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ABSTRACT: 
 
Floods have caused significant socio-economic damage and are extremely dangerous for human lives as well as infrastructures. The 
aim of this study is to use machine learning models including regularized random forest (RRF) and Naïve Bayes (NB) algorithms to 
predict flood susceptibility areas using 410 sample points (205 flood points and 205 non-flood points). Ten flood influencing factors 
including elevation, topographic wetness index, rainfall, normalized difference vegetation index, curvature, land use, distance to 
river, slope, lithology, and aspect have been used in the modelling process. For this purpose, 70% of the data was used for training 
and the rest employed for testing the models. Accuracy (ACC), sensitivity, specificity, negative predictive value (NPV), and the area 
under the curve (AUC) of the receiver operating characteristic (ROC) were used to validate and compare the performance of the 
models. The results showed that the RRF model on the testing dataset had the highest performance (AUC = 0.94, ACC = 90%, 
Sensitivity = 0.89, Specificity = 0.92, NPV = 0.89) compared to that of the NB model (AUC = 0.93, ACC = 89%, Sensitivity = 0.84, 
Specificity = 0.96, NPV = 0.81). The employed models can be used as an efficient tool for flood susceptibility mapping with the 
purpose of planning to reduce the damages. 
 
 

1. INTRODUCTION 

Floods have always been known as part of a natural 
hydrological cycle. However, the trend of increasing recurrence 
and magnitude of floods has been recorded in recent decades 
(Kundzewicz et al., 2013). Global warming which means rising 
temperatures causes a number of natural disasters such as 
hurricanes (Wolf et al., 2020) and floods (Trenberth, 2008). 
Among natural disasters, floods are the most devastating events, 
affecting millions of people around the world (Shen and 
Hwang, 2019). Floods have resulted to nearly 20,000 fatalities 
and 75 million homeless each year (Khosravi et al., 2016). 
However, it should be noted that the flood phenomenon is 
inevitable and the management and forecast of future floods can 
be an important step to reduce the damage (Cloke and 
Pappenberger, 2009; Tehrany et al., 2015). Therefore, the 
production of flood susceptibility map (FSM) is an important 
step for flood damage assessment and supports an informed 
decision making for the flood disaster management. 
In recent years, several approaches have been developed for 
flood susceptibility modelling (Bahremand et al., 2007). 
Hydrological methods are unable to accurately flood 
susceptibility areas modelling because they use linear 
hypotheses and require long-term hydrological data for 
monitoring. Therefore, these methods are unsuitable for the 
study of large-volume catchments (Liu and Smedt, 2004; 
Tehrany et al., 2013). Thus, researchers have tried to achieve 
the goal of flood modelling using methods based on statistical 
models such as frequency ratio (Cao et al., 2016; Rahmati et al., 

2016). Recently, machine learning (ML) approaches have been 
used by researchers to produce flood-susceptibility maps due to 
their better performance than other models (Bui et al., 2018; 
Chen et al., 2021; Panahi et al., 2021). These models focus 
more reliably on discovering the relationship between the target 
variable and the flood factors. In flood modelling using ML 
algorithms, several algorithms including adaptive neuro-fuzzy 
inference system (ANFIS), artificial neural network (ANN), 
support vector machine (SVM) and random forest (RF) have 
been frequently used in different basins of the world. A number 
of studies in this field have been presented in recent years. For 
example, Khosravi et al. (2018) have evaluated the efficiency of 
four decision two models namely logistic model trees (LMT), 
alternating decision trees (ADT) and to flash flood susceptible 
areas at the Haraz Watershed in the northern part of Iran. The 
results have showed that ADT methods had the superior 
performance because this method is one of the advanced 
decision tree (DT) methods and has reached an AUC value of 
0.976. Esfandiari et al. (2020) has developed the Pseudo 
Supervised Random Forest (PS-RF) model to flood hazard risk 
mapping at the Fredericton, Canada. The accuracy measures of 
this model evaluated with true positive rate, true negative rate, 
false positive rate, accuracy, Cohen’s Kappa coefficient and 
Matthews Correlation Coefficient. Lei et al. (2021) scrutinized 
the applicability of the recurrent neural network (RNN) and 
convolutional neural network (CNN) models for urban flood 
susceptibility mapping. The findings have showed better 
prediction performance of CNN method. Furthermore, terrain 
ruggedness index was the most influencing factor in flood 
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inundation in Seoul, South Korea. Ahmadlou et al. (2022) has 
used the classification and regression tree (CART) model, 
Genetic Algorithm and Grid Search to optimize the parameters 
for flood modelling and the achieved AUC (CART-GS) was 
equal to 0.927. (Habibi et al., 2022) has evaluated the efficiency 
of the Chi-square automatic interaction detection (CHAID) 
algorithm for flood susceptibility assessment in the Sardabroud 
watershed. The main objective of this study is modelling flood 
susceptibility mapping and its assessment using regularized 
random forest (RRF) and Naïve Bayes (NB) as two machine 
learning algorithms in Sardabroud watershed, Mazandaran 
Province, Iran. 
 

2. DATA AND METHODS 

2.1 Study area 

Sardabroud watershed includes the city of Kelardasht, which 
has a population of over 50,000 people. Kelardasht city is 
located in the west of Mazandaran Province, Iran. A number of 
flash floods have occurred in this area which damaged road, 
houses and other infrastructure besides loss of life and property. 
The watershed has an area of 460 km2, altitude ranging from -
31 m to 4816 m with a slope above 66 degrees (Figure 1). The 
watershed originates from the Alam-Kuh mountain. The 
average annual rainfall of the watershed is around 840 mm., and 
its average temperature varies between -5ºC to 30 ºC. 
 

 
 

 

Figure 1. Study area. 

2.2 Method 

The process for flood susceptibility modelling includes (a) 
producing flood inventory map using historical data of 205 
flood and 205 non-flood sample points, (b) determining flood-
influencing factors and investigating their correlations, (c) 
employing the ML models, (e) production of flood 
susceptibility map, and (f) evaluating the accuracy and 
reliability of the models and selecting the best model for flood 
susceptibility mapping as presented in Figure (2). 
 

 
Figure 2. Research methodology. 

 
2.3 Data used 

For production of the FSM, the production of flood inventory 
map (FIM), determining the spatial relationships among flood 
occurrences and the spatial correlations among their influencing 
factors are very important. The FIM was produced using 
historical data of 410 floods and non-flood points. 
Based on the previous research (Ahmadlou et al., 2022; Lei et 
al., 2021), data availability and the geo-environmental 
characteristics of the study area, 10 influencing factors 
including elevation, normalized difference vegetation index 
(NDVI), rainfall, topographic wetness index (TWI), land use, 
curvature, distance to river, slope, lithology and aspect were 
considered for the modelling (Figures 4 and 5). The lithology 
map was prepared in 1:50000 scale. The landuse and NDVI 
maps have obtained of Landsat8 in 1:250000 scale. The 
employed data area as follows: 
 
- Elevation: Elevation is generally indirectly related to floods 
(Fernandez and Lutz, 2010). The ground generally becomes 
flatter by elevation decreases and the amount of water carried 
by rivers increases. Therefore, it can be shown that the 
occurrence of floods increases with decreasing elevation. 
 
- Aspect: Aspect is a morphometric factor (Pham et al., 2021; 
Costache et al., 2021) derived in this study from ASTER Digital 
Elevation Model (DEM) of 30 m resolution. Aspect layer can 
indirectly affect the occurrence of floods. 
 
- Rainfall: Rainfall as the main source for runoff production at 
the ground level results in flooding at low-lying areas. Short-
term torrential rains and long-term low-intensity rains can cause 
floods (Rodda, 2011; Cao et al., 2016). Many researchers have 
considered this factor as an influential factor on flooding 
(Prasad et al., 2021; Saha et al., 2021). Therefore, the proximity 
of the study area to the Caspian Sea is the main reason to 
consider rainfall for flood susceptibility modelling. 
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- TWI: TWI is an hydrological factor that defines the ratio of 
the area between the specified basin and the slope angle 
(Wilson and Gallant, 2000). The TWI provides a measure of 
water accumulation and flood potential for each pixel. 
 
- Slope: The slope factor is calculated based on the DEM grid 
resolution and height range. As the slope increases, the flood 
has more destructive power, in other words, a flat ground has a 
constant risk of flooding due to its zero slope (Torabi Haghighi 
et al., 2018). 
 
- Distance to river: The areas close to rivers are more prone to 
flooding occurrence (Eini et al., 2020). Proximity to rivers is 
one of the influential factors of floods due to the dependence of 
floods on groundwater reserves (Janizadeh et al., 2019). 
 
- Curvature: A number of researchers have considered 
curvature as an important conditional factor for floods 
(Ahmadlou et al., 2021). Runoff is accelerated or reduced 
depending on the shape of the slope. Convex slopes accelerate 
ground flow and may also affect soil penetration and saturation. 
 
- NDVI: NDVI is a measure of vegetation characteristic of an 
area and there is a negative correlation between the flood 
occurrence and vegetation density (Prasad et al., 2021; Saha et 
al., 2021). 
 
- Lithology: Floods can be affected by lithology and geological 
structures due to their impact on soil porosity and permeability. 
Permeability is very low on very resistant rocks and as a result 
there is a higher potential for flooding. 
 
- Land use: Land use factor can affect runoff. In areas with 
high vegetation density, the surface runoff will decrease 
compared to that of the residential areas (Dodangeh et al., 2020; 
Saha et al., 2021). 
 
2.4 Machine learning models 

In this study, two ML models including RRF and NB were used 
for flood susceptibility modelling at Sardabroud watershed, 
Mazandaran Province, Iran. 
 
2.4.1 NB: Bayesian method is one of the methods to classify 
phenomena based on its probability of occurrence or non-
occurrence. The Bayesian method offers good results after 
initialization based on the intrinsic properties of probability 
(especially probability of division) (Rish, 2001). Bayes offers a 
way to calculate the previous probability (P (c | x)) of P (c), P 
(x) and P (x | c). Simple Bayesian classifiers assume that the 
effect of the value of a particular attribute in a class is 
independent of the values of other special attributes. 
 
2.4.2 RRF: The algorithm is generally developed for feature 
selection. In this model, each element of the training data set in 
each tree node is analysed. It can also be mentioned that the 
process of selecting the features of the RRF model is greedy. In 
the stochastic forest model, the tree regression method used for 
RRF development can select a subset of the model compression 
function (Deng and Runger, 2013). RRF algorithm is basically 
developed by random forest method, however the main 
difference is that in RRF, the regularized information gain, i.e., 
GainR (Xi, v), is used (Band et al., 2020) (Eq. 1). 
 

 

(1) 

 
2.5 Validation methods 

Variance Inflation Factor (VIF) and Tolerance (TOL) are 
statistical techniques that detect a strong linear relationship 
between more than two factors (Hong et al. 2020). VIF and 
TOL equations are mentioned (Eq. 2). The predictive 
performance of ML models is an essential step in generating 
FSM and without it, the modelling process is unreliable (Panahi 
et al., 2021). In this research, negative predictive values (NPV), 
accuracy (ACC), sensitivity, specificity and the AUC were used 
to compare the prediction ability of the both models (Eq. 3-7) 
(Rahmati et al., 2019). The performance of the assessment 
techniques has been widely mentioned in previous research (Lei 
et al., 2021; Pourghasemi et al., 2021). The confusion matrix is 
presented in Figure (3). 

 
Figure 3. Confusion matrix. 
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where  TP = true positive, 
 TN = true negative, 
 FP = false positive, 
 FN = false negative, 
 P = total number of flood pixels, 
 N = total number of non-flood pixels, 

Rj2 = the value of regression J in different variables of 
the dataset. 

 

3. RESULT AND DISCUSSIONS 

3.1 Multicollinearity diagnostics 

The results as indicated in Table 1 for the 10 factors considered 
for the flood modelling have shown that the land use has the 
lowest and the elevation has the highest VIF. Therefore, there is 
no multiple correlations between the considered variables 
(VIF> 10 and TOL <0.1) (Band et al., 2020) and all the factors 
are considered for the modelling. 
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FFigure 4. Flood influencing factors: (a) elevation, (b) aspect, (c) rainfall, (d) TWI, (e) slope, (f) distance to river. 
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Factors VIF TOL 
Elevation 5.37 0.18 
Slope 1.88 0.52 
Aspect 1.03 0.96 
Rainfall 1.66 0.60 
Curvature 1.15 0.86 
Distance to river 1.33 0.76 
Land use 1.02 0.97 
NDVI 3.66 0.27 
Lithology 1.29 0.77 
TWI 1.48 0.67 

Table 1. Multi-collinearity analysis. 
 
 

3.2 Flood Susceptibility Map 

The FSM using the NB and RRF models were classified into 5 
categories namely very low, low, moderate, high, and very high 
(Figures 6 and 8). The results have been proved that the NB 

model has estimated low susceptibility category (24% of the 
total area) more than other categories and the RRF model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
estimated low susceptibility category (22% of the total area) 
more than other categories. According to the NB map, 18% of 
the total area was placed in very high susceptibility category, 
19% in high category, 19% in moderate category and 20% in 
very low susceptibility category (Figure 6). For the RRF model, 
the very high, high, moderate, and very low categories were 
19%, 20%, 20%, 12%, and 19% of the total area, respectively. 
 
3.3 Comparison of Validation Methods 

Table 2 illustrates the predictive ability of the NB and RRF 
models based on the test datasets. The RRF model had the 
higher AUC, NPV, specificity, ACC and sensitivity values 
during the training and testing process. According to AUC 
values, the RRF model had the better predictive performance 
compared to that of the NB model (Figure 7). 
 

 

Figure 5. Flood influencing factors: (g) curvature, (h) NDVI, (i) lithology, and (j) land use. 
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Figure 6. Flood susceptibility categories in Sardabroud region. 

 

Parameters / Models NB RRF 
AUC 0.93 0.94 

NPV 0.81 0.89 

Sensitivity 0.84 0.89 

Specificity 0.96 0.92 

ACC (%) 89 90 

Table 2. Models validation. 
 

 
Figure 7. Receiver operating characteristic (ROC) curves. 

 

 
 

 
Figure 8. Flood susceptibility map using (a) RRF and (b) NB. 

 
4. CONCLUSION 

Global warming is inevitable and the presence of natural 
disasters such as floods can be observed in many places and 
cause a comprehensive damage worldwide. Artificial 
intelligence techniques including ML methods, have been 
recognized as efficient and high-performance methods for 
modelling natural disasters and predicting flood prone areas. 
The purpose of this study was to implement the RRF and NB 
algorithms to produce flood susceptibility maps in Sardabroud 
watershed in northern Iran. The predictive performance of 
models was evaluated using AUC, ACC, sensitivity, specificity 
and NPV. Both of the models had high accuracy, while, RRF 
with the ACC, sensitivity, specificity and NPV Values of 0.90, 
0.89, 0.92 and 0.89, respectively, has presented better results. 
The value of AUC for RRF model has been obtained as 0.945. 
According to RRF map, 19% of the total area was placed in 
very high flood susceptibility category and for the NB model, 
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the very high flood susceptibility category had been estimated 
18% of the total area. The RRF model in this research had 
higher accuracy for flood modelling than that of studied by 
(Ahmadlou et al., 2022; Habibi et al., 2022) in this study area. 
The findings showed that the RRF model had superior 
performance than that of NB model to map flood-prone areas. 
Band et al. (2020) have also used RRF algorithm for flash flood 
modelling and concluded that this model had a high accuracy 
for susceptibility modelling. Therefore, the results of this 
research have confirmed the findings of the previous research. 
The accuracy of these models can be compared and evaluated 
with other basic machine learning models such as Random 
forest (RF) and Support vector machine (SVM). The results of 
this study can be used by urban policy makers to consider flood 
susceptibility in the urban detailed plans and land use planning 
initiatives to reduce the damages to lives and infrastructure. It is 
suggested that more flood and non-flood points in addition to 
the maps of flood influencing factors at higher scales and 
spatial resolutions be employed in further studies which may 
affect the accuracy of the results of the flood susceptibility 
mapping. 
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