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ABSTRACT: 

 

This study aims (i) to analyze the performance of Landsat 8 and 9’s multispectral bands in Land Use Land Cover (LULC) mapping by 

applying Random Forest (RF) method, and (ii) to compare the LST results of Landsat 8 and 9 using ground-based measurements 

obtained from Surface Radiation Budget Network (SURFRAD). RF-based classification and pixel-based LST information extraction 

were conducted in the Google Earth Engine (GEE) environment. Considering the LULC classification, Iğdır province of Türkiye was 

chosen as the study area, whereas for LST analysis, the location of two SURFRAD stations (FPK and GWN) was selected. Collection 

2 Level 2 Surface Reflectance (SR) Products of Landsat 8 and Landsat 9, acquired on 14 May 2022 and 22 May 2022, respectively, 

were used for LULC mapping. On the other hand, the products of Collection 2 Level 2 Surface Temperature (ST) were utilized for 

LST analysis. The obtained LULC results showed that Kappa value and Overall Accuracy (OA) for Landsat 9 and Landsat 8 were 87.4 

%, 0.83, and 82 %, 0.76, respectively, presenting Landsat 9 achieved better performance in this case study. Concerning the thermal 

analysis, Landsat 9-based LST provided 1.77 K RMSE, which was lower than Landsat 8-based LST (RMSE=2.31 K). Consequently, 

Landsat 9 provided better accuracies in both LULC classification and LST analysis, and this study proved that Landsat 9 has more 

improved OLI and TIRS sensors than Landsat 8. 

 

1. INTRODUCTION 

Since the 1950s, the population of the world has risen from 2.5 

billion to 7.9 billion, also it is projected to reach 9.7 billion by 

2050 (https://www.macrotrends.net/countries/WLD/world/population). 

This growing trend in the population has been leading to demand 

augmentation for housing, transportation, water, healthcare, 

food, and energy. To meet these requirements, people have 

utilized natural resources and caused changes in the Earth’s 

surface (Amini et al., 2022). Thus, generating Land Use Land 

Cover (LULC) Maps has always been more of an issue for land 

management, land planning, and sustainable environment ( 

Thiam et al., 2022; Sekertekin et al., 2017). Moreover, the 

knowledge of the LULC change has usually been critical for 

many studies (Giuliani et al., 2022), including land use planning 

(Sakieh et al., 2015), impact assessment on biodiversity 

(Michelsen, 2008), watershed analyses (Hörmann et al., 2005), 

and LULC effect on stream ecology (dos Reis Oliveira et al., 

2019; Zhou et al., 2012). Therefore, timely, reliable, and accurate 

LULC knowledge is vital for policy and decision makers to 

maintain sustainable land resource management. In addition to 

the LULC mapping, Surface Urban Heat Island (SUHI) effect, 

which can be extracted from Thermal Infrared (TIR) based 

images, is another variable for the sustainability of the cities. 

 

Remote Sensing (RS) technology has provided useful 

information and solutions during the past few decades for 

monitoring the Earth’s surface variations. Satellite imageries 

have been extensively utilized for the extraction of LULC maps. 

From the past to the present, various optical RS systems have 

been launched, some of which are Landsat, Terra/ASTER, SPOT, 

and Sentinel-2. Among these satellites, Landsat is the unique 

mission that has been providing images since the 1970s, and the 

last member of the mission, Landsat 9, was launched on 

September 27, 2021. Therefore, the number of scientific 
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publications that used Landsat data has reached a great extent 

over time (Hemati et al., 2021).  

 

To create an LULC map, a classification method is generally 

applied to the RS images, and various classification algorithms 

have been proposed and used so far (Alzubaidi et al., 2021; 

Khelifi and Mignotte, 2020; Thanh Noi and Kappas, 2017; 

Korytkowski et al., 2016; Otukei and Blaschke, 2010; Wulder et 

al., 2008). Concerning the classifiers, Random Forest (RF) has 

attracted the attention of researchers, and has become one of the 

widely used methods for LULC mapping thanks to its 

performance and the demand for a few criteria (Adugna et al., 

2022; Balha et al., 2021). On the other hand, SUHI maps can be 

obtained from TIR-based Land Surface Temperature (LST) 

images of MODIS, ASTER, Landsat, etc., and various methods 

have been improved to retrieve TIR-based LST ( Gillespie et al., 

1998; Qin et al., 2001; Dash et al., 2002; Jiménez-Muñoz and 

Sobrino, 2003; Sobrino et al., 2004; Duan et al., 2018).  

 

This study aims (i) to compare the performance of Landsat 8 and 

9’s multispectral bands in LULC mapping using the RF method, 

and (ii) to compare the LST results of Landsat 8 and 9 using 

ground-based measurements obtained from Surface Radiation 

Budget Network (SURFRAD). Furthermore, this is the first study 

that will provide LST validation of the Landsat 9 TIRS sensor 

using in-situ measurements. RF-based classification and pixel-

based LST information extraction were conducted in the Google 

Earth Engine (GEE) cloud environment. Although Landsat 9 has 

similar copies of the Thermal Infrared Sensor (TIRS) and 

Operational Land Imager (OLI) instruments onboard Landsat 8 

as possible, one of the main differences between OLI and OLI-2 

instruments is 14 bits of data downloaded per pixel obtaining a 

higher bit depth for its imagery in comparison with the Landsat 

8’s 12-bit OLI data 
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(https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-

instruments/). On the other hand, The TIRS-2 is an upgraded 

version of the TIRS-1 from Landsat 8 based on instrument class 

and stray light reduction 

(https://landsat.gsfc.nasa.gov/satellites/landsat-9/landsat-9-

instruments). That is why we would like to investigate if OLI-2 

and TIRS-2’s differences(characteristics) have any effect on 

LULC mapping, and LST analysis, respectively, compared to the 

OLI-1 and TIRS-1. 

 

2. STUDY AREA AND TEST SITES 

2.1 LULC Mapping Study Area 

Concerning the LULC mapping, Iğdır Province, located at the 

Eastern part of Türkiye and along the borders with Iran, Armenia, 

and Azerbaijan (the area of Nakhchivan Autonomous Republic), 

was chosen (Figure 1). Iğdır Province is approximately 3588 km2 

in size, and the height of the city center above the mean sea level 

is around 850 m. The Igdir plain is among the most valuable 

agricultural regions in Turkey, and it has a continental climate; 

however, lowland parts are not affected by the continental 

climate as seen in the other parts of Eastern Anatolia due to the 

micro-climate effect. 

 

 

Figure 1.  Illustration of the study area map for LULC classification. 

 

2.2 Test Sites for TIRS Comparison  

In order to facilitate climate studies across the US, the National 

Oceanic and Atmospheric Administration (NOAA) of the United 

States (US) built the SURFRAD network in 1993 by preparing 

continuous, long period and reliable ground-based data of surface 

radiation budget (Augustine et al., 2000). Longwave radiation is 

one of the parameters that SURFRAD stations measure, and these 

measurements are used to calculate the ground-based LST. In this 

study, two SURFRAD stations (FPK and GWN), located at 

inverse climate zones, were considered for the LST comparisons 

from TIRS-1 and TIRS-2 (Figure 2). 

 

 

Figure 2.  General overview of the SURFRAD network and demonstration of two stations (FPK and GWN) utilized in the LST 

analysis (Source: https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html). 

 

3. DATA AND METHOD 

Concerning the LULC mapping, Landsat 8’s and Landsat 9’s 

Collection 2 (C2) Level 2 (L2) Surface Reflectance (SR) images 

(Masek et al., 2006; Vermote et al., 2016) were acquired on 14 

May 2022 and 22 May 2022, respectively. Apart from the 

panchromatic band, all reflective bands of both datasets were 

performed in the LULC classification process. In this research, 

the RF classification method, providing effective performance 

(Shao et al., 2021), was implemented to identify the LULC 

classes, namely, water body, vegetation area (pasture, vegetation 

covered agricultural areas, etc.), artificial surface (urban and 
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other impervious surfaces), bare land (rocks and bare soils 

including non-vegetative agricultural lands), and snow cover. 

The classification process was implemented in the GEE platform. 

More information about RF can be achieved from the study of 

Breiman (2001). The number of decision trees (ntree) and the 

number of variables per split are two significant user-defined 

factors for the RF, which were defined as 130 and 3, respectively, 

for this research. Furthermore, for the classification process of 

each image, 35214 pixels were used in training while 429 pixels 

were used in testing. To analyze the classification performance, 

confusion matrix was generated with the Kappa coefficient and 

Overall Accuracy (OA). 

 

Concerning the LST retrievals, acquisition dates of the Landsat 9 

and Landsat 8 images, which are C2 L2 Surface Temperature 

(ST) Products (Cook, 2014; Cook et al., 2014), are given in the 

Appendix. The ST products were derived using C2 L1 data, Top 

of Atmosphere (TOA) reflectance, TOA brightness temperature, 

atmospheric profile data,  and ASTER Global Emissivity 

Database (GED) data (Cook et al., 2014). To investigate the 

validation of ST products, two ground-based SURFRAD stations 

were considered. Many previous studies also utilized SURFRAD 

in-situ measurements for LST validation (Heidinger et al., 2013; 

Li et al., 2014; Yu et al., 2014; Zhang et al., 2016; Sekertekin, 

2019; Sekertekin and Bonafoni, 2020a, 2020b). To calculate 

ground-based LST, upwelling and downwelling longwave 

radiation measurements at two SURFRAD stations were exerted 

with respect  to Stefan–Boltzmann law as in Equation (1) (Li et 

al., 2014; Wang et al., 2008); 

 

LST= [ 
Fλ

↑
- (1- εb)∙Fλ

↓

εb∙σ
 ]

 1/4

                                (1) 

 

where  Fλ
↑
 = upwelling thermal infrared irradiance (W/m2) 

 Fλ
↓
 = downwelling thermal infrared irradiance (W/m2) 

 σ = Stefan-Boltzmann constant 

 εb =  broadband longwave surface emissivity 

 

Fλ
↑
 and Fλ

↓
 are measured simultaneously with satellite pass, and εb 

is assumed 0.97. 

 

Landsat-based LST and SURFRAD-derived LST were analyzed 

considering the performance metrics, namely, average Bias  and 

Root Mean Square Error (RMSE) given by: 

 

RMSE = √
∑[TL - TSURFRAD]2

n
 (2) 

Bias = 
∑[TSURFRAD - T

L
]

n
 (3) 

 

where  TL = Landsat-based LST  

 TSURFRAD = SURFRAD-derived LST 

 n = the number of data  

 

The general flowchart of the study is i in Figure 3, showing all 

steps including, preprocessing, data, methods, and analysis in the 

corresponding environment. 

 

  

Figure 3. General workflow of this study. 
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4. RESULTS 

Figure 4 represents the RF-based LULC images obtained from 

Landsat 8 and Landsat 9. For both datasets, the same training and 

testing data were performed in the classification process. Both 

visual interpretation and accuracy metrics revealed that Landsat 

9 provided better accuracy than Landsat 8 based on the same 

training and testing data. 

 

 

Figure 4.  LULC image maps  of the interested area; a) Landsat 8 derived LULC, b) Landsat 9 derived LULC. 

 

Table 1 represents the accuracy assessment report for the 

classification results. The obtained results showed  the derived 

LULC of the Landsat 9 image had a higher kappa value (0.83) 

and OA (87.4 %) than the Landsat 8-derived LULC (OA=82% 

and Kappa=0.76). As a visual interpretation, artificial surfaces 

were better determined by Landsat 9; however, some of the bare 

lands were identified as artificial surfaces in the Landsat 8-

derived LULC image. 

 

  Landsat-8 Landsat-9 

LULC Classes UA PA UA PA 

Snow 1.000 0.889 1.000 1.000 

Water Body 0.977 0.860 0.957 0.900 

Vegetation Area 0.900 0.771 0.938 0.867 

Artificial Surface 0.780 0.742 0.883 0.790 

Bare Land 0.745 0.909 0.788 0.932 

Overall Accuracy 82 % 87.4 % 

Kappa Coefficient 0.76 0.83 

Table 1. Validation results for LULC images 

 

Considering the comparison of TIR sensors, Figure 5 represents 

the LST results from both Landsat images and SURFRAD 

stations. In-situ LST results from FPK and GWN stations were 

compared with Landsat 8 and 9 based LST results in Figure 5a 

and 5b, respectively, while all results from both FPK and GWN 

stations were presented in Figure 5c. For all scatter plots, Landsat 

9-based LST provided slightly better performance than Landsat 

8-based LST. It is also required to mention that in this analysis, 

27 Landsat 8 images and 19 Landsat 9 images from 2 stations 

were utilized by considering the clear-sky condition. Over the 

FPK station, for Landsat 8 and Landsat 9, the RMSE values were 

2.60 K and 2.32 K, respectively. Moreover, the average bias was 

lower for Landsat 9 than Landsat 8. Concerning the GWN station, 

for Landsat 8 and Landsat 9, the RMSE values were 1.99 K and 

1.24 K, respectively. Besides, the average bias was again lower 

for Landsat 9 than Landsat 8 as in FPK station. For overall 

evaluation, all data from both FPK and GWN stations were 

analyzed as seen in Figure 5c. In this general evaluation, Landsat 

9-based LST provided 1.77 K RMSE, which was lower than 

Landsat 8-based LST (RMSE=2.31 K). 
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Figure 5.  Validations and comparative analysis between Landsat-based LST and SURFRAD-based LST; a) LST results from FPK 

station, (b) LST results from GWN station, (c) Total LST results from FPK and GWN stations. 

 

5. CONCLUSION 

In this study, comparative assessments of Landsat 9 and Landsat 

8 were conducted based on LULC classification and LST 

validation. Thus, the effectiveness of the spectral bands and 

thermal band (band 10) of both satellite sensors was evaluated. 

The most recent Landsat satellite is Landsat 9, so we showed its 

performance on both LULC and LST analysis to highlight the 

efficiency of OLI-2 and TIRS-2 sensors with a comparative 

analysis with Landsat 8. For LULC retrieval, the RF method was 

applied in the GEE cloud platform with the same training and 

testing data for both Landsat 8 and Landsat 9 images. The LULC 

results revealed that OA and Kappa values for Landsat 8 and 

Landsat 9 were 82 %, 0.76, and 87.4 %, 0.83, respectively, 

presenting that Landsat 9 achieved better performance in this 

case study. Additionally, regarding the thermal analysis, readily 

available LST products of Landsat 8 and Landsat 9 from the 

USGS were evaluated based on ground measurements. FPK and 

GWN stations from SURFRAD Network were considered in-situ 

measurement stations. In this analysis, Landsat 9-based LST 

provided 1.77 K RMSE, which was lower than Landsat 8-based 

LST (RMSE=2.31 K). As a general evaluation, Landsat 9 

provided better accuracies in both LULC classification and LST 

analysis, and this study proved Landsat 9 has more improved OLI 

and TIRS sensors than Landsat 8. 
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APPENDIX 

Station 

Id 

Acquisition Dates 

(dd.mm.yyyy) 

Landsat 8  Landsat 9 

FPK 

1.11.2021 10.11.2021 

8.11.2021 13.2.2022 

17.11.2021 24.3.2022 

3.12.2021 18.4.2022 

12.2.2022 25.4.2022 

9.3.2022 4.5.2022 

16.3.2022   

25.3.2022   

26.4.2022   

19.5.2022   

15.7.2022   

GWN 

6.11.2021 23.12.2021 

13.11.2021 17.1.2022 

22.11.2021 24.1.2022 

29.11.2021 9.2.2022 

8.12.2021 18.2.2022 

25.1.2022 7.4.2022 

10.2.2022 14.4.2022 

14.3.2022 30.4.2022 

15.4.2022 16.5.2022 

22.4.2022 26.6.2022 

1.5.2022 12.7.2022 

8.5.2022 19.7.2022 

18.6.2022 28.7.2022 

25.6.2022   

11.7.2022   

20.7.2022   
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