 

 

This section presents the results of the suggested spectral index 

for mapping the BA. Then, the outcomes are compared 

qualitatively and quantitatively with various spectral indicators. 

(shown in Table 3). 

 

Name Formula 

BAIS2 ( )6 7 8 12 8
1 1

4 12 8

B B B A B B A

B B B A

  −
−  +

+

 
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 

, (13) 
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NBR ( 8 12) / ( 8 12)B B B B− + ,         (14) 

NDSWIR ( 8 11) / ( 8 11)B B B B− + ,          (15) 

MIRBI 10 12 9.8 11 2B B −  + ,             (16) 

Table 3. Popular sentinel-2 burnt detection spectral indices. 

 

4.1 Qualitative and Visual Evaluation 

 

A visual comparison was performed between the suggested 

BADI index and popular spectral indices using different spectral 

difference images. Figure 6 illustrates the comparison of the 

BADI index with the four spectral indices, including BAIS2 

(Filipponi, 2018), NBR, NDSWIR (Gerard et al., 2003), and 

MIRBI (Trigg and Flasse, 2001) indices, difference and their 

binary maps results in the study area. 

 

 

Figure 6. Burned area detection indices related to the study 

area; pre-fire (First row), post-fire (Second row), difference 

maps (Third row), and binary maps (End row). 

 

As shown in Figure 6, the BADI spectral index clearly 

distinguishes burnt regions from other land cover classes. 

Consequently, the suggested index can accurately monitor the 

Spatio-temporal characteristics of the BA. This method can also 

predict the direction of fire spread by analyzing two or more 

images, which can be helpful for spatial modelling of the BA 

and wildfire hazard assessment. As the visual interpretation 

results in Figure 6 show, the BADI index is not affected by 

interfering classes such as soil or bare land, vegetated pixels, 

built-up area and water due to post-processing strategies. 

Therefore, the suggested index obtained significant accuracy in 

visual assessment. 

 

The result of the spatial distribution of the burnt regions from 

the BADI index (FBR) and the same scope spectral indices for 

the BA detection, including the BAIS2, NBR, MIRBI and 

NDSWIR indices are shown in Figure 7 for part of the study 

areas. According to Figure 7, in the study region, other classes 

such as water, soil, or bare land, vegetated pixels and built-up 

areas are also recognized as burnt pixels in the binary map of 

wildfire spectral indices in the literature. In contrast, the binary 

map of the BADI index has no false classes and most pixels are 

associated with BA. Compared to existing burned detection 

spectral indices, the proposed index performed well visually in 

regions where no wildfires have happened. 

 

 

Figure 7. Portions of the original image (B12, B8, B4) and their 

local-scale binary maps in the study area. Columns 2-5 show the 

different binary maps extracted from the spectral indices. 

 

4.2 Quantitatively Accuracy Evaluation 

The statistical accuracy results of the binary map obtained by 

different spectral indices for two scenarios (burned and 

unburned classes) are illustrated in Table 4. The most elevated 

values for the individually binary maps are depicted in bold. 

 

PA UA KC OA Classes Index 

92.47 91.12 
0.92 92.15 

burnt 
BADI 

91.85 91.63 unburnt 

89.12 88.45 
0.85 87.23 

burnt 
BAIS2 

90.15 89.41 unburnt 

87.36 88.35 
0.78 85.19 

burnt 
NBR 

88.44 87.14 unburnt 

90.41 91.19 
0.86 88.14 

burnt 
MIRBI 

92.25 91.43 unburnt 

84.42 84.32 
0.78 81.32 

burnt 
NDSWIR 

84.69 85.21 unburnt 

Table 4. The accuracy assessment of the wildfire detection. 

 

Based on Table 4, the OA of the proposed index (BADI) in the 

study area is 92.12%. In contrast, the OA for BAIS2, NBR, 

MIRBI and NDSWIR indices are 87.23, 85.19, 88.14 and 

81.32%, respectively. Based on the OA, the suggested index 

gives better accurate outcomes than the same spectral indices. 

The maximum and minimum OA values were 92.15% and 

81.32% concerning the BADI and NDSWIR indices, 

respectively. Additionally, the UA of the proposed binary index 

map for burnt and unburnt regions in the study area were 91.12 

and 91.63%, respectively. Moreover, the PA amounts of the 

proposed index binary map for burnt and unburnt pixels were 

92.47 and 91.85%, respectively. The KC of the BADI index in 

the study area is 0.92. In contrast, the KC for the BAIS2, NBR, 

MIRBI and NDSWIR indicators are 0.85, 0.78, 0.86 and 0.78, 

respectively. In comparison with the other indices, the proposed 

index provides more accurate results based on the KC criterion. 

The SI calculation statistics are shown in Table 5. The most 

elevated values for the SI are depicted in bold. 

 

BADI BAIS2 NBR MIRBI NDSWIR 

2.19 1.9 1.2 2.05 1.05 

dBADI dBAIS2 dNBR dMIRBI dNDSWIR 

3.89 3.56 2.4 3.7 1.8 
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Table 5. SI results by burnt and unburnt regions for suggested 

and popular wildfire spectral indices. 

 

5. CONCLUSIONS 

 

Fires are a natural danger that sometimes occurs in farms and 

forests causing irreversible damage to possessions and human 

life, wildlife, and environmental variables. Due to the spectral 

variation within each class, mapping burnt regions over a large 

area is challenging. In this research, a novel spectral index 

(namely BADI index) was specifically developed to fully take 

benefit of the Sentinel-2 spectral bands (R, NIR, SWIR, and RE 

bands) characteristics on the GEE for rapid and robust burned 

areas detection. The main goal of this research was to detect and 

map the burned areas using the proposed BADI spectral index 

in the GEE environment accurately and automatically. In the 

first step, the Sentinel-2 data was acquired and pre-processed in 

the GEE environment. In the second step, the BA map was 

extracted using the BADI spectral index and the automatic Otsu 

thresholding method. In the next step, water and vegetation 

classes were removed from the PBR map to create the FBR 

map. The ultimate accuracy was then assessed according to the 

EMS product. The final map of BA had a kappa coefficient of 

0.92 and an overall accuracy of 92.15%. The proposed BADI 

index was very accurate in comparison to some popular and 

reference spectral indicators like BAIS2, NBR, MIRBI and 

NDSWIR. Moreover, the results of the suggested spectral index 

can be employed as training data for fire risk management or 

prediction. More specifically, it is more beneficial to evaluate 

the BA from the point of view of temporal change detection and 

efficiently implement unsupervised change detection without 

depending on training data. The high accuracy of our burnt area 

mapping index shows that spectral indices using RS imagery 

and a GEE platform can be successfully applied to remote 

sensing applications requiring little processing time. The result 

of the current research shows that automatic detection of BA 

can be accomplished with great accuracy at the GEE by 

deriving the BADI index from Sentinel-2 images. According to 

the research findings, through the accurate mapping of 

permanent water and vegetation cover, and removing them from 

the burned areas map, a significant improvement in the accuracy 

of the final BA map was achieved. Furthermore, our study 

confirmed that the GEE environment is an effective tool that 

facilitates the immediate production of BA maps. 

 

The clouds caused by the fire and the dense smoke make it 

challenging to visit the BA in the optical satellite data. In such 

cases, Sentinel-1 SAR images can be a good option due to their 

long wavelength and the passage of waves through thick smoke. 

In future investigations, integrating or harmonising different 

passive (Optical) and active (Radar) RS sensors could improve 

burned area detection outcomes. 
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