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ABSTRACT: 

Oil palm performs a considerable role in Malaysia’s economic system as Malaysia is the second-biggest palm oil manufacturer in 
the world. In oil palm plantations. Basal stem rot (BSR) is a disease caused by Ganoderma boninense that is responsible for a 
considerable annual losses, particularly in South East Asia. The disease remains an unresolved problem in most production areas due 
to lack of disease management strategy to detect the infected palms at their early stage. In recent years, advancement in remote sensing 
platforms and image processing methods have produced remarkable results for the detection of diseases at early stage. In this study, 
support vector machine (SVM) classifier was performed on UAV and Pleiades imagery to determine the ideal classification model for 
the early diagnosis of BSR disease in oil palms. The investigation's results showed that UAV provided the most accurate prediction, 
with a total accuracy of 68.28%, while 64.52% of the early Ganoderma infections could be identified with accuracy levels of 64.07% 
and 64.49%, respectively. The early Ganoderma infection could be recognized with an overall accuracy of 64.07% and 64.49%, 
respectively, while the Pleiades had an overall accuracy of 68.28% and 64.52%. Although the categorization accuracy appeared to be 
only modest at first glance, the quantity of detail offered by the imageries suggested that the accuracies were acceptable.

1 INTRODUCTION 

Recent devastating Ganoderma boninense attacks on oil palm 

due to basal stem rot (BSR) in Southeast Asia have caused 

significant post-harvest losses; about RM225 million to RM1.5 

billion a year (Ommelna et al. 2012). The economic loss caused 

by this pathogen could be severe and cause impacts on the 

strategic and scientific management of oil palm plantations. The 

devastation, however, has stirred a lot of interest among 

researchers to work on the possibility of a remote sensing 

approach method to identify Ganoderma infected palms that will 

help to mitigate any damage in the future. The detection and 

differentiation of the disease at its earliest stage of infection can 

extend the productive life of the infected oil palm (Hillnhuetter 

and Mahlein, 2008. Nevertheless, it is costly and time-consuming 

to visually monitor this disease in the field during its early phases. 

(Liaghat et al. 2014; Zamry et al. 2015). In the early stage of 

Ganoderma infection, palms are symptomless making it difficult 

to diagnose.. Hence, alternative evaluations are required. 

Researchers have experimented with numerous remote sensing 

platforms in discriminating between healthy and diseased plants 

(Ahmadi et al. 2016; Lelong, 2010; Shafri et al. 2012;), and they 

have investigated various classification algorithms for 

differentiation of disease levels (Al-hiary et al. 2011; Patil and 

Kumar, 2011). Additionally, remote sensing methods could also 

be developed to distinguish BSR infections on both small- and 

large-scales within oil palm plantation areas. Ahmadi et al. 

(2016) analysed leaf spectral data obtained from the GER 

spectroradiometer with artificial neural network (ANN) for 

detection of Ganoderma infected oil palms at early stage. The 

results provided through the ANN analysis on healthy and early 

stage Ganoderma infected oil palms illustrated satisfactory 

classification with an accuracy of 83.3% and 100.0% in the 540-

550 nm spectral region, respectively. In BSR related research, 

while the use of Unmanned Aerial Vehicles (UAV) is still 

considerably limited, they may play a key role in improving 

detection of infected oil palms, especially at their early stage. 

Several limitations associated with satellite data, including low 

spatial resolution, cloud spots, and long revisiting times in 

relatively small geographical areas have been avoided by the use 

of UAVs; however, UAVs are not suitable for large-scale 

applications due to time and cost limitations (Fornace et al. 

2014). Due to the spectral reflectance difference in plants that is 

well associated with various degrees and types of stress, digital 

(red, green, and blue), multispectral, hyperspectral, fluorescence 

imaging, and thermal infrared-based optical sensors have 

recently become widely used in assisting plant disease detection 

(West et al. 2003; Liu et al. 2007; Naidu et al. 2009; Yang et al. 

2009; Balasundaram et al. 2009; Zhang et al. 2012; Tawfik et al. 

2013; Alexander et al. 2014; Dayou et al. 2014). based on the fact 

that infected plant has different spectral reflectance compared to 

healthy plants and exhibit significantly higher spectral 

reflectance in the visible range (400–700 nm), also due to 

changes in physiology and biochemistry in the leaves fallowed 

by stress (Govender et al. 2009; Sanches et al. 2014). while 

healthy plants show lower spectral patterns Govender et al. 2009; 

Sanches et al. 2014). By analyzing digital images, new 

classification approaches like ANN and SVM have been widely 

used to assist farmers and producers identify early symptoms of 

plant diseases (Pourreza et al. 2016; Calderon et al. 2015; Patil 
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and Zambre, 2014; Rumpf et al. 2010; Camargo and Smith, 

2009). a sophisticated plant disease detection method using 

machine learning classifiers can quickly, accurately, and 

dependably identify plant diseases in their early stages for 

economic, production, and agricultural benefits (Sankaran et al. 

2010). In plant disease identification study, artificial selection of 

SVM parameters in the classification of the samples is usually 

relied upon. The function class for the classification model can 

be arbitrary complex as a result of learning with SVMs, giving it 

the flexibility for challenging classification tasks. Capabilities of 

SVM for advanced disease detection have been proven through 

many studies. Pourreza et al. (2016), for instance, described how 

to use an SVM model for differentiable wavelengths to identify 

Citrus Black Spot (CBS), a fungal disease that affects citrus 

species, with overall accuracy rates of 94.6%. In a different 

investigation, Calderon et al. (2015) looked at the potential of 

linear discriminant analysis (LDA) and SVM classifier on high-

resolution thermal and hyperspectral imagery for detection of 

Verticillium wilt (VW) infection in many stages in olive. Their 

findings depicted that, despite the LDA classifying trees more 

accurately in their early stages of infection, SVM had a higher 

total accuracy (79.2% vs. 59.0%). Given this information, no 

prior research have connected the physiological changes in 

diseased oil palms at the canopy level that can be detected 

through imagery. Therefore, the objective of this study was to 

discriminate BSR disease levels derived from UAV and Pleiades 

images using the SVM model.  

 

2 MATERIAL AND METHODS 

Study Area 

The study was carried out on a United Malacca Berhad oil palm 

field in the Machap sub-district of Melaka, Malaysia (2.402° N 

102.327° E), which was formerly a rubber plantation. Study 

subjects were 12 years old mature oil palm trees that were planted 

in 2002 Based on particular visual symptoms on the canopy and 

the presence of basidiocarps on the basal of the palms, we 

recognized and designated 374 assessed palms in the field with 

four stages of infection during field data collecting in October 

2014. Trunk samples were obtained by trunk drilling in order to 

perform a GSM test on palms lacking a Ganoderma fruiting body 

in order to confirm the existence of a fungus related to 

Ganoderma. The samples were divided into four categories 

labeled as T1 (healthy), T2 (mildly infected), T3 (moderately 

infected), and T4 (supported by both visual symptoms and GSM 

check results) (severely infected). With the use of a global 

positioning system (GPS) receiver and a palm triangulation map, 

the palms were later individually geolocated in the UAV image. 

 

Multispectral Camera  

The acquired composite infrared (CIR) UAV image of the 

selected site was obtained on 31 October 2014, has 3 spectral 

bands of red, green, and infrared (NIR,) and the spatial resolution 

of imagery is 0.026 m/pix (Figure 1). It has covered up to 0.089 

km2 and flown at an altitude of 91.3 m above ground level. In this 

study, a hexacopter UAV system was deployed, and we got 107 

photos that were mosaicked using the Agisoft® PhotoScan 

program (Agisoft LLC, St. Petersburg, Russia). Later, the SVM 

classification was performed using digital number values 

(García- Ruiz et al. 2013).  
On September 16, 2016, 0.5 m (panchromatic mode) and 2 m 

(multispectral mode) resolution Pleiades satellite images were 

collected (Figure 1). The Pleiades sensor has 4 spectral bands (b0, 

0.43–0.55 μm; b1, 0.50–0.62 μm; b2, 0.59–0.71 μm; b3, 0.74– 

0.94μm). The image was geometrically corrected, and 

coordinates of surveyed trees were overlaid Pleiades image 

whereby a region of interest was selected for the model input. 

The satellite image was free from cloud covers and the 

classification was performed using digital number values 

(Trisakti, 2017). The imaging camera was calibrated and 

corrected before image acquisition using a variety of methods, 

including flat field from look-up tables (LUT) correction, and 

Brown-Conrady model techniques for lens distortion corrections 

(Wang et al. 2009; Hugemann et al. 2010) for lens distortion 

corrections; vignetting correction, where the image data were 

corrected through a per-pixel multiplication (Goldman et al. 

2010; Kim et al. 2008) and radiometric calibration based on 

empirical line regression models, where a tarpaulin with various 

colours on it was used for environmental Lambertian reflectance, 

also known as a pseudo- invariant (PIFs) (Moran et al. 2001; 

Karpouzli et al. 2003).  

 

 

Figure 1. The UAV CIR image of the study area (top) and the 

Pleiades image (bottom). 

SVM Classification  

Support vector machine is a nonlinear classifier that constructs a 

model that categorizes fresh instances into either one category or 

the other, making it a non-probabilistic binary linear classifier. 

The SVM model includes a supervised learning classification A 
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supervised learning classification technique based on the idea of 

decision planes that specify decision boundaries is included in 

the SVM model. A decision plane is a structure that divides a 

collection of objects with various class memberships. All SVM 

algorithms were implemented with MATLAB 2014. The 

implementation of multi- classes SVM was used for the 

classification of distinct levels of Ganoderma infected palms. 

The SVM algorithms for the UAV and Pleiades images were 

designed to execute two main procedures: space extraction and 

classification. The first phase was feature extraction, consisting 

of spectral and structural features extraction. Red (R), green (G), 

blue (B), near-infrared (NIR), digital numbers (DNs), and a 

vegetation index namely Normalized Difference Vegetation 

Index (NDVI) provides an indication of vegetation health and a 

way to track changes in vegetation were the descriptors used to 

describe the spectral properties. The selected structural features 

were average, variance, and grey-level co-occurrence matrix 

(GLCM). Average, variance, and a matrix of the co-occurrence 

of grey levels (GLCM) were the structural features that were 

chosen. The spatial relationship between pixels is taken into 

account by the GLCM, a statistical technique for analyzing 

texture (grey-level co-occurrence matrix, also known as the grey-

level spatial dependence matrix). The GLCM functions 

characterize the texture of an image by calculating how often 

pairs of the pixel with specific values and in a specified spatial 

relationship occur in an image, creating a GLCM, and then 

extracting statistical measures from this matrix. The GLCM is 

better than texture filter functions since the latter cannot provide 

information about the spatial relationships of pixels in an image. 

The SVM classifier was used in the second phase to produce the 

most accurate classification by integrating training and test data 

with specific features. Finally, the outputs of models were 

coloured onto classified images based on the training data. It is 

worth to mention that the aim of this study was to detect early the 

Ganoderma infection, and therefore we focused on classifying 

T1, T2, and T3, and excluded T4 because the latter could be 

easily visually detected through human sights.  

 

3 RESULTS AND DISCUSSION 

Figure 2 presents the SVM classified map generated from the 

UAV image. The regions that were classified as unknown 

belonged to soil surface, shrub, rotten trees, or the trees that were 

not in the main classes. According to Table 1, the accuracy of 

various classes had different trends, such that the highest 

producer accuracy belongs to T1, then T3, and finally T2. Since 

producer accuracy indicates the quality of classification, it could 

be concluded that for classification of UAV image using the 

SVM, the model precision for the T1 class was appropriate 

(88.4%), but the model was not capable of classifying mildly 

infected (T2) pixels as well as those of T1. It is important to note 

that the largest number of unknown pixels was related to the T2 

class and that by neglecting these pixels, the accuracy of this class 

could rise to 79.4%. The result for healthy trees could be 

considered appropriate since among all the T1 pixels, only a few 

were misclassified in T2 and none of them was detected as 

moderately infected. On average, the SVM accuracy for UAV 

imaging was 68.28% and a kappa coefficient of 0.57.  
The classified Pleiades image is depicted in Figure 3 and Table 2 

summarizes the results of Pleiades image classification using the 

SVM algorithm on three different severity classes. As the disease 

progressed, the classifier accuracy diminished, such that the 

lowest user produced accuracy acquired for moderately infected 

palms (T3). A high number of unknown and T3 pixels was 

misclassified as T1, contributing to its low accuracy. However, 

since the aim of the study was the detection of Ganoderma at its 

early stage, we focused on the T2 class. By neglecting the 

unknown pixels in this class, a higher percentage of true 

classified pixels, which was 76.78%, appeared. Nevertheless, the 

SVM classifier was neither able to detect them nor categorize 

them as unknown, leading to a relatively low overall accuracy of 

classification. The overall classification accuracy was more than 

64.5%, with a kappa coefficient of 52%. Comparing to the UAV 

classification areas, the Pleiades image resulted in 1.25 ha of T1, 

0.72 ha of T2 and 0.74 ha of T3 versus 1.32 ha of T1, 0.72 ha of 

T2 and 0.82 ha of T3. Generally, the area classified from both 

images was similar for the T2, yet was slightly higher for T1 and 

slightly lower for T3 for the UAV image.  

 
Figure 2. The UAV-SVM classified map. 

 
Figure 3. The Pleiades SVM classified map. 

 T1 T2 T3 Unknown 
Producer 

Accuracy 

(Precision) 

T1 1065 50 0 90 88.38% 

T2 98 2030 430 610 64.07% 

T3 74 490 1800 265 68.47% 

Unknown 150 30 843 1845  

Truth 

overall 
1387 2600 3073 2810  

User 

Accuracy 

(Recall) 

76.78% 78.07% 58.57%  
68.28% 

K = 0.57 

Table 1. Confusion matrix of SVM classification for UAV imagery. 
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 T1 T2 T3 Unknown 

Producer 

Accuracy 

(Precision) 

T1 1559 76 587 300 83.54% 

T2 0 1173 60 171 64.49% 

T3 590 35 2098 530 61.82% 

Unknown 934 245 0 1585  

Truth 

overall 
1529 2745 3083 2586  

User 

Accuracy 

(Recall) 

76.72% 76.43% 50.57%  
64.52% 
K = 0.52 

Table 2. Confusion matrix of SVM classification for Pleiades imagery. 

4 CONCLUSUION 

Generally, the classification accuracy of individual severity 

classes diminished with severity levels. All in all, the best 

classification result was achieved for the healthy palms and then 

for those with slightly infected severity, possibly due to distinct 

reflectance characteristics of T1 group collected from many palm 

samples in comparison to the T2 and T3 groups. Due to the nature 

of the disease distribution that is almost impossible to have a 

balanced number of infected palms in each class, we acquired 

fewer samples for the T2 and T3, and that might be attributed to 

the poor training process of the SVM algorithm. Another 

reasonable hypothesis is that the spectral reflectance of early 

Ganoderma infected palms might not be as clear as healthy or 

moderately infected palms of which the symptoms of the disease 

have already appeared on the palms, and hence the presence of 

many ambiguous areas could affect the misclassification between 

these two classes. The highest false classification in each class at 

both images was related to unknown pixels that were mixed 

pixels comprised of soil surface and shrubs. These mixed pixels, 

consequently, resulted in spectral reflectance that was not unique 

to any classes. Presence of the mixed pixels could contribute to 

high misclassification rates since the model was not able to 

provide clear classification separations between the classes. 

Although the UAV image had a better accuracy for the 

classification of unknown pixels due to higher spatial resolution, 

in both images tested, the highest number of false classifications 

in T2 category belonged to these unknown pixels. The SVM 

method, in fact, proved to be a more effective alternative to create 

an algorithm for early diagnosis of Ganoderma by avoiding these 

uncertain areas. Nonetheless, these results are in accord with the 

recent study by Santoso et al. (2010) who demonstrated that the 

accuracy of BSR detection using Quickbird imagery was about 

62% and 67% only. It is worth noting that these imageries which 

obtained the images of the palms at their canopy level, might 

have lost vital information related to the biochemical properties 

of the palms infected by the disease such as affected chlorophyll 

content (Shafri and Hamdan, 2009), in comparison to the 

measurements acquired at the leaf level that was via the 

spectroradiometer. Hence it is reasonable to justify the 

misclassification occurred through ambiguous characteristics of 

reflectance observed from the disease since they could be 

confounded by secondary factors such as leaf area index, leaf 

arrangement and within canopy shadow (Guyot et al. 1989). The 

results also indicated that the classification accuracy of 

Ganoderma infected trees obtained from the UAV was slightly 

higher than the Pleiades image. This could be attributed by the 

very high spatial resolution of the UAV image whereas the use 

of Pleiades image for early-stage detection was limited by the 

spatial resolution that was insufficient to detect individual palm 

canopies or infestation. In addition, variability in the 

experimental conditions, of which the images were taken at 

different dates, could be also a contributing factor.  

The use of SVM algorithms in our study demonstrated the 

potential of utilizing the data mining approach to facilitate the 

monitoring of Ganoderma disease at its early stage. The 

performance of the SVM algorithm was superior in classifying 

plant diseases at their early-stage infections, such as 

demonstrated by (Rumph et al. 2010) but not in our study. This 

could be subject to the use of a ground based spectroradiometer 

whereby the purity of the signal related to the diseases might not 

be compromised as much as in the UAV and satellite images that 

we tested. At the aircraft level, Calderon et al. (2015) found that 

micro-hyperspectral images from 260 bands analysed with SVM 

correctly classified asymptomatic olive trees with up to 99.4% 

accuracy, although trees at their initial and low stage infection 

were poorly classified, with an accuracy of 14.3% and 40.6%, 

respectively. In this study, our UAV images were acquired from 

a modified CIR camera that only has 3 bands yet achieved 

64.07% discrimination accuracy. To the best of our knowledge, 

no evaluation of the images from the aforementioned remote 

sensing platforms for Ganoderma detection has been reported or 

published so far. The SVM is potentially one of the machine 

learning algorithms that could be used for detection of disease at 

an early stage, yet further improvement is necessary to improve 

the classifier’s performance.  
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