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ABSTRACT: 

Floods are among the natural disasters that cause financial and human losses all over the world every year. By production of a 

flood risk map and determination of potential flood risk areas, the possible damages of this phenomenon can be reduced. To map 

the flood extend in Calcasieu Parish, Louisiana, US, conditioning factors affecting the flood occurrence including elevation, slope, 

plan curvature, land use, distance from rivers, density of rivers, rainfall, normalized difference vegetation index (NDVI), modified 

normalized difference water index (MNDWI), and normalized difference built-up index (NDBI) were identified and their 

information layers produced using the Google Earth Engine (GEE) cloud platform. Then, for flood risk mapping, Random Forest 

(RF) and support vector machine (SVM) as two machine learning models have been implemented and their results compared. RF 

and SVM models have been validated based on the maximum absolute error (MAE) index with an accuracy of 0.043 and 0.097, 

respectively. Visualization of the predicted values in QGIS software confirms that the RF model has provided better outputs than 

that of the SVM model. By analysing the features importance of the layers in the RF model, it was verified that the elevation, 

slope, and plan curvature layers have the highest degree of influence on the flood risk with degrees of importance of 0.197, 0.135, 

and 0.123. 
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1. INTRODUCTION 

Flood is one of the important natural hazards and a special 

threat to many communities and businesses. Floods can affect 

all human activities such as economic and social activities, 

disrupt people's lives, and cause many human and financial 

losses. It is necessary to provide a flood risk map as one of the 

most basic information to assist mitigation of the damages 

caused by the disaster. The flood risk map has a number of 

usages, among which the following can be mentioned (Marco 

et al., 1994):    

 It provides basic initial information for land use planning; 

 It assists informed development of new urban areas; 

 The cost of flood compensation and insurance plans can 

be adequately evaluated by using the flood risk map; 

 The feasibility of unstructured flood control measures 

such as flood proofing can be correctly assessed; 

 Flood risk map increases the public awareness of 

potential risk. 

In many countries, e.g. Germany, France, etc., areas where 

floods have been common in a 100-year period have been 

identified as flood risk maps (Marco, 1994, Watt, 2000). Due 

to the dangerous effects caused by floods, the National Flood 

Insurance Program (NFIP) was approved by the United States 

Congress in 1968 through the National Flood Insurance Act. 

This program pursues two main goals: 1) Reducing flood risk 

through flood damage insurance and 2) Reduction of 

floodplains in order to reduce flood hazard. In order to identify 

flood plains, it is necessary to produce flood risk maps. Flood 

risk can be defined as a probability function of flooding and its 

impact (Fernández et al., 2010). The modeling and spatial 

analyses capabilities provided by geospatial information 

system (GIS) along with remote sensing (RS) greatly enhance 

the ability to determine flood risk susceptible zones in the 

desired domain. 

Various techniques with different advantages and 

disadvantages have been developed in order to mapping a 

flood risk. The choice of the desired technique for flood risk 

mapping depends on the data, available capabilities and 

project requirements (Dung, 2021). An important challenge in 

the process of flood risk mapping is the modeling of 

multivariate and non-linear relationships with different 

degrees of risk levels (Wang et al., 2015). Researchers have 

used different techniques for flood modeling such as analytic 

hierarchy process (AHP) (Ouma and Tateishi, 2014; Ghosh 

and Kar, 2018; Sinha et al., 2008), fuzzy logic (Parsian et al., 

2021; Kumar et al., 2020), as well as set pair analysis (SPA) 

(Zou et al., 2013; Guo et al., 2014; Zeng et al., 2018), and 

even their combinations (Ekmekcioglu et al., 2021). 

Weaknesses of various methods should be considered, e.g. 

There are the high computational for the AHP method, As the 

number of problem features increases, there will be more 

pairwise comparisons (Karthikeyan et al., 2016; Oguzitimur 

2011). In fuzzy logic, to achieve more accuracy, more fuzzy 

grades are needed which results to increase exponentially the 

number of rules. In addition, there is less speed and longer run 

time of the system (Behrooz et al., 2018). The weight and 

importance of indicators have an effect on set pair analysis 
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(SPA) evaluation (Feng and Luo, 2009; Zou et al., 2013). 

With the development of artificial intelligence (AI), it is 

possible to use machine learning (ML) algorithms for flood 

risk mapping. Smart spatial data fusion using machine 

learning algorithms can provide high level of quality for flood 

risk modeling and mapping. In recent years, the use of 

techniques such as Random Forest (RF) (Farhadi and 

Najafzadeh, 2021; Esfandiari et al., 2020; Wang, 2015), 

support vector machine (SVM) (Opella and Hernandez, 2019; 

Mojaddadi et al., 2017) and artificial neural network (ANN) 

(Avand et al., 2020; Andaryani et al., 2021) has increased in 

identifying flood risk areas. Each of the above methods has 

different challenges. In RF, variables with different number of 

levels, are biased in favor of those attributes with more levels 

(Prajwala, 2015). SVMs use complex mathematical functions 

that are difficult for humans to understand (Martens et al., 

2007). In ANN, the slow convergence speed is one of the main 

challenges (Li and Yeh, 2002). 

On the other hand, with the development of cloud-based 

computational systems, a number of benefits were provided to 

scientists. One of the spatial systems based on the cloud space 

is the Google Earth Engine (GEE) platform. GEE makes it 

easier to retrieve and access data and their processes. GEE has 

the ability to perform a set of spatial analyses at different 

scales in order to investigate diverse phenomena and issues 

including deforestation, drought, disease, food insecurity, 

water scarcity, climate change and global warming. Such 

processes require high computing power, which makes it 

possible to use Google servers (Gorelick et al., 2017). 
The main objective of this paper is to use and compare RF and 

SVM models to produce flood risk maps of Calcasieu Parish 

located in Louisiana, US. In addition, GEE cloud system was 

used to prepare the required data.  

The structure of the remaining parts of this paper is as follows. 

Section 2 elaborates the research methodology where the RF 

and SVM models will be explained. Section 3 explains the 

implementation of the research and the result evaluation. 

Section 4 concludes the paper and suggests some future areas 

of the research.  

 

 

2. MATERIALS AND METHODS 

In this section, the study area, RF and SVM models as the 

employed machine learning models and factors affecting flood 

risk are discussed. 

 

2.1  Study Area 

Louisiana is located in the South-East of United States near 

the Gulf of Mexico. Calcasieu is situated on the border of the 

south-western part of the state of Louisiana. According to the 

last census1 (US Census, 2020), Calcasieu has a population of 

205,282 and an area of 2,833 km². Figure (1) illustrates the 

study area. Figure (2) shows the main steps in mapping and 

evaluating the flood risk areas using the employed machine 

learning algorithms. Between May 17 and 20, 2021, rain in 

the areas around Lake Charles, Louisiana has caused severe 

flooding which left 4 death. Lake Charles mayor "Nic Hunter" 

verified that this was the third heaviest rain event in the 

history of the city (Louisiana Radio Network, 2021). 

                                                             
1 www.census.gov 

Figure (3) shows the damage and water rise in the flood that 

has been occurred in the Calcasieu Parish of Louisiana on May 

17, 2021. 

 

2.2 Machine Learning Models 

The use of machine learning algorithms and the 

implementation of smart spatial data fusion methods improve 

the quality of the final product of spatial data analyses. In 

addition, in machine learning algorithms, the learning process 

is based on data. For this reason, data quality control is 

important in the machine learning process. In this section, the 

general structure of the RF and SVM models are reviewed. 

Then the specification of the collected dataset is discussed. 

 

 
Figure 1. Study area. 

 

 
Figure 2.  Research methodology. 
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Figure 3. Flooding and rising water level in residential areas 

due to heavy rain on May 17, 2021 (Calcasieu Parish Sheriff's 

Office, 2021). 

 

2.2.1 Random Forest: RF is one of the supervised machine 

learning algorithms in the field of regression and classification 

which was introduced by Breiman (2001). 

The technique used to reduce the estimated variance is called 

bagging. Bagging seems to work especially well for high 

variance, and low bias procedures such as trees in decision 

tree models. RF is a basic modification of bagging, which is a 

large collection of trees (Hastie, 2009). In other words, a RF 

model is a collection of decision trees, as the building block of 

a RF model is a decision tree (Caigny et al., 2018). 

Each tree is trained on a sample of training data. Then, if the 

goal is classification; prediction is undertaken by majority vote 

of trees. If the goal is regression, the average output of the 

trees will be obtained (Figure 4) (Svetnik, 2004). 

 

 
Figure 4.The general structure of RF model (Sarker, 2021) 

 

2.2.2 Support Vector Machine: Support vector machine 

(SVM) is a supervised machine learning algorithms (Wan and 

Lei, 2009). SVM is used in classification and regression 

modelling (Choubin et al., 2019). The model is based on the 

optimization principle and tries to fit a hyper plane on the 

training data set for separating the different classes. The hyper 

plane, is orientated in such a way that is as far as possible 

from the closest data points from each of the classes. These 

closest points are called support vectors (Koggalage et al., 

2004). A hyper plane is also known as decision boundary. 

According to Figure (5) the desired kernel is implemented on 

the features and finally classification is undertaken by 

applying sigma and bias on the output. 

 

 
 

Figure 5. The general structure of the SVM model  

(Adapted from Xu et al., 2021) 

 

As illustrated in Figure (5), the xi is the inputs feature, k is the 

kernel and final result is the flood risk map. 

 

2.3 Dataset 

RF and SVM are supervised machine learning algorithms, so 

preparing a training dataset is essential. The effective features 

were determined from the previous research for flood risk 

mapping (Dung et al., 2021).  

The initial layers were collected by the Google Earth Engine 

cloud system and the United States Weather Service2. Then, 

using QGIS software, a training dataset of layers affecting 

floods with resolution of 10 meters was prepared (QGIS 

Development Team, 2020). Then, using the collected training 

data, the RF and SVM models were implemented and the 

obtained outputs were visualized in the QGIS software. The 

conditioning factors considered are explained below. 

 

2.3.1 Elevation: Areas with a lower height are more 

affected by the risk of flooding (Jati et al., 2019). USGS 3DEP 

National Map data with a resolution of 10 meters has been 

used to produce a digital elevation model (DEM). This layer is 

obtained from the Google Earth Engine. The southern and 

southwestern regions of Calcasieu have lower elevations and 

the probability of flooding is higher in these regions. 

 

2.3.2 Slope: Generally, Areas with low altitude have a 

lower slope, the risk of flooding is higher, and can dispose the 

runoff faster (Tehrany and Kumar, 2018). A slope layer with 

the degree unit is created from the elevation layer by Raster 

terrain analysis in QGIS open source software (QGIS 

Development Team, 2020). 

 

2.3.3 Plan Curvature: Curvature describes the shape of the 

Earth surface and reflects the water holding capacity. 

Therefore, the probability of flooding is inversely proportional 

to the curvature of that area (Costache, 2019). This 

information layer has been obtained by the elevation data and 

Curvature tool available in Saga GIS software with a 10-meter 

resolution (SAGA GIS Development Team, 2020). 

 

                                                             
2 www.weather.gov/gis 
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2.3.4 Land Use: One of the effective parameters in flood is 

the type of land use. Apollonio et al. (2016) have proved that 

there is a high correlation between flood-prone areas and land 

use changes, especially in areas where moisture insulation due 

to urbanization has increased. The European Space Agency 

(ESA) has provided a land use map with a resolution of 10 

meters based on Sentinel-1 and Sentinel-2 data in 11 different 

classes in 2020-2021. In this study, by the Google Earth 

Engine cloud system, this product has also been prepared for 

Calcasieu Parish. 

 

2.3.5 Rainfall: The amount of rainfall is directly related to 

the probability of flooding. It should be noted that the total 

amount of rainfall in a period of time has a greater effect than 

the intensity of rainfall (Bracken et al., 2008). In order to 

prepare the total amount of rainfall on May 17, 2021, the 

GSMap product, which provides the hourly rate of rainfall 

with a resolution of 0.1 x 0.1 degrees, has been used in the 

Google Earth Engine system. In order to be compatible with 

other data, the pixel size of this layer was changed to 10 

meters in the pre-processing operation. 

 

2.3.6 River Distance and Density: The density of rivers 

and waterways significantly affects the time of concentration 

and magnitude of the flow. In other words, increasing the 

density of waterways and rivers will increase flood peaks 

(Pallard et al., 2009). In addition, The risk of flooding is 

higher in areas close to rivers. 

To prepare the data layers, first, the shape file of the US 

Rivers from the National Weather Service was downloaded3, 

and then based on the rivers of the Calcasieu Parish, the 

density and distance layers from the rivers were computed. 

 

2.3.7 Spectral Indices: A number of spectral indices for 

completing the training dataset can be computed. In this study, 

3 indices including Normalized Difference Vegetation Index 

(NDVI) (Rouse et al., 1973), Modified Normalized Difference 

Water Index (MNDWI) (Xu, 2007), and Normalized 

Difference Built-up Index (NDBI) (Zha et al., 2003), along 

with other features based on Sentinel-2 images with a 

resolution of 10 meter, were produced and extracted by 

Google Earth Engine system on May 17, 2021. In the 

following, these spectral indices will be introduced. 

  Normalized Difference Vegetation Index (NDVI) 

In NDVI, negative values indicate water and positive values 

indicate vegetation. NDVI has an inverse relationship with 

floods where higher NDVI values indicate a lower probability 

of flooding. NDVI is calculated using Eq. (1) (Ullah et al., 

2020). 
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where, B4/B8 is the 4th /8th band of Sentinel-2 in this study. 

  Normalized Difference Built-up Index (NDBI) 

NDBI index is used to analyze built-up areas. Negative values 

of NDBI represent waters bodies and positive values represent 

built-up areas. NDBI is calculated based on Eq. (2) (Zha et al., 

2003). 

 

                                                             
3 www.weather.gov/gis/Rivers 
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where, B11/B8 is the 11th /8th band of Sentinel-2. 

  Modified Normalized Difference Water Index (MNDWI) 

The modified NDWI (MNDWI  ( can detect water bodies and 

eliminate some noises (Eq. 3). In this index water bodies have 

positive values (Xu, 2007). 
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where, B3/B11 is the 3th /11th band of Sentinel-2 in this study.  

 
2.3.8 Target Classes: In order to complete the training 

dataset, it is necessary to determine the flooded footprints. For 

this purpose, the algorithm proposed by Notti (2018) which 

was developed under the United Nations programs in the 

Google Earth Engine cloud system, was employed in this 

paper. This algorithm uses Sentinel-1 SAR Data. SAR sensors 

work independently of weather conditions. They do not need 

sunlight and produce images at all hours of the day and night. 

First, the study area is determined by uploading the shape file 

of Calcasieu Parish. Then the desired time frame is 

determined. Using the studies conducted and the United States 

Weather Service reports, the time frame is considered during 

May 17-20, 2021. Then the algorithm is executed, and a binary 

image with a resolution of 10 meters is prepared from the 

flooded areas. Areas with values of 1 are flooded, and areas 

with values of 0 are not flooded. 4500 points were extracted 

from this image, 235 of which were flooded and the rest were 

non-flooded points (Figures 6).  

Figures (7) illustrate the layers affecting the flood, and Table 

(1) provides metadata information including coordinate 

system, projection, datum, unit and pixel size of the employed 

data layers. 

 

Coordinate System USA Contiguous Albers Equal Area  

Projection System Albers 

Datum North American Datum 1983 

Unit Meter 

Pixel Size 10 meters 

Table 1. Metadata of training dataset. 

 

 
Figure 6. The obtained training data flooded and non-flooded 

points. 
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Figure 7. Set of effecive spatial layers in flooding (a) Land 

Use, (b) Elevation, (c) Slope, (d) Plan Curvature, (e) NDBI, 

(f) NDVI, (g) MNDWI, (h) River Density, (i) River Distance 

and (j) RainFall. 

 

 

3. RESULT 

By completing the training dataset, SVM and RF models have 

been implemented by using the Python programming 

language. This study is considered as a regression problem. 

The final goal is to determine the probability of flooding in 

each of the pixels of the domain. 70% of the data is considered 

as training and 30% as the test data. It should be noted that in 

RF model, the number of trees was 128. Also, the radial basis 

function (RBF) kernel is implemented in the SVM model. 
Statistical indices including Mean Absolute Error (MAE), 

Mean Square Error (MSE) and Root Mean Square Error 

(RMSE) were calculated to evaluate the model in training and 

validation processes according to Eq. (4, 5, and 6) (Chai and 

Draxler, 2014). 

 

  )ˆ(
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n
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MSERMSE                                    (6) 

 

where, n = number of observations. 

           y = actual value.      

           ŷ = predicted value. 

According to Table (2), RF has performed better than SVM in 

the test and validation steps. The error rate in the learning step 

based on the MAE was 1.73% for RF and 9.53% for SVM. 

When the model is trained, the validation process is performed 

on 1350 reference points (30% of the training data). According 

to Table (2), MAE, MSE, and RMSE indices were calculated 

on the results of both of the models. For example, the 

validation result for the RF model based on the index of MAE 

has a 4.32% error. While the same error rate for the SVM 

model has reached to 9.76%. 

 
Models MAE 

Training 

MAE 
Validation 

MSE 
Validation 

RMSE 
Validation 

RF 0.0173 0.0432 0.0219 0.1481 

SVM 0.0953 0.0976 0.0292 0.1711 

Table 2. Error rates of RF and SVM models in the process of 

training and validation. 

 

The output maps were classified into 5 classes including very 

low, low, medium, high and very high flood risk areas (Figure 

8 and 9). The results illustrate that the RF model produces 

more accurate output than that of the SVM. The risk map on 

the RF model has been able to distinguish different areas 

based on their features in the flood disaster. For example, the 

southwestern areas of Calcasieu, which had low elevation and 

frequent floods, are in the very high-risk class. 

Another evaluation that can be performed in the RF model is 

determining the relative importance of the employed 

conditioning factors (features). The importance of the features 

is determined using a sensitivity analysis that calculates a 

score for all the input features.  

The importance of input parameters is determined by scores. 

Any feature with a higher score means that feature has a 

greater impact in predicting the flood risk. The sum of scores 

for all features is equal to one. According to Figure 10, the 

features of elevation, slope, and plan curvature have the 

greatest effects on the occurrence of floods. The importance of 

these features is 0.1931, 0.1312, and 0.1230, respectively. 
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Figure 8. Flood susceptibility mapping by RF model. 

 

 
Figure 9. Flood susceptibility mapping by SVM model. 

 

 
Figure 10. Bar chart for Relative importance of the features. 

 

 

4. CONCLUSION AND FUTURE DIRECTIONS 

Identifying factors affecting floods and producing a risk map is 

one of the basic solutions to control this natural disaster. To 

estimate the severity of flood risk, several methods have been 

presented by different researchers. In this study, by 

implementing machine learning models including RF and 

SVM, the flood risk maps in Calcasieu section of Louisiana 

State have been produced. 

According to the archived results of this study, 10 effective 

factors including elevation, slope, plan curvature, land use, 

NDVI, NDBI, MNDWI indices, distance from rivers, river 

density, and rainfall intensity were obtained using the Google 

Earth Engine cloud system and USA National Weather 

Services.  

After performing the necessary pre-processing and creating the 

training dataset in QGIS software, RF and SVM machine 

learning models were implemented by Python programming 

language and the probability of flood occurrence in each pixel 

of the domain was estimated. The results of the machine 

learning models are highly dependent on the employed training 

dataset. As a result, the quality and size of the training data is 

very important. The size of the training data should be enough 

to complete the learning process and there should be no 

duplicate data (Brownlee, 2019). As a result, in order to 

develop a machine learning model to produce a flood risk map, 

it is necessary to pay attention to the amount and 

characteristics of the training data available in the target area. 

In this study, a training dataset with a resolution of 10 meter 

was prepared. It is clear that as the data quality decreases, the 

quality of the results of the analyses also decreases. 

The outputs of the models based on the employed statistical 

indices (MAE, MSE and RMSE) proved that the RF provides 

more accurate results and has a higher efficiency than those of 

the SVM model. In addition, by examining the features 

importance considered in the RF model, it was found that the 

elevation, slope, plan curvature, and land use have greater 

effects on the occurrence of floods than those of other inputs. 

These four effective factors compared to the other ten factors 

account for 55% of the flood risk. It should be noted that the 

order of feature importance depends on the geographical area 

and in different researches that have been undertaken in 

different places, the order of feature importance has changed 

(Wang et al., 2015; Farhadi and Najafzadeh, 2021). 

In future research, it is suggested that by removing the less 

important factors in the flood risk mapping and adding some 

other influencing layers of information such as soil type, river 

water discharge rate, land subsidence map and population 

distribution map, a more accurate estimate of the flood 

occurrence may be obtained. In addition, it is useful to use 

synthetic aperture radar (SAR) measurements that operate 

independently of weather conditions and can provide valuable 

information related to flood assessment. The reason is that 

water surfaces do not reflect in the microwave range, and 

water surfaces appear black in SAR images. Furthermore, the 

use of deep learning algorithms has become common in 

environmental fields (Lamba et al., 2019; Hassan et al., 2020). 

Deep learning networks perform the feature extraction process 

automatically. In addition, machine learning models such RF 

and SVM are pixel-based approaches, while deep learning 

methods are patch-based models (Guo et al., 2022; Helber et 

al., 2019). For this reason, the learning process is carried out 

in deep learning networks based on various patches that have 

been extracted. In addition to the methods proposed in the field 

of data science, physical models such as weather research and 

forecasting model (WRF) (UCAR and NCAR, 2020) are used 

in the preparation of flood hazard maps. These physical models 

are implemented based on physical schemas at different 

regions, and modeling is undertaken based on the physical 

conditions of the region. Using smart data fusion and 

integrating data from machine/deep learning with physical 

models is also recommended for flood risk mapping. 
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