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ABSTRACT: 

Atmospheric water vapor plays a vital role in phenomena related to the global hydrological cycle and climate changes, and its Spatio-

temporal modeling and prediction help to identify and predict climatic phenomena. Accordingly, in this study, hourly precipitable 

water vapor (PWV) data sets for 27 stations receiving Global Navigation Satellite Systems (GNSS) observations in one month and 

machine learning methods were used to estimate PWV. Machine learning methods used in this study 1. Random Forest Regression 

(RFR) method 2. Extreme Gradient Boosting Regression (XGBR). The root mean square error (RMSE) in PWV estimation with the 

RFR method (RFR PWV) is 2.42 mm, and in PWV estimation with the XGBR method (XGBR PWV) is 2.75 mm, and the R-squared 

(R2) of the RFR method is 0.74, and for the XGBR method, these values are equal to 0.71. The obtained results show the efficiency 

and accuracy of both models in estimating PWV, which shows that machine learning methods have been able to recognize the behavior 

and changes of precipitable vapor in a small spatial and temporal interval. Although both ways had high accuracies, the RFR model 

performed slightly better and had better accuracy than the XGBR model. 

 

1. INTRODUCTION 

 

Water vapor is one of the most essential and abundant 

greenhouse gases in the earth's atmosphere and keeps the 

temperature of the earth's surface above the freezing level. 

Atmospheric water vapor plays an influential role in global 

weather, climate change and hydrological cycles. Also, this 

parameter is essential in many atmospheric phenomena such as 

flood, precipitation, etc. (Bevis et al., 1992; Philipona et al., 

2005). This parameter varies significantly in different spatial and 

temporal scales. Accurate measurement of water vapor and 

changes in its distribution has become one of the fundamental 

problems in synoptic, weather forecasting, and climate research. 

Therefore, the knowledge of the rapid changes in water vapor is 

essential for analyzing global and regional water vapor 

distribution (Gendt et al., 2004; Ning et al., 2016; Wong et al., 

2015). Meteorologists have provided many parameters to 

express the water vapor in the atmosphere. Precipitable water 

vapor (PWV) is one of the most common. If all water vapor in a 

vertical column of the atmosphere condenses to a cross-section 

of one cubic meter, the depth of liquid water in this column is 

called precipitable water vapor. 

Since the demand for accurate and real-time weather services has 

increased, traditional methods such as radiosondes, water vapor 

radiometers, and solar photometers cannot continuously estimate 

water vapor with high accuracy and time resolution. Therefore, 

the demand for having meteorological values with high spatial 

and temporal accuracy and resolution using the Global 

Positioning System increased. (Jin and Su, 2020; Kourtidis et al., 

2015). Bevis et al. in 1992, first introduced the theory of 

meteorology with GPS to estimate atmospheric water vapor with 

the help of GPS-based ground receiver observations (Bevis et al., 

1992). This method has been noticed by researchers as a 

powerful tool in PWV estimation due to its usability in different 

weather conditions, continuous observations with very high time 
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resolution, low cost, and PWV estimation with an accuracy of 

about 1-3 mm compared to radiosonde (Bevis, 1994; Foster et 

al., 2000; Niell et al., 2001; Ning et al., 2016; Van Baelen et al., 

2005; Vey et al., 2009; Zhao et al., 2020). After that, Rocken et 

al. 1993; implemented the Bevis theory method using two GPS 

receivers located 50 km apart and compared the obtained results 

with the water vapor radiometer station (WVR); the difference 

in water vapor obtained from these two methods was about 1 

mm. In 1997, Elgered et al. investigated and modeled air mass 

movement using four years of GPS network observations. The 

results show a perfect agreement of PWV obtained from GPS 

with radiosonde and WVR values. From 1997 to 2001, Rocken 

et al., Emardson et al., and Niell et al. conducted many studies in 

the field of PWV estimation using GPS, and the satisfactory 

results of these studies proved the effectiveness of GPS networks 

in meteorological studies (Niell et al., 2001; Rocken et al., 1997). 

Gradinarsky et al. in 2002 compared meteorological satellite, 

radiosonde, and GPS data to observe the seasonal behavior of 

PWV and found significant trends using seven years of data 

(Gradinarsky et al., 2002). Grubbs and Jain, in 2017, used nine 

years of data in Sweden to examine trends in PWV data obtained 

using radiometers, radiosondes, and GPS. Other researchers also 

conducted similar studies (Barman et al., 2017; Duan et al., 1996; 

Gradinarsky et al., 2002; Jin et al., 2009; Vey et al., 2009; 

Wagner et al., 2006). 

The use of machine learning (ML) methods in recent years to 

estimate an environmental or physical parameter based on its 

relationship with other factors has made significant progress. ML 

techniques are good alternatives for analyzing complex 

biological systems (Kasampalis et al., 2018; Seyed Mousavi and 

Akhoondzadeh Hanzaei, 2022). The use of the machine learning 

method is expected to perform well in PWV estimation, but 

different techniques and different modeling scales can show 

other performances. In this article, two machine learning 

methods, Random Forest Regression (RFR) and Extreme 
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Gradient Boosting Regression (XGBR), are used to estimate 

PWV in the American region. Random forest is an ensemble 

learning method can be used for regression or classification. The 

XGBR model was developed by Chen and Guestrin and is an 

advanced and popular algorithm used in ML.  

This study is organized as follows: In Section 2, the study area 

and the data used are presented. How to estimate PWV from 

GNSS data is also studied in this section. In section 3, RFR and 

XGBR methods are explained, and also, these methods are 

applied to GNSS data. Statistical analyzes and comparisons of 

models are presented in Section 4. Finally, the conclusion is 

placed in section 5. 

 

2. STUDY AREA AND DATA 

 

2.1 Study Area 

 

The Plate Boundary Observatory (PBO) network stations were 

launched in 2008 for 3D strain monitoring in North America and 

Alaska and have since been developed. Some stations in this 

network have a high rate of observations (1 and 2 seconds). The 

stations of this network have been used in this study. The studied 

area is located between the longitudes of -118.6 to -117.6 degrees 

and the latitudes from 34.4 to 35.4 degrees. Figure 1 shows the 

distribution of stations used in this article.

 

 
Figure 1. Study area and distribution of GNSS stations 

 

2.2 Data 

 

2.2.1   ECMWF ERA5 data 

 

The fifth generation of Atmospheric Reanalysis (ERA 5) data 

from the European Center for Medium-Range Weather Forecasts 

(ECMWF) provides data from 1979 to the present. This database 

provides parameters such as temperature (T), pressure (P), and 

other meteorological variables at grid points with horizontal 

resolution ( 0.25 0.25 for ERA 5) globally. Due to high spatial 

and temporal resolution and global coverage, reanalysis products 

produced by ECMWF have been used in various fields, such as 

GNSS meteorology. However, the time resolution of the analysis 

data is different. ERA 5 can provide meteorological data and 

parameters with a time resolution of one hour. Therefore, ERA 5 

has excellent potential in retrieving PWV with high temporal 

resolution. In this study, surface pressure and temperature data 

from ERA 5 data series are used.

 

 

2.2.2   GNSS PWV data 

 

When GNSS signals pass through the troposphere to reach 

ground receivers, the signals are delayed. This delay can be 

converted from oblique mode to zenithal mode using mapping 

functions; The delay in the zenith direction is called the zenith 

tropospheric delay (ZTD). ZTD can be divided into two 

components, tropospheric dry delay (ZHD) and tropospheric wet 

delay (ZWD). Tropospheric dry delay is a function of pressure 

and temperature on the earth's surface, which can be calculated 

using meteorological parameters measured on the earth's surface 

with an accuracy of a few millimeter (Bevis et al., 1992). In this 

study, ZHD is calculated using Eq. (1) (Saastamoinen 1973). 

0.002277

(1 0.00266cos(2 ) 0.00000028 )

s
P

ZHD
H

=

− −

             (1)  
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Where, 
s

P  the surface pressure is in millimeters,   and H the 

latitude and orthometric height are in meters, respectively. Due 

to the extensive time changes of water vapor, it is impossible to 

model the total delay component with high accuracy. 

The delay of the entire troposphere in the zenith direction can be 

used using accurate GNSS data processing software such as 

Bernese (Dach et al., 2007). By deducting the tropospheric dry 

delay from the total tropospheric delay according to Eq (2), we 

get the tropospheric wet delay in the zenith direction.  

 

ZTD ZHD ZWD= +                                                               (2) 

 

Also, the relationship between ZWD and PWV parameters is 

defined as Eq. (3).  

 

( ).mPWV T ZWD=                                                        (3) 

 

 In Eq. (3),   it is the conversion factor, and it is a unitless 

quantity that is calculated using Eq. (4).  

 
6 ' 1

3 2[10 ( / ) ]m v wk T k R − − = +                                      (4) 

 

 Where, 
v

R  the gas-specific constant for water vapor is equal to 

1 1

461.45 JKg K
− −

, 
'

2
k  and 

3
k  are the experimental constants 

and are equal to 
1

17 Kmbar
−

 and 
2 1

3.76 K mbar
−

  respectively. 

Also, 
m

T  it is the weighted average of the atmospheric 

temperature, and it is estimated using the temperature and water 

vapor pressure of the region (Davis and Herrinch, 1985).  

 

2

( )

( )
m

e
dz

TT
e

dz
T

=



                                                                     (5) 

 

Where, e  the water vapor pressure is in millibars, and T the 

temperature is in degrees Kelvin. Experimentally, the value of 

the conversion factor   is equal to 0.15  The actual value of this 

quantity varies between 0.12  and 0.18  depending on the 

latitude, season and climate of the studied area. In this article, the 

m
T  experimental model presented for the United States, defined 

as follows, is used.  

 

070.2 0.72mT T= +                                                                      (6) 

 

In Eq. (6), the surface temperature (
0

T ) is Kelvin.  

 

3. METHODS 

 

As you can see in Figure 2, we first estimated the PWV for the 

studied period using the GNSS observations and then used the 

PWV estimated from the GNSS observations and the 

meteorological parameters that we extracted from the ERA 5 

data. We trained machine learning models. In this study, we used 

80% of data to train RFR and XGBR methods and 20% of 

randomly selected data to test and evaluate the obtained model 

for PWV estimation. By randomly selecting 20% of the data to 

test the model, we created gaps in the time series, and using the 

used machine learning models; we estimated the value of PWV 

in the times when the hole was created. Machine learning 

methods are explained below.

 

Figure 2. Diagram of different steps of training models. 
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3.1 Random Forest Regression 

 

RFR is a non-parametric supervised machine learning approach 

tree-based algorithm where many decision trees are trained with 

random samples from the training (Shah, Angel et al. 2019). 

For regression problems, each tree can consider a large set of 

regression trees for decision, and Each tree is considered as a 

vote (Zarei et al., 2021, (Wang, Zhou et al. 2016). 

 

3.2 XGBoost Regression 

 

Extreme Gradient Boosting (XGBoost) is a machine learning 

regression developed by Tianqi Chen based on a gradient 

boosting algorithm. it uses residuals to improve the model, mean 

XGBoost integrates weak regression into strong regression, and 

iteratively produces new trees to fit the residuals of the previous 

tree (Jing, Zou et al. 2022). 

in addition, in comparison to the prior algorithm first, it can do 

parallel computing, Second, by using a regularized model it has 

better management against overfitting (Zamani Joharestani, Cao 

et al. 2019). 

The XGB algorithm can do regression and classification duties 

in many applications, including remote sensing. The boosting 

popularity of this algorithm is due to high accuracy and stability 

relative to other algorithms (Arjasakusuma, Swahyu Kusuma et 

al. 2020). 

4. RESULTS 

 

The evaluation of RFR and XGBR models has been done using 

the observations of 27 GNSS stations in southwest America. 

These observations are for days 86 to 117 in 2021. The results of 

three stations have been randomly selected to analyze the 

estimation of precipitable water vapor by RFR and XGBR 

models. Table 1 provides information such as R2 and RMSE for 

these stations. 

 

4.1 Comparison of PWV obtained from GNSS and RFR 

model 

 

After the training stage, it is possible to estimate the amounts of 

water vapor that can be rained for 86 to 117 days in each station. 

On the other hand, GNSS PWV values have been estimated for 

one hour in the studied period in all stations, in the following, the 

time series of GNSS PWV values of different stations have been 

compared with the corresponding values obtained from the RFR 

model. Figure 3 shows the time series of PWV results obtained 

from GNSS and from the RFR model for selected stations. 

The R2 values obtained for the selected stations range from 0.71 

to 0.75, and the RMSE ranges from 1.98 to 2.95 mm. As seen in 

Figure 4, in the time gaps created, the PWV estimate by the RFR 

model was close to the GNSS PWV values and had a high R2 .

 

   

Figure 3.  Time series of GNSS PWV and RFR PWV from 27 March 2021 to 27 April 2021 at PBPP, SKYP, and THCP stations 

 
(c) 

 
(b) 

 
(a) 

Figure 4. RMSE and R2 of the PWV differences for three GNSS stations in the RFR model.
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4.2 Comparison of PWV obtained from GNSS and XGBR 

model 

Figure 5 shows the time series of precipitable water vapor 

estimated using the XGBR model in the desired period, as well 

as the time series of PWV values obtained from GNSS. As 

shown in Figure 5, the estimated values for PWV by the XGBR 

model are very close to the actual values. According to Table 1, 

the R2 for the XGBR model includes values ranging from 0.70 

to 0.73, and its RMSE has values in the range of 2.23 to 3.49. In 

Figure 6, the R2 between the values estimated by the XGBR 

model and the actual values obtained from GNSS can be seen. 

 

   
Figure 5.  Time series of GNSS PWV and XGBR PWV from 27 March 2021 to 27 April 2021 at PBPP, SKYP, and THCP stations. 

 

 
(c) 

 
(b) 

 
(a) 

Figure 6. RMSE and R2 of the PWV differences for three GNSS stations in the XGBR model. 

 

  

 

Table 1. Statistics of PWV estimates for different models and stations. 

 

  

St Models Parameters Train Test 

 PBPP 

RFR 
RMSE (mm) 1.4357 2.3215 

R2 0.8349 0.7593 

XGBR 
RMSE (mm) 1.211 2.5479 

R2 0.8638 0.7270 

SYKB 

RFR 
RMSE (mm) 2.1305 2.9470 

R2 0.7951 0.7193 

XGBR 
RMSE (mm) 1.7632 3.4812 

R2 0.8305 0.7031 

THCP 

RFR 
RMSE (mm) 1.2274 1.9890 

R2 0.8117 0.7358 

XGBR 
RMSE (mm) 1.1578 2.2322 

R2 0.8277 0.7104 
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5. CONCLUSION 

 

In this study, we used machine learning methods to estimate 

PWV over a 1 month in the United States based on Random 

Forest Regression (RFR) and Extreme Gradient Boosting 

Regression (XGBR). According to the results, the RMSE of the 

XGBR method varies from 2.23 to 3.49 mm, and the RMSE of 

the RFR method varies from 1.98 to 2.95 mm. Also, the R2 for 

the XGBR method is between 0.70 and 0.73, while the R2 for the 

RFR method is between 0.71 and 0.75, these results show the 

accurate estimation and efficiency of the mentioned methods in 

water vapor estimation. On the other hand. These two methods 

can be compared with each other, and according to the results 

obtained for them, it is easy to understand that the RFR method 

offers higher efficiency and accuracy  

in interpolation than the XGBR method. However, this study 

only focuses on a small area and global data should be tested in 

the future. Furthermore, this study only examines the 

performance of machine learning methods and does not include 

the evaluation of deep learning techniques, which is left for 

future work. 
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