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ABSTRACT: 

 

Corn and Soybean are important crops for the world’s people. Agricultural planning relies heavily on monitoring and mapping corn 

and soybean fields. With the development of remote sensing technology and deep learning algorithms, corn and soybean fields are 

being managed more intelligently nowadays. By using Landsat-8 images with multi-temporal maps of NDVI index, we intend to 

compare deep learning models such as 1-D CNN, 1-D CNN-LSTM, and 2-D U-net for separating corn and soybean fields from other 

crops (because soybean and corn fields have similar NDVI curves) in the United States in 2020.  It was found that the 2-D U-net 

model performed the most accurately for corn and soybean classes with Kappa coefficients of 88.48 and 88.89, respectively. This 

can be explained by the identification of complex features using NDVI multi-temporal indexes of March to November in the United 

States.  
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1. INTRODUCTION 

Corn and soybeans are important agricultural commodities in 

the world. The United States is the world's largest producer of 

corn and soybeans. As an example, in 2020, corn and soybeans 

were produced in the United States at a rate of 14,2 and 4,14 

billion bushels, respectively. In light of these factors, 

monitoring corn and soybean fields with remote sensing 

technology is crucial for food security, monitoring climate 

change, and detecting crop diseases, etc. A variety of satellite 

images can be used to map crop fields, including optical images 

(e.g., Landsat, Sentinel-2, etc.) and radar (e.g., Sentinel-1). Due 

to the ability of optical images to observe the surface of the 

earth within a spectral range of 0.4 to 2.5 meters, multi-

temporal maps are obtained of vegetation indexes like 

Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Soil Adjusted Vegetation Index 

(SAVI), and Transformed Vegetation Index (TVI). Low spatial 

resolution prevents MODIS images from detecting small crop 

fields, while the Sentinel 2 and Landsat serise are more 

compatible in this way. Radar images are also ideal for mapping 

crop fields due to their independence from weather conditions 

such as cloud cover, rain, and snow (Mosleh, Hassan, 

Chowdhury, 2015). During the growing season, radar 

backscatter varies over time and is therefore critical when 

mapping crop fields using radar images. Since optical images 

are more interpretable than SAR images, they have been used 

more frequently in crop monitoring. Thus, this study focuses on 

monitoring crop land using optical images. 

The multi-temporal maps which are derived from vegetation 

indices are used to map crop fields (Mosleh, Hassan, 

Chowdhury, 2015). In monitoring and mapping crop fields, 

Land Surface Phenology (LSP) can be extracted from the multi-

temporal maps of vegetation indicators. Biological events occur 

periodically according to climatic conditions, known as 

phenology. It is calculated by varying values of vegetation 

indexes during the planting, holding, and harvesting of crop 

fields for a period of time, such as the beginning of the growing 

season, the end of the growing season, the maximum value of 

the vegetation index, and the length of the growing season 

(Wang, Jin, Zhou, Guo, Song, 2015). 

In order to map crop fields based on their phenology, satellite 

images have been used in a variety of ways. For example, crop 

fields have been mapped with phenology-based algorithms 

using Landsat-7/8, MODIS, Pi-SAR-L2 images, etc. (Ding, 

Guan, Li, Zhang, Liu, Zhang, 2020; Liu, Huang, Xiong, Zhang, 

Song, Huang, Wang, 2020; Lobell, Asner, 2004; Yonezawa, 

Watanabe, 2020). Machine learning algorithms (e.g., Random 

Forest (RF), Support Vector Machine (SVM), etc.) have also 

been suggested for mapping crop fields using polarimetric and 

phenology features, as well as optical image indices (e.g., 

NDVI, EVI, RVI, MNDWI, and LSWI) (Chen, Zhang, Shen, 

Zeng, Hu, Niyogi, 2020; Indolia, Goswami, Mishra, Asopa, 

2020; Mansaray, Huang, Zhang, Huang, Li, 2017; Talema, 

Hailu, 2020; Wang, Zang, Tian, 2020; Yang, Shao, Li, Liu, Liu, 

Brisco, 2017). Despite the fact that machine learning algorithms 

mentioned above are not able to fully extract the spectral and 

spatial features of interest features, deep learning algorithms 

(e.g., Convolutional Neural Networks, LeNet-5, LSTM, Auto-

encoder, Fusion in-Decoder) have been proposed as a means of 

improving mapping accuracy by extracting high-level features 

from low-level features in crop fields. (Zhao, Liu, Ding, Liu, 

Wu, Wu, 2020; Zhang, Lin, Wang, Sun, Fu, 2018; Guo, Jia, 

Paull, 2018; Jo, Lee, Park, Lim, Song, Lee, Lee, 2020; Zhang, 

Liu, Wu, Zhan, Wei, 2020; Zhao, Liu, Ding, Liu, Wu, Wu, 

2020; Jiang, Liu, Wu, 2018; Rawat, Kumar, Upadhyay, Kumar, 

2021, Fathi, Shah-Hosseini, 2021). Researchers have recently 

applied deep learning to map corn and soybean fields by 

analyzing spectral features extracted from Landsat-8 images 

using LSTM (Deep Crop Mapping) (Xu, Zhu, Zhong, Lin, Xu, 

Jiang, Lin, 2020). Our study compares CNN, LSTM-CNN, and 

U-net networks for automatic mapping of corn and soybean 
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fields from Landsat-8 optical images based on NDVI index 

extracted from these images. 

 

2. THE STUDIED AREAS AND MATERIAL 

2.1 The studied areas 

A total of seven counties in Lowa State are being studied, 

including Hamilton, Hardin, Boone, Story, Dallas, Polk, and 

Jusper. Figure 1 shows the study areas that were included in the 

study. 

 

 
(a) 

 
(b) 

Figure 1.  The google earth image (a) and the studied areas (b). 

  

2.2 Data set 

This study used Landsat-8 OLI images to map crops. As corn 

and soybeans are planted in April and May (respectively) and 

harvested in September and November (respectively), cloudless 

images were used from March to November. It is important to 

perform radiometric normalization before processing and 

analysing multitemporal remote sensing images (Moghimi, 

Celik, Mohammadzadeh, Kusetogullari, 2021, Moghimi, 

Mohammadzadeh, Celik, Brisco, Amani, 2022a, Moghimi, 

Celik, Mohammadzadeh, 2022b). Therefore, radiometric 

calibration was used to pre-process Landsat-8 images. The 

mapping of corn and soybean fields was therefore accomplished 

using extracted spectral and vegetation features from 

multitemporal Landsat-8 images (i.e., listed in Table 1). 

 

Number Date 

1 2020/03/04 

2 2020/04/21 

3 2020/06/08 

4 2020/07/10 

5 2020/08/11 

6 2020/09/03 

7 2020/10/30 

8 2020/11/22 

Table 1. Used Landsat-8 multi-temporal images. 

. 

2.3 Feature selection 

The selected feature in the study included NDVI Index 

(NDVI=(NIR-RED)/(NIR+RED)) was extracted from the 

Landsat-8 multi-temporal images. It allows us to recreate a 

timeline of crop production by using NDVI multi-temporal 

indexes (Ramadhani, Pullanagari, Kereszturi, Procter, 2020). 

Figure 2 illustrates the extracted phenology curves for corn and 

soybean fields during the planting period. We then evaluated the 

mapping of corn and soybean fields using three different 

networks. 

 

 
Figure 2. Extracted phenology curve of NDVI multi-temporal 

index for corn and soybean fields. 

 

2.4 Ground truth 

This ground truth map was downloaded from USDA with a 

spatial resolution of 30 m. The field classification was based on 

the Maximum Likelihood classifier, using Landsat TM/ETM 

satellites, prior to 2006. However, USDA from 2006 has used 

DEIMOS-1, UK2, LISS-3, and ESA Sentinel-2 A/B sensors to 

classify crop fields by using Landsat 8 sensor, DEIMOS-1, and 

UK2. The training and validation data used to calculate and 

accuracy assess classification for reasons like 1- satellite 

imagery (as well as the polygon reference data) in the past was 

not georeferenced to the same precision as now (i.e. everything 

"stacked" less perfectly), 2- to eliminate from training 

spectrally-mixed pixels at land cover boundaries, and 3- to be 

spatially conservative during the era when coarser 56 meter 

AWiFS satellite imagery was incorporated, based on ground 

truth data that is buffered inward 30 meters. Since buffered data 

is used for accuracy assessment, edge pixels are not fully 

evaluated with the rest of the classification, leading to 

somewhat inflated accuracy assessments. Using the error matrix 

provided for Lowa, the kappa coefficient for corn and soybean 

fields in 2020 is 97% and 88.9%, respectively. The ground truth 

map and NDVI index are shown in Figure 3. 
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(a) 

 
(b) 

Figure 3. NDVI index (a) and ground truth map (b). 

 

3. METHODOLOGY 

NDVI index extracted from Landsat-8 optical images was used 

to map corn and soybean fields using U-net, CNN, and CNN-

LSTM networks. After analyzing the confusion matrix, the best 

classification algorithm was selected for mapping corn and 

soybean fields. Figure 4 illustrates the proposed method's 

flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flowchart of the proposed method. 

3.1 CNN network 

Convolution Neural Networks are a deep learning algorithm that 

including four components convolution layer, pooling layer, 

activation function, and fully connected layer. Convolution 

layer input is the image with r feature band with size m*n. The 

convolution layer contains K filter in size l*l*q that 

concatenates the input and output feature layer. Z=W*X + b 

shows layer convolution output (Z) of feature layer (X) with 

weight W and bias b. Activation function is nonlinear function 

that apply to Z (a=f(Z)). Given that feature dimensions are high 

layer to prevent Over Fitting the Pooling layer (such as max-

pooling) is used to reduce the feature dimensions after the 

convolution layer. Finally, the dense layer (last layer) is a fully 

connected that each neuron is connected to each node of the 

output available from the prior layers (Indolia, Goswami, 

Mishra, Asopa, 2018). Figure 5 shows the proposed architecture 

for the CNN network. The proposed one-dimensional CNN 

model is included three one-dimensional convolution layers 

including 32, 64, and 128 neurons, ReLU activation function, 

and a Dropout layer(rate=0.5). In our method, the categorical 

Entropy loss function is applied to calculate weight and bias 

parameters, and ADAM algorithm is used for network training 

with patch size 5 for 120 epochs (Wahlberg, Boyd, Annergren, 

Wang, 2012; Zhang, Sabuncu, 2018). Finally, a Dense layer is 

used with a softmax activation function (Dunne, Campbell, 

1997). 

 

3.2 LSTM network 

LSTM network has been used for text recognition. LSTM 

consists of three components an input, forget, and an output 

gate. LSTM memorizes of the context information in sequence 

data for a large time period. Figure 6 shows a LSTM cell. 

Where X(t), M(t-1), M(t), N(t-1), N(t), f, c, I, O, U and W are 

the input vector, the output from the prior cell, the output from 

the current cell, memory value from the values cell, forget gate 

including sigmoid activation function, the candidate date 

including tanh activation function, the input gate including 

sigmoid activation function, the output gate including sigmoid 

activation function, and the weight vectors for forget gate, 

candidate gate, input gate, and output gate, respectively (Rawat, 

Kumar, Upadhyay, Kumar, 2021). Figure 7 shows the proposed 

architecture for the CNN-LSTM network. The proposed one-

dimensional CNN-LSTM model has consisted of three one-

dimensional convolution layers including 32, 64, and 128 

neurons along with the LSTM layers with 64, 128, 256 neurons, 

ReLU activation function, and a Dropout layer (rate=0.5). 

Finally, a Dense layer with a softmax activation function is 

applied, and the categorical Entropy loss function is used to 

calculate weight and bias parameters, and ADAM algorithm is 

used for network training with patch size 5 for 120 epochs. 

 

3.3 U-net network 

U-net is a deep learning algorithm that is used to predict masks 

in tasks of image segmentation. U-net is consisted of a 

contraction path and an expansive path. The contraction path 

includes two 3*3 convolutions, two ReLU activation functions, 

max pooling, and down-sampling. The expansive path includes 

an up-sampling of the feature map, 2*2 convolution for halving 

the number of feature maps (up-convolution), a concatenation, 

two 3*3 convolutions, and two ReLU activation functions. 

Finally, a 1*1 layer convolution is used with the desired number 

of classes (Ronneberger, Fischer, Brox, 2015). Dropout is used 

to reduce overfitting and create different architectures by using 

removing neurons randomly in the last layer of the expansive 

Landsat-8 multi 

temporal images 

Cropland Data 

Layer (CDL) 

Radiometric calibration 

NDVI multi temporal index 

Training 

Corn and 

Soybean map 
Validation 

CNN, CNN-LSTM, and  

U-net classification 
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path (Garbin, Zhu, Marques, 2020, Fathi, Shah-Hosseini, 2021). 

Also, distribution of the input values of each layer was keep 

with Batch Normalization (Garbin, Zhu, Marques, 2020). Figure 

8 shows the proposed architecture for the two-dimensional U-

net network. For the proposed two-dimensional U-NET model, 

the contraction path included 5 layers containing a two-

dimensional Convolution block (with 2 convolution layers), 

ReLU activation function, Batch Normalization layer, and max-

pooling layer. The number of filters in each layer of the 

contraction path was 64, 128, 256, 512, and 1024, respectively. 

Also, the expansive path included 4 layers containing a two-

dimensional Convolution block (with 2 convolution layers), 

ReLU activation function, Batch Normalization layer, and up-

sampling layer. The number of filters in each layer of the 

expansive path was 512, 256, 128, and 34, respectively. In 

addition, a Dropout layer (rate=0.5) was applied in the last 

expansive path layer. Following the expansive path, the last 

layer contained two-dimensional Convolution and Softmax 

activation function. Finally, the categorical Entropy loss 

function is applied to calculate weight and bias parameters, and 

ADAM algorithm is used for network training with patch size 5 

for 120 epochs.

 

 
Figure 5. Proposed CNN network. 

  

 
 

Figure 6. Representation of cell LSTM. 

 

 
 

Figure 7. Proposed CNN-LSTM network. 
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Figure 8. Proposed U-net network. 

 

4. RESULT 

According to Table 1, NDVI multi temporal index is calculated 

by using Landsat-8 multi temporal images as input networks. 

According to Figure 3. a, on a False Colour Composite image 

for the date 2020/04/03 (R), 2020/07/10 (G), and 2020/11/22 

(B), the soybean fields appear to be dark green. We are used 

from image patches with the size of 256˟256˟8 as input for each 

of the networks. In this study, 2293760 and 458752 number 

pixels were selected to train and validation the networks, 

respectively (Table 2). Table 3 shows the classification results 

for three classes of corn, soybean, and other classes. The 

obtained values of these measures are quite satisfactory for the 

two-dimensional U-net models (Kappa coefficient for corn 

class=88.48, Kappa coefficient for soybean class=88.89, 

accuracy for corn class =94.31, and accuracy for soybean class 

=95.64). 

 

 The 

number 

of 

patches 

The 

number 

of pixels 

for 

Soybean 

class 

The 

number 

of pixels 

for corn 

class 

The 

number 

of pixels 

for 

others 

classes 

training 35 686077 1087859 519824 

validation 7 130485 238405 89862 

Table 2. The number of used patches/pixels for training and 

validation of each class. 

 

 

Method Other classes Soybean Corn 

1-D CNN Accuracy 93.74 92.26 90.55 

Kappa 77.95 80.96 80.98 

1-D CNN-

LSTM 

Accuracy 93.53 92.49 90.77 

Kappa 76.65 81.64 81.37 

  2-D  

U-NET 

Accuracy 95.61 95.64 94.31 

Kappa 84.24 88.89 88.48 

Table 3. The generated results by proposed Methods. 

 

According to Table 3 and Kappa coefficient values, the one-

dimensional CNN-LSTM model has performed better than the 

one-dimensional CNN model for classes of corn and soybean. 

According to Figure 5, Figure 7, and Figure 8 was noticed that 

the one-dimensional CNN and one-dimensional CNN-LSTM 

models had a relatively simpler structure relative two-

dimensional U-NET model. One of the reasons for the two-

dimensional U-NET model performing better than models of 

one-dimensional CNN and one-dimensional CNN-LSTM is the 

identification of complex features in the NDVI multi-temporal 

index. One of the advantages of deep learning algorithms is the 

extraction of higher-level features from higher-level features by 

convolution layers. Also, the reason one-dimensional CNN-

LSTM is better-performing in comparison to one-dimensional 

CNN for corn and soybean classes the extraction of sequential 

relationships by LSTM layers. A visual interpretation of the 

results shown in Figure 9 suggests that the two-dimensional U-

net model generated better classification outputs than models of 

one-dimensional CNN and one-dimensional CNN-LSTM for 

NDVI multi-temporal index for classifying multi class 

classification. 
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 Ground truth            CNN            CNN-LSTM           U-NET 

Figure 9. Generated corn and soybean maps by proposed  

methods. 

 

5. CONCLUSIONS 

To separate soybean and corn fields, three deep learning models 

were used and analysed in this study, including one-dimensional 

CNN, one-dimensional CNN-LSTM, and a two-dimensional U-

net. For soybean and corn fields (with Kappa coefficients of 

88.89% and 88.48%), the two-dimensional U-NET model 

performed better than the one-dimensional CNN and one-

dimensional CNN-LSTM models. A two-dimensional U-net 

network, on the other hand, appears to be more effective when it 

comes to mapping multiple classes of interest, specifically crop 

types. 
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