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ABSTRACT:  

 

The PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the Italian Space Agency, lunched in 2019, has 

provided a new generation source of hyperspectral data showing to have high potential in vegetation variable retrieval. In this study, 

the newly available PRISMA spectra were exploited to retrieve Leaf Area Index (LAI) of sugarcane using a new kind of Artificial 

Neural Networks (ANN) so-called Bayesian Regularized Artificial Neural Network (BRANN). The suggested BRANN retrieval model 

was implemented over a dataset collected during a field campaign in Amir Kabir Sugarcane Agro-Industrial zone, Khuzestan, Iran, in 

2020. Principle Component Analysis (PCA) was utilized to reduce the dimensionality of PRISMA data cube. An accuracy assessment 

based on the bootstrapping procedure indicated RMSE of 0.67 m2/m2 for the LAI retrieval by applying the BRANN model. This study 

is a confirmation of the high performance of the BRANN method and high potential of PRISMA images to retrieve sugarcane LAI. 

 

 

1. INTRODUCTION 

Leaf Area Index (LAI) is a biophysical vegetation variable that 

is of great importance in the mass and energy exchanges between 

the Earth and the atmosphere (Bacour et al., 2006). LAI is also a 

very good indicator of growth and yield of crops. Sugarcane as 

an economic crop, cultivated in tropical and subtropical regions, 

provides more than half of the global demand for sugar (Som-

Ard et al., 2021). Therefore, cultivating this crop with more 

productivity can help to improve global food security. An 

efficient way to increase crop productivity is to evaluate plant 

health status which can be done by monitoring its 

biophysical/chemical variables. LAI is one of the most important 

variables among them, so that many sugarcane growth models 

use it as an adjusting factor to model sugarcane growth and 

predict its yield (Teruel et al., 1997). 

  

Due to its wide spatial coverage and revisit ability, remote 

sensing has proven to have high potential in retrieving vegetation 

characteristics at local and global scales (Sellers et al., 1997; 

Verstraete et al., 1996; Weiss et al., 2020). Statistical-empirical 

(regression-based) approaches are known as an easy but efficient 

way which are used to retrieve vegetation traits from remote 

sensing data. A review on application of various regression 

methods in the field of vegetation variable retrieval was included 

in (Verrelst et al., 2019).  

 

One of the most popular non-linear non-parametric regression 

models is Artificial Neural Networks (ANNs) (Verrelst et al., 

2015), which is frequently applied to discover relationships 

between remotely sensed data as independent variables and 

vegetation properties as target variables (see review in (Kimes et 

al., 1998)). Studies in which ANNs were applied to retrieve LAI 

have been reviewed in (Fang et al., 2019). ANNs, however, are 

prone to be over-fitted (Kimes et al., 2000), when the number of 
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independent variables is large (such as what we encounter in 

hyperspectral images) and the number of samples is small, i.e. 

less than 100 , according to (Atzberger et al., 2003). Overfitting 

greatly reduces the generalizability of ANNs (Wang et al., 2009). 

To deal with overfitting problem and increase the ANNSs 

generalizability, regularization methods have been developed. 

Bayesian regularization (MacKay, 1992) is one of the most well-

known regularization methods, which provides high efficiency in 

improving the generalizability of ANNs (Okut, 2016). Applying 

the Bayesian approach to regulate ANNs, Bayesian regularized 

ANN (BRANN) technique was developed. BRANN was applied 

in various fields such as environmental studies (Ye et al., 2021; 

Lwin et al., 2020), economy (Sariev and Germano, 2020; Yan et 

al., 2017) and social studies (Kayri, 2016). In the field of 

vegetation studies, BRANN was used to identify diseases in rice 

leaves (Kumar Sethy et al., 2019), and model water status of 

grapevine (Pôças et al., 2017). Despite the high efficiency of the 

BRANN method in various fields, there is still no report on its 

application in the field of vegetation variable retrieval from 

remote sensing data (Verrelst et al., 2019). 

 

Launched in 2019, the PRISMA satellite (Loizzo et al., 2019) 

provides one of the most recent sources of hyperspectral data. 

The capability of PRISMA images in retrieving different 

vegetation parameters has been investigated in several studies. 

Tagliabue et al. (2022) used a hybrid approach based on the 

PROSAIL-PRO radiative transfer model and the Gaussian 

process regression algorithm to retrieve several vegetation 

variables including nitrogen, chlorophyll and water content at 

both leaf and canopy level from PRISMA images. They claimed 

the high accuracy and consistency of their results indicated the 

high capability of space-borne hyperspectral images in crop 

monitoring. Verrelst et al. (2021) used PRISMA data to map 

canopy nitrogen content. In that paper, the superiority of using 
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hyperspectral data against multispectral data for retrieving 

nitrogen content was mentioned. Casa et al. (2020) compared the 

capability of PRISMA hyperspectral images and Sentinel-2 

multispectral images to retrieve LAI and leaf chlorophyll content 

using machine learning methods. Their results indicated a higher 

efficiency of hyperspectral images than multispectral ones, 

especially in case of retrieving leaf chlorophyll content.   

 

The main aim of this paper is to regulate the ANN model using 

Bayesian regularization method and apply the regularized model 

over PRISMA hyperspectral spectra in order to retrieve LAI of 

sugarcane plant.  

 

2. MATERIALS AND METHODS 

2.1 Used Data 

2.1.1 Field Data: The ground measurements of LAI, were 

carried out in seven dates from 30th May to 23th August 2020. 

LAI measurement was performed through a destructive manner. 

For this purpose, first, elementary sampling units (ESU) with size 

of 3 m ×1.83 m were selected. In each ESU, three plant samples 

that were a suitable representative for the ESU were harvested 

and then scanned to determine their one-sided leaf surface. The 

total area of the sugarcane leaves in the ESU was then calculated 

by multiplying the samples leaf area by the number of plants in 

the ESU which was counted during the fieldwork, and dividing 

the result by 3 (the number of samples). LAI (m2/m2) was finally 

calculated by dividing the total area of leaves by the ESU area 

(i.e. 5.49 m2). The LAI measurement was performed in the 

number of 118 ESUs. The position of the ground measurement 

samples is shown in Figure 1. 

 

2.1.2 Earth Observation Data   

 

The PRISMA (PRecursore IperSpettrale della Missione 

Applicativa) satellite was launched by the Italian Space Agency 

on March 22, 2019 (Loizzo et al., 2019). This satellite includes a 

hyperspectral sensor that can capture images in 239 continuous 

spectral bands with a spectral resolution of less than 12 nm in the 

range of 400 to 2500 nm. Of these spectral bands, 66 bands are 

in the visible-near-infrared (VNIR) range and 173 bands are in 

the short-wave infrared (SWIR) range. Of course, the VNIR and 

SWIR ranges have a spectral overlapping between 930 nm to 

1034 nm. In terms of spatial resolution, PRISMA satellite is able 

to acquire images with a pixel size of 30 m. This satellite also has 

a panchromatic (PAN) camera with a resolution of 5 m. The re-

visit time of PRISMA in nadir view is 29 days, which can be 

shortened by up to 7 days by managing the off-nadir viewing 

angle (Vangi et al., 2021). PRISMA hyperspectral sensor is a 

pushbroom imaging spectrometer (ASI, 2020). 

 

The PRISMA images are available in three levels of pre-

processing. The level 0 (L0) product contains the raw data in 

binary files including auxiliary satellite data such as the cloud 

coverage percentage. The level 1 product (L1) contains the Top-

of-Atmosphere radiance images. Level 2 products (L2) are 

divided into three categories. L2B is corresponding to bottom-of 

atmosphere radiance; L2C is ground reflectance without 

geometric correction, and L2D is corresponding to geocoded 

ground reflectance. Level 2 products can be georeferenced with 

the availability of ground control points (Guarini et al., 2017). 

PRISMA images can be downloaded for free from http://prisma-

i.it/index.php/en/ after registration. The main specifications of 

PRISMA satellite are given in Table 1 (ASI, 2020). 

 

 

615 km Orbit Altitude 

30 km / 2.77° Swath / FOV 

30 m Hyperspectral Ground Sampling 

Distance 5 m PAN 

400 – 1010 nm 

(66 bands) 
VNIR 

Spectral Range 920 – 2500 nm 

(173 bands) 
SWIR 

400 – 700 nm PAN 

≤ 12 nm Spectral Sampling 

Interval  

≤ 12 nm Spectral Width 

>200:1 VNIR 
Signal-to-noise ratio 

(SNR) 
>100:1 SWIR 

> 240:1 PAN 

Table1. The main specifications of PRISMA satellite. 

 

In this study, PRISMA L2D images, acquired simultaneously or 

with a short time difference from the field measurements, were 

used to retrieve sugarcane LAI.  

 

2.2 Bayesian Regularized Artificial Neural Network  

BRANN combines three concepts: back propagation ANN, the 

regularization technique, and the Bayesian procedure (Yan et al., 

2017). Through the regularization procedure in ANN, parameter 

estimates are allowed to bias to the values which are more 

probable. This can reduce the variance of the estimates at the 

expense of increment of bias, resulting in producing a smoother, 

and hence more general, network response (Okut, 2016). For this 

purpose, regularization procedure considers the model 

parameters (network weights and biases) to minimize the 

objective function. While conventional training aims to reduce 

only the sum squared error (ED) as performance function in the 

form of F = ED, a regularized method also considers a weight 

attenuation term (EW) which penalizes large weights. The 

regularized objective function becomes a linear combination of 

ED and EW, which is written as:  

  

 𝐹 = 𝛽𝐸𝐷 + 𝛼𝐸𝑊 ,                             (1) 

 

where  ED = sum squared error 

 EW = sum of squares of network weights 

 𝛼, 𝛽 = regularization hyper-parameters 

 

The ratio 𝛼 𝛽⁄  dictates the emphasis for training, and controls the 

effective complexity of the network solution. The larger this ratio 

is, the more emphasis the training places on weight decay even at 

the cost of network errors, resulting in a more generalized 

network. Inversely, if the ratio becomes smaller, then the training 

algorithm drives the errors smaller (Dan Foresee and Hagan, 

1997). Finding the optimum values for the regularization hyper-

parameters is therefore the main problem with implementing 

regularization. To solve this problem Bayesian regularization is 

one of the most efficient methods (MacKay, 1992). In BRANNs, 

Bayes' theorem is utilized to automatically determine the 

optimum regularization hyper-parameters. The task is done in a 

probability-based iterative manner proposed by (MacKay, 1992). 

This manner involves imposing specified prior probability 

distribution on the model parameters. Using this prior probability 

distribution and according to the Bayes' rule, posterior 

probability is defined as: 

   

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×𝑃𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐸𝑣𝑖𝑑𝑎𝑛𝑐𝑒
 .           (2) 
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The goal is to choose the weights that maximize the posterior 

probability. The density function for the weights is updated 

according to the Bayes' rule in each iteration. The steps to 

determine the optimum regularization hyper-parameters by the 

BRANN method are summarized as follows: 

  

i. Set an initial value of 𝛼, 𝛽 and the weights (𝑤). The values 

are used, after the first training step, to recover the 

objective function parameters. 

 

ii. Apply the Levenberg-Marquardt algorithm to minimize the 

objective function Equation (1), and find the current value 

of 𝑤. 
 

iii. Compute the effective number of parameters, 𝛾, using the 

Gauss-Newton approximation to the Hessian matrix (H) in 

the Levenberg-Marquardt training algorithm as follow: 

 

𝛾 = 𝑚 − 𝛼 𝑇𝑟𝑎𝑐𝑒 𝐻−1                     (3) 

 

where  m = the total number of network weights 

  

iv. Compute new estimates for the hyper-parameters 𝛼 and 𝛽 

using Equations (4) and (5), respectively: 

 

𝛼 =
𝛾

2𝐸𝑤(𝑤)
                                   (4) 

 

𝛽 =
𝑁−𝛾

2𝐸𝐷(𝑤)
                                   (5) 

 

where  N = the number of training samples 
 

v. Iterate steps ii through iv until convergence. 

 

For more detail about BRANNs refer to (Bishop, 1995; Mackay, 

1995; Neal, 2012). 

 

2.3 Designing BRANN Architecture for LAI Retrieval 

First, the standard L2D PRISMA images were pre-processed as 

follow. Although the L2D PRISMA images used in this study are 

geocoded based on the WGS-84 datum and UTM projection, 

zone 39N, there is still a slight shift in all images when compared 

to the map of the sugarcane fields provided by the Amir Kabir 

Agro-Industrial Company. Mzid et al. (2022) also reported a 

displacement of up to 5 pixels in the PRISMA images used in 

their study. Therefore, first, the PRISMA images was 

geometrically corrected using the existing maps. Since L2D 

PRISMA images are presented as at-surface reflectance, no 

additional pre-processing for atmospheric correction was 

performed. In the following, some bands, including bands with 

overlap between VNIR and SWIR and those with low signal-to-

noise ratio (SNR), were removed. The reflectance values in the 

removed bands were interpolated using spline interpolation. The 

resultant spectra were then smoothed using spline smoothing 

function in order to reduce the system noise observed in PRISMA 

spectra. Finally, the bands lied in the atmospheric water 

absorption regions and the last portion of the SWIR were 

excluded from the smoothed spectra. The resultant spectra were 

considered as input independent variables in the retrieving 

process. 

 

In order to dimension reduction of the PRISMA data cube, 

principal component analysis (PCA) was used and the first 20 

components were considered. Some previous studies showed that 

the first 20 principal components (PC) are sufficient to achieve 

high accuracy in estimating LAI from hyperspectral data (Danner 

et al., 2021; De Grave et al., 2020; Rivera-Caicedo et al., 2017; 

Verrelst et al., 2021). As a further investigation, the LAI retrieval 

was performed by utilizing the 20 first principal components as 

input independent variables. 

 

Since the input independent variables and output target variable 

are of different physical nature and hence different dynamic 

range, the data were standardized by linearly rescaling them into 

a same range, i.e. [0 , 1]), in order to prevent scaling factor 

problem. Data standardization was performed for the output 

variable (i.e. LAI values). In the case of independent variables, 

the standardization was done only for the principal components. 

Since the L2D PRISMA were presented as reflectance, and they 

are intrinsically in the range [0 , 1], so no further normalization 

was required. Since the model generates the predicted values 

within the range [0 , 1], an inverse process was performed to 

invert the standardized predicted values of LAI into its actual 

dynamic range. 

 

The optimum network architecture including the number of 

hidden layers and the number of their neurons was determined by 

trial and error. Tangent sigmoid and linear transfer functions 

were used in hidden layer(s) and output layer, respectively. 

(Demuth and Beale, 2004) demonstrated that a network with this 

combination of transfer functions is able to approximate any 

continuous function well. 

 

2.4 Bootstrapping Procedure for Accuracy Assessment 

The performance of the model was assessed based on the 

bootstrapping procedure. For this purpose, the dataset was 

randomly divided into two subsets; a training set consisting of 

70% of samples and a testing set consisting of the remaining 

30%. The model was calibrated using the training samples and 

the calibrated model was evaluated against test samples. The 

procedure was repeated 201 times to create the bootstrap 

replicate datasets. The selection of this number of repetitions was 

based on (Steyerberg et al., 2001) recommending a repetition of 

200 bootstraps. We added one more repetition in order to get an 

odd number since we wanted the median value (of considered 

accuracy assessment measures) to be produced by one of the 

models, participating in bootstrapping, itself.  In this way, 201 

different values were obtained for the used accuracy assessment 

measures, and their median value was considered as the accuracy 

of results.  

 

3. LAI RETRIEVAL EXPERIMENT 

The suggested BRANN retrieval model was implemented over a 

study area introduced in subsection 3.1. The experimental results 

of the LAI retrieval are presented in subsection 3.2. 

 

3.1 Study Area 

The study area is Amir Kabir Sugarcane Agro-Industrial zone, 

Khuzestan, Iran, located between 48°12'19.52"E and 

48°21'22.87"E latitudes, and 30°58'21.23"N and 31° 5'37.41"N 

longitudes. Total area of this region is 14,000 hectares, of which 

about 10,000 hectares were cultivated in 2020. Area of each 

sugarcane farm is 25 hectares (1000 m ×250 m). All farms are 

irrigated with a low pressure system and they are equipped with 

a subsurface drainage system. The topography of the region is 

almost flat and the predominant soil texture is loamy clay 

classified as heavy soil texture. The area is climatologically semi-

arid with about 266 mm annual precipitation and 2788 mm/yr 

annual evaporation from open pans. Maximum precipitation and 

evapotranspiration occur in January and August, respectively. 
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The high air temperature, and high humidity due to proximity to 

the Persian Gulf have made the region suitable for sugarcane 

cultivation. The location of the study area is depicted in Figure 1. 

 
Figure 1. Study area. 

 

3.2 Experimental Results  

In the pre-processing stage, the number of 8 overlapping bands 

between the VNIR and SWIR ranges (i.e. 930-998 nm), as well 

as 80 bands with low SNR were removed. After interpolating the 

removed bands and smoothing the spectra using spline 

interpolation and smoothing, the smoothed spectra were 

obtained. Figure 2 shows an example of the PRISMA spectra 

before (blue line) and after (bold black line) gap filling and 

smoothing. Finally, the bands of atmospheric water absorption 

including 20 bands in the wavelengths of 1350 to 1510 nm and 

1795 to 2000 nm, and the last portion of the SWIR between the 

wavelengths of 2320 to 2500 were removed and the total number 

of 170 smoothed bands were considered as independent variables 

in the retrieving process. In Figure 2, the removed bands that 

were excluded from retrieving process are displayed as shaded 

grey columns.  

 
Figure 2. Example of the PRISMA spectra before and after the 

spline smoothing. 

 

The results were assessed based on comparing the LAI retrievals 

and their corresponding ground measurements in terms of RMSE 

and MBE measures. The median value of the accuracy 

assessment measures obtained from the 201 bootstrap repetitions 

was considered as the accuracy of the LAI retrievals. Figure. 3 

compares the performance of BRANN predictions applying the 

170 smoothed PRISMA spectra with that obtained using the 20 

first PCs. As seen in Fig. 3, the RMSE value of LAI retrieval was 

0.67 m2/m2 and 0.72 m2/m2 applying the 170 smoothed PRISMA 

spectra and the 20 first PCs, respectively. Though the BRANN 

method could provide reasonable results in retrieving sugarcane 

LAI in both cases, the results of using smoothed spectra were 

slightly superior to the results of using principal components. 

This can be attributed to the fact that thanks to the penalizing 

large weights, BRANN can exploit more input variables without 

overfitting. 

 
Figure 3. RMSE of sugarcane LAI retrievals. 

 

The MBE value of LAI retrieval was 0.003 m2/m2 applying the 

170 smoothed PRISMA spectra and -0.01 m2/m2 applying the 20 

first PCs. The low values of MBE obtained in both cases indicate 

that, generally, the retrievals were on average neither 

underestimated nor overestimated. 

 

Figure 4 presents the total time elapsed to BRANN retrievals of 

LAI by applying the smoothed PRISMA spectra and PCs. As it 

can be seen in this figure, the use of principal components as 

input variables has led to a significant reduction in computational 

time compared to using smoothed spectra. The computational 

times given here is based on using a core i5-4460 3.20 GHz 

personal computer with 8GB installed memory (RAM). 

 

 
Figure 4. Computational time of sugarcane LAI retrievals. 

 

The BRANN model with the smoothed PRISMA spectra as input 

variables was implemented over the acquired PRISMA images to 

map sugarcane LAI. For this purpose, among the 201 models 

participating in the bootstrapping process, the model that 

provided the median value of RMSEs was applied. Figure 5 

displays the resulting LAI maps. As it can be seen in this figure, 

the LAI maps are well matched to the spatial pattern of the 
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sugarcane fields. The LAI variations within the fields due to 

irrigation, fertilization or harvesting are also well reflected in the 

maps. Fallow fields are separated from other fields by low LAI 

values. Outside the Amir Kabir Sugarcane Agro-Industrial zone, 

there are some farms or relatively low-density vegetated areas 

that their spatial pattern can be clearly observed in the maps. For 

bare soil and non-vegetated areas close to zero and sometimes 

negative values have been estimated. In general, it can be said 

that the LAI maps represent the LAI spatial variations well in the 

study area. 

 

Comparing the LAI values estimated on different dates shows the 

increasing trend of the LAI during the sugarcane growing season 

can be clearly observed. The increasing trend of LAI is also 

observed in the case of the farms outside the Amir Kabir 

Sugarcane Agro-Industrial zone. Therefore, it can be stated that 

the LAI maps reasonably represent the LAI temporal variations 

of this variable. 

 

 

 

 

 
 

Figure 5. The maps of sugarcane LAI predicted from the 

PRISMA images. 

 

4. CONCLUSION 

In this paper, retrieval of LAI of sugarcane, as an important 

product in the food industry, from hyperspectral data cube of the 

PRISMA satellite was carried out by applying Artificial Neural 

Networks. ANN is one of the machine learning techniques that is 

widely used in various fields due to their high ability to discover 

non-linear relationships between independent and target 

variables. However, ANNs encounter to overfitting problem 

which reduces their generalizability. In this study, the Bayesian 

regularization method was used, in which Bayes' theorem is 

incorporated to overcome the overfitting problem and increase 

the generalizability of the model. The results indicated that the 

BRANN method could provide reasonable results in retrieving 

sugarcane LAI applying both smoothed PRISMA spectra and 

principal components. While using the smoothed PRISMA 

spectra the retrievals were slightly superior to those obtained by 

using the principal components, however, the use of the principal 

components has led to a significant reduction in computational 

time. This can be of significant interest within operational 

processing chains in which the processing time becomes 

important. 

 

Visual interpretation of the generated LAI maps indicated that the 

LAI predictions using BRANN reasonably represent the spatial 

and temporal variations of sugarcane LAI. 

 

In short, the results of this research show the high capability of 

the BRANN model as well as the hyperspectral images of the 

PRISMA satellite in retrieving sugarcane LAI. 
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