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ABSTRACT: 

Soil moisture content plays a pivotal role in biomass development of vegetation coverage at various growth stages. Moisture content 

of the soil is considered as a crucial parameter for agricultural studies which directly leads to higher fertility rate. Remote sensing 

techniques, specifically Synthetic Aperture Radar (SAR) sensors, provides suitable opportunity for continuous soil moisture 

monitoring at various spatial and temporal resolutions. In this study, field campaigns conducted to measure soil surface parameters, 

including soil moisture and roughness, synchronized with Sentinel-1 pass over an agricultural region near Mohammadshahr, Iran. 

Fieldwork for soil moisture sampling have done during plants’ (canola and winter wheat) growth stages. The Gradient Boosted 

Regression Tree (GBRT), eXtreme Gradient Boosted (XGB), and Random Forest (RF) machine learning algorithms were employed 

to model the relationship between the ground measured soil moisture and polarimetric SAR derived features from Sentinel-1 

imageries. The results showed promising results obtained for soil moisture estimation using the dual-polarized SAR dataset over 

crop-covered agricultural fields with R2 = 0.95 and RMSE = 0.023 m3 m−3 using the GBRT regression model.  

* Corresponding author 

1. INTRODUCTION

The moisture content of the soil plays a crucial role in a broad 

contexts, such as irrigation management, crop growth study, and 

climate change analysis (Thi et al. 2019; Ranjbar, Zarei, et al. 

2021) . In the last few decades, the agricultural industry has 

widely used new technologies, including remote sensing tools 

and techniques, to boost agricultural productivity because of 

today's growing demand (Akhavan, Hasanlou, Hosseini, and 

Becker-Reshef 2021; Reisi-Gahrouei et al. 2019). Among 

remote sensing sensors, active microwave sensors, specifically 

Synthetic Aperture Radar (SAR) are greatly affected by the 

characteristics of the target, including the surface roughness and 

vegetation coverage, making the SAR-based soil moisture 

retrieval a challenging process (Hajj et al. 2017; Paloscia et al. 

2013; Ranjbar, Akhoondzadeh, et al. 2021). Soil moisture 

estimation over vegetated agricultural regions performed in X-, 

C-, and L-bands using airborne and spaceborne fully 

polarimetric and dual-polarized remotely sensed datasets, 

including the Airborne Synthetic Aperture Radar (AIRSAR), 

Uninhabited Aerial Vehicle Synthetic Aperture Radar 

(UAVSAR), Advanced land observing satellite/ phased array L-

band SAR (ALOS/PALSAR), RADARSAT, and Sentinel-1. 

Recently, Copernicus Sentinel-1 dataset has sparked interest in 

using free C-band SAR datasets for soil moisture studies with 

an acceptable spatial and temporal resolution. 

Several backscattering models, including physical, empirical, 

and semi-empirical, have developed and widely employed to 

reduce the associated uncertainties by taking some factors into 

consideration, and also studying their effects on backscattered 

signals (Baghdadi et al. 2016; Ma, Li, and McCabe 2020; Oh 

2004; Dubois and Engman 1995). To overcome limitations, 

some researchers developed theoretical, empirical, and semi-

empirical models, including Integral Equation Model (IEM), 

Oh, and Dubois models for soil moisture retrieval (Dubois and 

Engman 1995; Ezzahar et al. 2020; Fung, Li, and Chen 1992; 

Oh 2004; Sekertekin, Marangoz, and Abdikan 2020). Despite 

these models’ good performances over bare and sparsely 

vegetated regions, they demonstrated limitations in well-

developed vegetated areas; hence, for soil moisture retrieval 

over vegetated areas, Attema and Ulaby proposed a model, 

known as Water Cloud Model (WCM), that is capable of 

modelling backscattered signals from vegetation’s canopy 

coverage (Attema and Ulaby 2016). Models as mentioned 

earlier have selected and tested in several studies based on their 

research objectives (Zarei, Hasanlou, and Mahdianpari 2021). 

Furthermore, over the last few years, several regression-based 

models, especially machine learning-based algorithms, have 

been widely used for remote sensing-based environmental 

studies (M. Ansari and Akhoondzadeh 2019; Mohsen Ansari 

and Akhoondzadeh 2020; Dev et al. 2016). 

Field measurements for gathering soil samples are not feasible 

over large scales due to some factors, like the quick variability 

of moisture content over time and space, and the time-

consuming process involved. Also, soil moisture retrieval using 

remote sensing technologies is known as a demanding task in 

the absence of the adequate number of soil moisture samples; 

Accordingly, the use of tools and skills for soil parameter 

(moisture and roughness) sampling provides a suitable context 

for more accurate surface soil moisture monitoring using remote 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-37-2023 | © Author(s) 2023. CC BY 4.0 License. 37



 

sensing science (El Hajj, Baghdadi, and Zribi 2019). Numerous 

field campaigns conducted to assess the potential of remote 

sensing technologies for continuous soil water content 

monitoring (Jackson et al. 2005; Mcnairn et al. 2017; McNairn 

et al. 2015). Among soil parameters, moisture content and 

roughness parameters sampling are weighted among the 

substantial variables for agricultural-related studies (Akhavan, 

Hasanlou, Hosseini, and McNairn 2021).  

In-situ data collection procedure, applied regression methods, 

and type of the study region all together affect the final result. 

In this study, ground soil parameter measurements conducted 

over a permanent agricultural field during plants’ growth stages, 

from September 2020 to February 2021 (see Figure 1). The 

main purpose of this study is to evaluate the potential of 

boosting and bagging tree-based GBRT, XGB, and RF machine 

learning algorithms for soil moisture monitoring over the 

vegetated region. For this end, SLC and GRD formats of the 

Sentinel-1 dataset used to extract dual-polarized SAR features 

(Table 1). 

 

GRD feature SLC feature 

GLCM Contrast Alpha 

GLCM Correlation Entropy 

GLCM Dissimilarity VH 

GLCM Entropy VV 

GLCM Homogeneity  

GLCM Mean  

GLCM Variance  

Table 1. Sentinel-1 GRD- and SLC-derived features  

 

2. STUDY AREA AND DATASET 

2.1 Study Area 

The study region located in the Mohammadshahr (central 

district of Karaj country), Alborz province, Iran (Figure 1). The 

agricultural research farm of the University of Tehran, with an 

area of approximately 206 and an altitude of 1160 meters 

above sea level, is located centrally in latitude = 35°48′25″ and 

longitude= 50°57′11″. 

 

 

  
 

Figure 1. Location of sample points and the study region over 

canola and winter wheat fields 

 

2.2 Data Collection 

2.2.1 In-situ data: Fieldworks were conducted over canola 

and winter wheat fields during plants’ growth stages using a 

TDR-350 probe and a man-made surface roughness 

profilometer to gather useful soil information. Figure 2 shows 

the landscape of the study area and the TDR-350 probe. During 

field data collection, soil moisture samples were collected three 

times in each field during crop's growth stages over pre-

designed control points that were designed in Google Earth Pro. 

For accurate soil moisture retrieval, sampling points located 

within 30 meters distance. Each sample location was replicated 

four times, and the average of those values were considered as 

the final values. Based on the sampling strategy, the total 

number of 305 and 195 samples measured over winter wheat 

and canola fields, respectively. The collected dataset was 

divided into 75% training and 25% test categories for the 

training and evaluation phases. Figure 3 demonstrates moisture 

content ranges of the soil during ground measurements. To 

ensure the accuracy of TDR-350, gravimetric soil sampling was 

also conducted (Figure 4). In this procedure, the specific 

amount of the moist samples was weighted separately. The 

samples were then dried in an oven at 105°C for 24 hours. In 

the next step, dried samples were weighed, and moisture percent 

was calculated using (1). The results of gravimetric-measured 

soil moisture values are demonstrated in Table 2. 
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   (1) 

 

where   = weight of moisture content 

 = weight of moist soil 

 = weight of the dried soil 

 

 
Figure 2. TDR-350 soil moisture probe and agricultural (canola 

(left) and winter wheat (right)) fields 

 

 
Figure 3. Ranges of the soil moisture content collected during 

In-situ measurement 

 

 
Figure 4. Gravimetric soil water content sampling 

 

Station No. Gravimetric In-situ 

409 10.3 10.43 

501 1.6 1.5 

553 1.9 2.2 

Table 2. Gravimetric vs. TDR-measured soil water content 

 

A portable profilometer with a length of 150 centimeters used to 

measure surface roughness parameters. The profilometer was 

aligned in two directions, and photos were taken with a digital 

camera to capture the roughness status. Then, two 

measurements were taken at two different locations in each field 

at the beginning and end of the season. Finally, manual 

alignment was used to ensure the vertical status of the 

roughness profilometer, and also photos were captured and 

post-processed using the Webplotdigitizer software and Python 

Programming Language (Figure 5). 

 

 

 
Figure 5. Surface roughness profilometer 

 

2.2.2 Sentinel-1: The European Space Agency Copernicus 

program provides Sentinel-1 SAR imageries with six days 

revisit cycle in dual- and single polarization mode (Bahrami et 

al. 2022). In the present study, the backscatter coefficients, the 

Entropy and Alpha Dual-Polarized information were extracted 

from the Side Looking Complex (SLC) format of the Sentinel-1 

C-band dataset. In order to extract information, the  matrix 

was extracted after implementing radiometric calibration and 

TopSAR-Deburst steps. Finally, the backscatter coefficients 

beside Entropy-Alpha parameters were extracted after multi-

looking and implementing a polarimetric speckle filter. Besides, 

the Ground Range Detected (GRD) format of the Sentinel-1 

dataset have been used for Gray Level Co-occurrence Matrix 

(GLCM) feature extraction. 

 

3. METHODS 

In the present investigation, various tree-based models as the 

ensemble learning machine learning algorithms, including 

GBRT, XGB, and RF, were deployed. To evaluate the 

performance of these algorithms, models were trained and 

tested using a split of 75/25 ratio. The tree-based algorithms, 

used in this study, are described briefly in the following 

subsections. 

 

3.1 Gradient Boosted Regression Trees 

Gradient Boosted Regression Trees (GBRT) takes advantage of 

boosting as a statistical approach to aggregate weak learners and 

convert them to a single strong learner model. This model 
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minimizes the residuals, diminishes the loss function, and 

optimizes the prediction by generating new decision trees and 

adding them in sequential steps (Bahrami et al. 2021). 

Furthermore, the GBRT algorithm is sensitive to its parameters; 

hence, appropriate parameter selection, including the number of 

estimators, maximum depth, learning rate, loss function, and so 

forth assists in reaching the best algorithm implementation and 

final result. 

 

3.2 eXtreme Gradient Boosted 

The eXtreme Gradient Boosted algorithm uses an additive 

training process to develop strong learners using the additive 

learning procedure. The two-phases additive training process 

compensates for the drawbacks of other methods by fitting the 

learning phase to all input data, followed by an adjustment 

phase for residuals until reaching the stopping criterion (Pham 

et al. 2020). This algorithm tries to control the fitting problem 

by avoiding biases, under- and over-fitting problems by 

considering several hyperparameters identical to GBRT’s 

hyperparameters, as well as gamma parameter. 

    

3.3 Random Forest 

Random Forest (RF), as a robust ensemble learning model, 

combines several decision trees in a parallel structure in order to 

determine the optimum nonlinear relationship between target 

and input features. This model employs the bagging procedure 

and uses a bootstrap sampling strategy for random subset input 

variable selection of each decision tree (Akhavan, Hasanlou, 

Hosseini, and McNairn 2021; Mao et al. 2019). This approach 

assists in training several models independently, which reduces 

the variance and prevents the overfitting phenomenon. The final 

outcome shows the average performance of all decision trees 

that created the structure of this ensemble learning algorithm. 

 

4. RESULTS AND DISCUSSION 

This section demonstrates the results of GBRT, XGB, and RF 

algorithm implementation using SAR-derived features extracted 

from SLC and GRD formats of the Sentinel-1 dataset. 

Corresponding to each In-situ sampling point, the features listed 

in Table 2 extracted to train and evaluate the performance of 

GBRT, XGB, and RF regression models over test dataset. Table 

3, and Figure 6 summarizes and demonstrates the performance 

of these algorithms using the RMSE and R-squared parameters. 

Additionally, soil moisture maps produced by these regression 

models are demonstrated in Figure 7. These maps produced 

based on the combination of soil moisture datasets over canola 

and winter wheat fields 

 

Algorithm Canola Winter Wheat 

GBRT R2 = 0.95 

RMSE = 0.023 

R2 = 0.64 

RMSE = 0.042 

XGB R2 = 0.93 

RMSE = 0.028 

R2 = 0.60 

RMSE = 0.044 

RF R2 = 0.95 

RMSE = 0.025 

R2 = 0.59 

RMSE = 0.047 

Table 3. Results of soil moisture retrieval over canola and 

winter wheat agricultural region using GBRT, XGB, and RF 

algorithms 

 
Figure 6. Results obtained using (a) GBRT, (b) XGB, and (c) 

RF regression models over canola (left column) and winter 

wheat (right column) fields 

 

Key Words As illustrated in Table 3, the results confirm the 

relatively close performance of GBRT, XGB, and RF for soil 

moisture retrieval over canola and winter wheat fields. All 

algorithms performed better for soil moisture retrieval over 

canola fields. The best result was obtained using the GBRT 

model with R2 = 0.95 and the least error content of RMSE = 

0.023 m3 m−3.  The reason behind the better performance of 

these models over canola field and also the relatively poor 

performance of algorithms over winter wheat fields compared 

with canola field would probably be due to winter wheat’s 

biomass development, and also plant’s structure that affect the 

backscattered SAR signal. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-37-2023 | © Author(s) 2023. CC BY 4.0 License.

 
40



 

 
Figure 7. Predicted soil moisture maps using tree-based (a) 

GBRT, (b) XGB, and (c) RF algorithms.  

 

5. CONCLUSION 

The principal purpose of the present study was authentic soil 

moisture investigation over an agricultural region by conducting 

fieldwork (soil parameter (moisture and roughness) sampling) 

coincident with ESA Sentinel-1 satellite pass. For this purpose, 

several SAR features were extracted from the SLC and GRD 

formats of Sentinel-1 imageries besides field collected samples.  

Then, tree-based machine learning algorithms employed for 

accurate soil moisture retrieval. In this study, several features 

were considered for soil moisture monitoring. Moreover, 

machine learning algorithms obtained relatively identical 

accuracies and the most accurate result with the lowest RMSE 

value was obtained by the GBRT model over the canola field 

(R2 = 0.95 and RMSE = 0.023 m3 m−3). This study showed that 

dual-polarized SAR, as well as machine learning approaches, 

were effective for soil moisture estimation over winter wheat 

and canola fields. However, to have a solid and comprehensive 

conclusion, more tests and experiments over other areas are 

required. It is recommended to use SAR-derived vegetation 

features like Radar Vegetation Index (RVI) besides features 

extracted from optical sensors like Sentinel-2 to evaluate 

multispectral-derived indexes for soil moisture retrieval. 
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