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ABSTRACT: 
 
Weed management is of crucial importance in precision agriculture to improve productivity and reduce herbicide pollution. In this 
regard, showing promising results, deep learning algorithms have increasingly gained attention for crop and weed segmentation in 
agricultural fields. In this paper, the U-Net++ network, a state-of-the-art convolutional neural network (CNN) algorithm, which has 
rarely been used in precision agriculture, was implemented for the semantic segmentation of weed images. Then, we compared the 
model performance to that of the U-Net algorithm based on various criteria.  
The results show that the U-Net++ outperforms traditional U-Net in terms of overall accuracy, intersection over union (IoU), recall, 
and F1-Score metrics. Furthermore, the U-Net++ model provided weed IoU of 65%, whereas the U-Net gave weed IoU of 56%. In 
addition, the results indicate that the U-Net++ is quite capable of detecting small weeds, suggesting that this architecture is more 
desirable for identifying weeds in the early growing season. 
 
 

1. INTRODUCTION 

A monitoring system in precision agriculture is of fundamental 
significance to increase crop productivity (Fathipoor et al., 
2019), and weed management is one of the critical elements of 
this system. Competing with plants for water and nutrients, weed 
adversely affects crop yield quality and takes a deleterious toll on 
crop production (Wang et al., 2019). Therefore, identifying and 
eliminating weeds is an essential step in precision agriculture. In 
this regard, many efforts have been made by farmers to counter 
the threat posed by weeds. However, conventional agriculture 
practices are laborious and inefficient, spraying herbicides 
uniformly to the whole field (Wang et al., 2019). Moreover, the 
remaining herbicides result in environmental pollution, which 
pose a serious threat to human health (Khan et al., 2020).  
 
To deal with this problem, site-specific weed management 
(SSWM) was proposed, which involves spraying the correct dose 
of herbicide (depending on the density of the weed patches or the 
species composition) in the right locations (Jensen et al., 2012). 
But, SSWM requires advanced autonomous weed detection 
systems. Accordingly, automated weed segmentation, a labor-
saving process, is crucial to reducing the detrimental effects of 
herbicides or pesticides through localizing weeds precisely in 
agricultural fields (Pretto et al., 2021). In this context, several 
weed detection methods based on traditional image processing, 
such as decision trees (Deng et al., 2014), support vector machine 
(SVM) (Ishak et al., 2008), and random forest (Fletcher et al., 
2016) are introduced to differentiate weeds from crops. In these 
techniques, pixels are classified into crop and weed classes based 
on extracted features, such as color and texture (Rico-Fernández 
et al., 2019). However, feature extraction in these methods 
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greatly depends on numerous parameters, such as weed density 
and lighting conditions, which hinders the performance of these 
algorithms in complex situations (Abdalla et al., 2019). Hence, 
there is a need to build efficient and robust modules to identify 
and recognize weeds. 
 
In recnet years, thanks to the advancement in computing power 
coupled with a rise in the amount of data, deep learning based 
methods such as convolutional neural networks (CNNs) offer a 
promising step toward managing weeds and pests more 
efficiently (Wu et al., 2021). Having been widely used recently, 
semantic segmentation algorithms based on CNN, such as fully 
convolutional network (FCN), SegNet, U-Net, and DeepLabV3, 
make it possible to segment weeds from crops with high 
accuracy. These algorithms generally are a fully convolutional 
network that often involves an encoder-decoder scheme, 
extracting features of input images and then up-sampling to the 
size of the original image. For instance, a study on crop/weed 
segmentation used an encoder-decoder deep learning 
architecture, which utilized different vegetation indices as inputs 
to improve performance, and the best mean segmentation 
accuracy of 96.12% was obtained (Wang et al., 2020). In another 
similar study using an RGB image dataset of carrot-weed, 
SegNet architecture was employed for semantic segmentation of 
images (Lameski et al., 2017). In another study of weed 
segmentation, the performance of SegNet was compared with 
that of U-Net based on a dataset of canola fields, and the authors 
showed SegNet had higher accuracy in their dataset (Asad et al., 
2020). 
 
DeeplabV3 is another complex and powerful network with 
satisfactory performance in semantic segmentation studies. In a 
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study of weed segmentation using aerial images, DeepLabv3 
outperforms SegNet and U-Net with the highest accuracy of 0.89 
and 0.81 in terms of area under the curve (AUC) and F1-score, 
respectively (Ramirez et al., 2020). (Khan et al., 2020) proposed 
a cascaded encoder-decoder network to segment precisely crop 
and weed, with fewer training parameters. Based on their 
architecture, four small networks were used to predict crop and 
weed in two stages independently and performed more accurately 
than U-Net, FCN-8s, SegNet, and DeepLabv3. However, SegNet 
and Deeplab V3 require more training data in comparison with 
U-Net (Zou et al., 2021). With the limited accessibility to large 
datasets for training models, the U-Net architecture that can be 
trained on small datasets is highly advantageous (Bousias 
Alexakis et al., 2020). For instance, in (Hashemi-Beni et al., 
2020), the authors used 60 images of a carrot field and reached 
an accuracy of 60.48% with the U-Net network for weed 
semantic segmentation. Lately, researchers have tried to enhance 
the performance of the U-Net model by modifying this 
architecture. In an effort to discriminate weeds from other classes 
including the soil and crops, a modified VGG-UNet was 
implemented, which gave a desirable accuracy of intersection 
over union (IoU) of 92.91% (Zou et al., 2021). 
 
Although being the state-of-the-art models for image 
segmentation, modified U-Nets have two main limitations. 
Firstly, it is hard to reach the best accuracy achievable with the 
model because of its uncertainty and variability of optimal depth. 
Secondly, the skip connection scheme is inefficient due to the 
gap between pathways of corresponding convolutional encoder-
decoder blocks (Bousias Alexakis et al., 2020; Zhou et al., 2019). 
 
The U-Net++ is a new architecture designed to overcome 
previous drawbacks and has a more robust performance in 
semantic segmentation (Zhou et al., 2019). For example, in a 
study of change detection in an urban environment, the 
performance of the U-Net++ and the U-Net architectures were 
evaluated by different loss functions and metrics (Bousias 
Alexakis et al., 2020). The authors showed that U-Net++ 
architecture with BCE-Dice Loss function provides better results 
than the U-Net. The U-Net++ network is based on nested and 
dense skip connections, which has rarely been used in 
agricultural tasks. Hence, this paper mainly aims to address the 
weed management task by automatic crop/weed segmentation 
from high-resolution images using the U-Net++ model. The 
methodology is described in section 2, followed by the results 
presented in section 3, and finally, section 4 includes the 
conclusion. 

 
2. METHODOLOGY 

2.1 Dataset 

In this study, a public carrot-weed dataset was utilized in order 
to train and test our models (Lameski et al., 2017). The dataset 
contains 39 RGB images with a dimension of 3264×2448 pixels, 
acquired by a 10 MegaPixel phone camera. This dataset is 
complex data in which weeds are highly overlapped with plants, 
making segmentation a challenging task. In addition, it is an 
imbalanced dataset, meaning that the number of weed pixels is 
much less than those of other classes, which hinders the 
performance of classification algorithms. Pixel-level annotations 
with three classes: soil, carrots, and unspecified weeds are also 
provided for this dataset. Some images of this dataset are shown 
in Figure 7 (a). 

2.2 Network Architecture 

2.2.1 U-Net Architecture: U-Net is a modified fully 
convolutional network with a ‘U’ shape architecture in which the 
output image has the same size as the input image (Figure 1). The 
main difference between traditional fully convolutional networks 
(FCNs) and U-Net is that U-Net refills lost information in edges 
and localizes features more accurately by constantly extracting 
and combining the high-resolution features of the down-
sampling parts to the corresponding up-sampling block (Bousias 
Alexakis et al., 2020; Hashemi-Beni et al., 2020). 
 
2.2.2 U-Net++ architecture: U-Net++, also called Nested U-
Net, is based on the U-Net network introduced to enhance the 
performance of U-Net. The motivation behind introducing U-
Net++ is to make the optimization problem of the model easier 
and achieve more accurate results by densifying the connectivity 
and aggregating various depths of U-Nets (Figure 2). To bridge 
the gap between encoder and decoder sub-networks, skip 
pathways have been re-designed. Besides, deep supervision has 
been added, making the model more flexible by making a balance 
between performance and speed (Zhou et al., 2019). 
 

 
Figure 1. U-Net architecture (Ronneberger et al., 2015). 

 

 
Figure 2. U-Net++ architecture (Zhou et al., 2019). 

 
2.3 Training Networks 

The Google Colab framework was employed to implement the 
models in this research. For the sake of computational efficiency, 
all images were resized into 128×128 pixels. In addition, among 
39 images, 27, 3, and 8 images were utilized as training, 
validation, and testing, respectively. The networks were tuned 
using the “Adam” optimizer with a learning rate of 1×10-4.  
 
Furthermore, the loss function for the U-Net++ model was a 
weighted combination of categorical cross-entropy and dice 
coefficient loss. The reason behind using the hybrid loss function 
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is to fully exploit what both functions provide; on the one hand, 
cross-entropy has smoother gradients; on the other, dice 
coefficient handles properly imbalanced dataset (Zhou et al., 
2019). The hybrid loss function can be calculated with the 
following equations: 
 

ℒ =  ℒୡୡୣ +  λ ℒୢ୧ୡୣ,                              (1) 
 
where ℒୡୡୣ = categorical cross-entropy loss 
 ℒୢ୧ୡୣ = dice coefficient loss 
 λ = weight that balances the two losses 
 
Categorical cross-entropy loss can be computed based on 
equation 2: 
 

ℒୡୡୣ = −
1
ܰݕ, logݕො,



ୀଵ

ே

ୀଵ

,                    (2) 

 
where C = number of classes 
 N =  number of samples within one batch 
 ;, equals to 1ݕ ,ܥ , = class label (if label isݕ 
 otherwise is 0) and ݊ ∈ [1, … . ,ܰ] 
 ො, = probability of sample ݊ being correctlyݕ 
 classified as ܿ 
 
Moreover, the formula for calculating dice coefficient loss is 
given in the following: 
 

ℒୢ୧ୡୣ = 1−
2∑ ,ݕ ×ே

ୀଵ ො,ݕ

∑ ,ݕ
ଶே

ୀଵ + ∑ ො,ݕ
ଶே

ୀଵ



ୀଵ

                (3) 

2.4 Quantitative Assessment 

To evaluate the segmentation results and compare the 
performance of models, five popular criteria, including IoU, 
accuracy (Acc), precision (Pre), recall (Re), and F1-Score, were 
calculated for each class and then averaged. These metrics were 
computed based on four variables, including true positive (TP), 
true negative (TN), false positive (FP), and false negative (FN), 
which were derived from confusion matrixes between the 
predictions and the ground truth maps via the following 
equations. To describe these variables, take weed class for 
instance. TP represents the number of pixels correctly classified 
as weed, TN denotes the number of pixels correctly classified as 
non-weed, FP stands for the number of pixels classified as weed 
that were not actually weed, and FN represents the number of 
pixels incorrectly classified as non-weed classes. 
 

IoU = ∑
∑ା∑ା∑

× 100%                       (4)           
 

Acc = ∑ା∑
∑ା∑ା∑

× 100%                       (5) 
 

Pr = ∑
∑ା∑

× 100%                            (6) 
 

Re = ∑
∑ା∑

× 100%                            (7) 
 

F1-Score = 2 × ୰×ୖୣ
୰ ା ୖୣ

× 100%                      (8) 

 

 
Figure 3. The accuracy and loss during training U-Net model. 

 

 
Figure 4. The accuracy and loss during training U-Net++ model. 
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3. RESULTS AND DISCUSSION 

This section provides results of the semantic segmentation of the 
U-Net and the U-Net++ networks.  Figure 3 and Figure 4 show 
the loss and average class accuracy for 200 iterations during the 
training process of the U-Net and the U-Net++ networks. 
According to these figures, there is a very neglectable 
performance improvement beyond 100 iterations, suggesting that 
the networks were trained enough for this segmentation task.  
Also, it should be noted that in the U-Net++ model the 
convergence process took much longer than in the U-Net 
network because of the more complex loss function used in the  
U-Net++ model.  
 
Figure 5 and Figure 6 provide the information of the confusion 
matrix between segmentation results and ground truth for both 
models. Accordingly, in the U-Net++, the TP values, the 
proportion of pixels correctly predicted, for three classes of 
weed, plant, and soil are 83.45%, 86.28%, and 98.96%, 
respectively. By comparing these values with the corresponding 
values achieved by the U-Net, we can infer that the U-Net++ had 
much better performance in classifying weed, even though it had 
quite similar performance as the U-Net in classifying plants and 
soil. In fact, in the U-Net model, there were a lot of weeds 
wrongly predicted as plants (15%), but the U-Net++ network 
overcame this problem to a great extent. On the other hand, the 
percentage of plants that were mistakenly classified as weeds in 
the U-Net network was almost twice in the U-Net++ model. 
Furthermore, in the U-Net model, more plant and weed pixels 
were wrongly classified as soil class. 
 

 
Figure 5. Normalized confusion matrix of the U-Net model. 

 
In Figure 7 parts (c) and (d), some parts of the qualitative results 
of both models are shown. As just mentioned, it is evident in this 
figure that some weeds were recognized wrongly as plants by the 
U-Net, while they were identified correctly by the U-Net++. This 
poor performance of the U-Net happened more particularly in 
complex parts of the image where weeds and plants are mixed 
(e.g., the first and third images in Figure 7). In addition, unlike 
the U-Net network, the U-Net++ represented the high ability to 
identify tiny weeds. This is because of the aggregating multi-
depth structure of the U-Net++ that makes it more powerful to 

segment weeds of various sizes. This advantage becomes greatly 
important, especially at the beginning of the growing season 
when young plants and weeds start to germinate. Therefore, 
detecting and removing weeds at this stage will be highly 
beneficial for young plants to flourish. 
 

 
Figure 6. Normalized confusion matrix of the U-Net++ model. 
 
The detailed results of the evaluation of both network 
architectures based on five well-known metrics are given in 
Table 1. Accordingly, the U-Net++ had higher mean IoU, Acc, 
Re, and F1-Score metric values, outperforming traditional U-Net 
in our semantic segmentation task. Although Pre decreased 
somewhat compared with that of the U-Net, the Re was better in 
the U-Net++, that is, the U-Net++ model segmented weed more 
aggressively and correctly classified more weeds at the expense 
of misclassification of some plants as weeds. 

 
Segmentation 
method 

IoU 
(%) 

Acc 
(%) 

Pre 
(%) 

Re 
(%) 

F1 Score 
(%) 

U-Net++ 81.31 97.02 88.84 89.56 89.20 
U-Net 77.51 96.59 90.19 83.45 86.69 

Table 1. Performance evaluation of segmentation models. 

 
Since segmenting weed is more important than other classes, this 
study intends to assess the accuracy of identifying per class 
individually. For this purpose, IoU values for three classes of 
weed, carrot, and soil are given in Table 2. U-Net++ model 
provided an IoU of 97.97% for soil, 80.80% for crops, and 
65.13% for weeds, which are higher than the accuracy obtained 
from U-Net. In general, IoU value for each class represents the 
ability of models to correctly classify the corresponding class; the 
higher value for a given class, the better performance the model 
has for separating that class. Given the considerable 
improvement in weed IoU, U-Net++ proved much better in weed 
segmentation than U-Net. 

 
Architecture Weed IoU Plant IoU Soil IoU 
U-Net++ 65.14 80.81 97.98 
U-Net 56.38 78.53 97.62 

Table 2. Comparison of IoU for per class in models.
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Figure 7. Segmentation results of models. (a) Samples of original images. (b) Ground truth. (c) Segmentation results of U-Net. (d) 

Segmentation results of U-Net++. 
 

4. CONCLUSION 

The advent of deep learning algorithms has provided an 
unprecedented opportunity to pinpoint and thus eliminate weeds 
more efficiently. With the aim of pixel-wise semantic 
segmentation of a weed-carrot dataset, including 39 images, this 
study employed U-Net and U-Net++ as two kinds of advanced 
deep convolutional networks. The results show that the U-Net++ 
provides better performance than the U-Net in terms of overall 
accuracy, mean IoU, recall, and F1-Score metrics. Most 
importantly, the U-Net++ model performed better in complex 
parts of images where weeds were mixed with plants. In addition, 
the U-Net++ was notably more effective than the U-Net in weed 
segmentation based on weed IoU. Overall, this paper 
demonstrated that the U-Net++ network architecture has a high 
potential for crop/weed segmentation, especially at the beginning 
of the growing season, leading to high profitability and cost 
reduction in agricultural management. In future research, we aim 
to focus on enhancing the proposed algorithm through data 
augmentation using generative adversarial networks (GANs). 
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