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ABSTRACT: 

Around the world, the occurrence of landslides has become one of the greatest threats to human life, property, infrastructure, and 

natural environments. Despite extensive research and discussions on the spatiotemporal dependence of landslide displacements, there 

is still a lack of understanding concerning the factors that appear to control displacement distribution in landslides because of their 

significant variations. This paper implements a Graph Convolutional Network (GCN) to predict displacement following the Moio 
della Civitella landslide in southern Italy and identify factors that may affect the distribution of movement following the landslide. 

An interferometric technique, known as permanent scatter interferometry (PSI), has been developed based on Synthetic Aperture 

Radar (SAR) satellite imagery to derive permanent scatter points that can be used to represent the deformation of landslides. This 

study utilized the GCN regression model applied to PSs points and data reflecting geological and geomorphological factors to extract 
the interdependency between paired data points, resulting in an adjacency matrix of the interval [0, 0,8). The proposed model 

outperforms conventional machine learning and deep learning algorithms such as linear regression (LR), K-nearest neighbors 

(KNN), Support vector regression (SVR), Decision tree, lasso, and artificial neural network (ANN). The absolute error between the 

actual and predicted deformation is used to evaluate the proposed model, which is less than 2 millimeters for most test set points. 

 

 

 
   Corresponding author 

1. INTRODUCTION 

There are many geological hazards in the world, one of the most 

common, including landslides. Frequently, landslides result in 

the destruction of the structure and infrastructure of villages and 
towns, creating a danger to residents as well as causing 

significant property damage(Miele, 2021),(Del Soldato, 2019). 

A great deal of attention has been paid to monitoring and 

predicting disasters by industry and academic 
institutions(Bozzano, 2011),(Gao, 2022). The city of Moio della 

Civitella (Salerno Province) is among the sites with the greatest 

concentration of landslides in the world, which damaged its 

urban settlement(Infante, 2019),(Di Martire, 2015). A number 
of factors contribute to the difficulty of predicting landslides 

and mapping them under settlement cover, including slow 

movement, human intervention, and not considering the 

interdependence between geological and geomorphological 
features when entering as features to Machine Learning and 

Deep Learning Algorithms (MLA & DLA)(Di Luzio, 2022). By 

analyzing and predicting geological hazards, these severe 

effects can be mitigated. This is the most valuable dataset that 
can be used to evaluate and predict the progression of future 

landslides based on the displacement throughout time(Jiang, 

2021). Urban landslides can be detected and monitored using 

satellite remote sensing data, which has overcome many of the 

challenges associated with it. In recent years synthetic aperture 

radar imaging has been widely applied in this context to provide 
multi-temporal representations of maps of deformation rates 

which can be used for identifying landslides under settlement 

cover(Macchiarulo, 2021),(Costantini, 2017). To accomplish 

this, SAR satellite data (X-band imagery acquired in the 

COSMO-SkyMed mission) was analyzed by the application of 

the Differential Interferometry SAR (DInSAR) technique. 

DInSAR has been used to determine targets representing 

landslide deformation over an urban settlement in the case 
study. Various types of Machine Learning Algorithms (MLA), 

such as Logistic Regression, Decision Trees, and Support 

Vector Machines (SVMs), have been implemented for precise 

and timely landslide prediction(Hong, 2016),(Liu, 2021). Also, 
several Deep Learning-based models for predicting landslides, 

such as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), have been implemented to determine 

the likelihood of landslides occurring at a given location 
(Hajimoradlou, 2019),(Jiang and Chen, 2016). It has been 

demonstrated that Graph Neural Networks (GNNs) can be 

employed for various applications in this field (Hua, 2021). 
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GNNs can learn spatial interdependency for the nodes of a 

graph, leading scientists to real predicting landslides. As a 

mention to the recent publications which discuss the 
implementation of the GNNs in different ways, the following 

can be noted in both newly published articles. According to 

(Kuang, 2022), one method for identifying the neighbors of a 

point is to use K-Nearest Neighbours (KNNs) based upon a set 
of coordinates. With the help of this algorithm, it is going to be 

possible to detect the actual neighbors of each point as well as a 

value that represents how much dependency exists between 

each pair of points. As part of another study,(Jiang, 2022) 
applied the current feature approach to determine the adjacency 

between paired data points in a particular area and implemented 

a GCN-GRU for seven sites in the area. A GCN was used in 

this study to detect the interdependency between paired points 
by correlation distance in the timeframe of SAR data and then 

predict landslide displacements for Permanent Scatter points 

(PSs) in the future. 
2. CASE STUDY 

In the southern Italian province of Salerno, the Moio della 

Civitella landslides are located in the Cilento, and Alburni 

National Parks, which are European and Global Geoparks. It 

affects the Crete Nere of the Saraceno Formation, which largely 
crops out in the region. The main constituents of this formation 

are agrellites with carbonate intercalations and siliciclastic 

arenites weathered at the outcrop. The geological characteristics 

of this area are similar to those of the southern Italian 
Apennines, which are highly tectonized (diffuse, pervasive 

discontinuities, intense fractures, extremely variable bedding, 

etc.). The Quaternary sequences are made up of heterogeneous 

debris encased in silty-clayey matrixes(Di Martire, 2015). 
Several factors contribute to instability at Moio della Civitella, 

including differences in lithology and hydrogeological behavior 

of rocks forming a slope. This area is located between 600 and 

200 m a.s.l. and is characterized by a hilly terrain with low 
gradient slopes, heavily influenced by erosion and gravitational 

forces. 

As can be seen from the landslide map, the most significant 

slope movements directly impact populated areas, lifelines, and 
the main routes of communication in the region. In accordance 

with (Cruden, 1993), the general typologies are flows and 

rotational and translational slides (Fig.1). As a result of these 

slope movements, it was believed that the leading cause of the 
slope movements would be the result of ancient phenomena that 

affected large portions of the slopes, if not the entire extent of 

the slopes. In the same way, landslides that directly affect urban 

areas are also negatively impacted by this phenomenon.  

 

 

Figure 1. Landslide inventory map (a) (Hydro-geomorphological Setting Plan, South Campania River Basin Authority, 2015) and 

some examples of damage recorded to infrastructures within the test area (b, c). 

 

As a result of the presence of such landslides, the area of Moio 
della Civitella has been extensively investigated using 

topographic measurements, inclinometers, and GPS 

networks(Matano, 2019). 

 

3. DATA 

3.1 SAR data 

Recent advances in satellite remote sensing have resulted in 

significant progress in identifying and monitoring urban 
landslides. A wide range of methods based upon synthetic 

aperture radar imagery has been applied in this context, 

resulting in multi-temporal deformation rate distribution maps 

that help identify landslides under settlement cover and for 
retrospective and operational monitoring (Herrera, 2011). An 

analysis of the COSMO-SkyMed missions' X-band imagery was 

conducted in this study. These satellite products are particularly 

suitable for determining the location of landslides in urban areas 
because they possess a high spatial resolution and a short 

revisiting period. 

DInSAR data obtained from (Infante et al., 2019) were used in 

this study. In detail, COSMO-SkyMed image stacks were 
analyzed, 66 descending images for the 2012-2016 time 

span(Infante, 2019) (Table 1), proper to implement the GCN for 

obtaining the best interval for correlation distance and valid at 

implementing machine learning regression algorithms such as 
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LR, KNN, SVR, Decision tree, lasso, and ANN for prediction 

of landslides deformation in this case study.  

 

 

Mission Acquisition 

Time 

Product NO. Images Pass Polarization 

 

COSMO-SkyMed 

 

March 15, 2012, 

June 18, 2016 

Single look complex 

(SLC) 

66 Descending VV 

Table 1. Details of the COSMO-SkyMed acquisitions. 

 

3.2 Geological data 

Globally, landslides are one of the most common natural 

disasters. In this case study, morphological and geological 
factors such as elevation (A Digital Elevation Model (DEM) of 

the Shuttle Radar Topography Mission (SRTM with 30 m 

resolution)), slope, Normalized Difference Vegetation Index 

(NDWI) (Ammirati, 2022), Topographic Wetness Index 
(TWI)(Novellino, 2021), Stream Power Index (SPI)(Di Napoli, 

2021), geology, land use, flow direction(Di Napoli, 2020a), 

total, plan, and profile curvature(Di Napoli, 2021), are 

considered the leading causes of landslides. The predisposing 
factors mentioned above have been classified (Figure 2) and 

used to learn and train the GCN models and create relationships 

and connections between them and predict landslide 

deformation. 
 

 

 

Figure 2. Classification of Features to use for GCN and other machine learning algorithms (X Axes: Number of clustering) 

 

 

4. METHODOLOGY 

4.1 DInSAR 

As a result of the DInSAR technique(Gabriel, 1989), ground 

motions associated with subsidence, landslides, earthquakes, 
and volcanic phenomena have been measured and monitored(Di 

Martire, 2014). However, the DInSAR method is subject to 

spatial and temporal decorrelations and delays caused by 

atmospheric effects and orbital and topographic 
errors(Colesanti, 2003). Since the early 2000s, several 

algorithms have been developed to track ground deformations 

with high accuracy and evaluate historical deformation series. 

In the long run, this development has allowed us to overcome 
some of the inherent limitations of the algorithms (temporal and 

spatial decorrelation, atmospheric disturbances, as mentioned 

above). As a result of the DInSAR technique, the precision of 

the results has improved to about 1–2 mm/year and 5–10 
mm/year for rate maps and time series of deformations, 

respectively (Tizzani, 2007),(Trasatti, 2008). 

 

4.2 Graph Convolutional Networks (GCNs) 

The purpose of this study was to compare different conventional 

machine learning and deep learning algorithms with a particular 

type of graph neural network (GNN) called graph convolutional 
networks (GCN) to find out whether there are any 

interdependencies between paired data points when the velocity 

can be predicted based on geological characteristics(Zhang, 

2019). 
Working based on a filtering system passing through the nodes 

of a graph, GCNs extract new features on a graph ( , )G V E=  

that has a N×D feature space
i

 for every node i, where N is the 

number of nodes and D is the number of features; moreover, An 

N×N zero-one adjacency matrix is used to represent the 

interdependency between each pair of nodes as follows: 
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Each element of A is either 1 or 0. The value 
ij

A is 1 if there is 

a path from i to j, and it is 0 otherwise. The hidden layer of 

GCN at a time ( )1l +  can be represented as follows: 

 
( ) ( )1

( , )
l l

H f H A
+
=

,                         (1) 
 

Where 
( )0

H X= the input nodes and L is the number of layers. 

The forward propagation rule can be represented as follows: 
 

( ) ( ) ( )( )( , )
l l l

f H A A H W=
  ,                  (2) 

 

where 
( )l

W is the trainable weight matrix for the l-th layer 

and ( ). is an activation function such as the Relu. Finally, the 

normalized version of forward propagation equation can be 
designed as follows: 
 

( ) ( ) ( )
1 1

2 2ˆˆ ˆ( , )
l l l

f H A D A D H W
− − 

=  
 

,         (3) 

 

where the adjusted version of the adjacency matrix is 

normalized as a positive definite matrix 

1 1

2 2ˆD A D
− −

, where 

Â A I= + . The reason for adding an identity matrix to A is 

that all the feature vectors of the target node's neighbors are 

summed up except the node itself, so an entity matrix is added 
to aggregate information from the target node as well. 

 

The new embedding node features can be fed into a loss 
function to implement the forward propagation and a 

backpropagation strategy can be applied to train the weight 

matrix 
( )l

W using an optimized version of gradient descent. In 

this study, GCNs are applied to create a regression model to 

predict the velocity based on the geological features consisting 

of elevation, slope, general curvature, NDWI, TWI, SPI, 

geologic map, land use, flow direction, plan curvature, and 

profile curvature. 
The interdependency between each pair of points was evaluated 

by a zero-one adjacency matrix, and a new hyperparameter was 
set to find the best adjacency matrix that improves the accuracy  
of model predictions. 

First, the interdependency between each paired data point was 

computed based on correlation distance which obtains a value in 
the interval [0, 2], then a new hyperparameter is defined as the 

upper bound of the interval. Therefore, the proposed 

hyperparameter was added to the hyperparameter tuning 

process, improving the model's accuracy. The following  
formula can obtain the correlation distance between a pair of 

points:   

( )( )

( ) ( )

1

2 2

( , ) 1

n

i i

i

i i

x x y y

Corrd X Y

x x y y

=

− −

= −

− −


,             (4) 

 

The closer the correlation distance to zero, the higher 

dependency exists between X and Y; therefore, pairs with a 

correlation distance less than or equal to c obtain 1 in the 

adjacency matrix, representing significant interdependency, and 

the rest of the matrix is filled with 0. Hence, the hyperparameter 

c was the proposed approach in this paper to detect how data 
points in a particular area can be affected by each other based 

on the value of their features. Furthermore, some of the most 

widely used machine learning regression algorithms such as 

linear regression (LR) (Maulud and Abdulazeez, 2020), K-
nearest neighbours (KNN) (Sarker, 2021), Support vector 

regression (SVR) (Sharifzadeh, 2019), Decision tree (Pekel, 

2020), lasso and artificial neural network (ANN) (Lee, 2017) 

were implemented on the dataset as the rivals of our proposed 
strategy since all of them follow the rule of independence 

between training examples (Sarker, 2021). There is a core 

assumption of independence between training examples (data 

points) in all conventional machine learning algorithms. This 
fact helps us detect the existence of interdependency between 

paired data points if they have come up with poor evaluation 

metrics. Four commonly used evaluation metrics represent the 

validity of regression models. R-squared is the ratio of label 
variation that can be described by the set of features; therefore, 

the closer it is to 1, the more the predictions can be close to the 

real values of labels(Miles, 2005). Mean square error (MSE) is 

an error metric that provides the mean of squared differences 
between predictions, and the real values of labels and root mean 

squared error (RMSE) is the second root of MSE(Das, 2004). 

Mean absolute error is another evaluation metric defined by the 

mean of absolute differences between predictions and real 
values of labels(Qi, 2022). In all error metrics, instead of R-

squared, the optimal level of fit occurs when they are close to 

zero. 

5. RESULTS AND DISCUSSION 

In this study, the GCN method was employed to determine the 

amount of non-Euclidean interdependency between any pair of 

points within the study area. The velocity of landslides, 

obtained by spatial and temporal processing from 2012 to 2016, 
was used to represent landslide velocity in a regression model. 

Taking twelve predisposing factors into account, GCN was 

modelled to determine the best correlation distance between 

data points, which was deemed the most critical hyperparameter 
for the prediction task in the future. It was found that the 

interval [0, 0,8) was the most effective range of correlation 

distance for creating an adjacency matrix after setting the 

hyperparameters since it provided the best evaluation metrics 
among other scenarios after setting the hyperparameters. All 

MLA, DLA, and GCN models are evaluated based on the 

evaluation metrics mentioned above (Table 2). All evaluation 

metrics show that the GCN model outperforms other methods. 
The results have shown that GCN was by far the best algorithm 

based on regression evaluation metrics, representing strong 

dependency between data points and conventional machine 

learning algorithms performed poorly because of the core 
assumption of independency between training examples, 

assumed in conventional machine learning and deep learning 

algorithms such as linear regression, Lasso, SVR, decision tree, 
KNN, and ANN; therefore, they are unable to detect 

dependency between data points. 
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The interdependency between each pair of points in the dataset, 

pointed out as correlation distance in this paper, is not perceived 
as the Euclidean distance, and it refers to the similarity between 

each pair of points based upon the values of the most important 

geological features including elevation, slope, general 

curvature, NDWI, TWI, SPI, geologic map, land use, flow 
direction, plan curvature, and profile curvature. In other words, 

two data points that are far from each other in Euclidean metrics 

can have strong dependencies based on the value of their 

features. On the other hand, there may exist a poor dependency 
between tow data points that is so close to each other in the 

area. Therefore, we have come to the conclusion that data points 

are not independent of one another based on their feature values 

since GCNs outperformed all other conventional machine 
learning algorithms that follow the core assumption of 

independence between each paired point in the area. 

As can be seen in Figure 3, the image on the left is related to the 

velocity displacements between 2012 and 2016, which is placed 
for comparison next to another image that is related to the 

predicted velocity displacements on the test set date to explore 

and better understanding how the proposed prediction model 
(GCN) worked. As shown in this figure, the GCN with a mean 

absolute error of less than 2 mm has been able to correctly 

predict the amount and location of deformation in the case of 

positive and negative displacements in test set data. 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

Model 

Evaluation Index 

 

(MSE) 

 

(MAE) 

 

(RMSE) 

 

R-squared 

GCN 0.01 0.10 0.14 0.86 

ANN 2.13 2.13 1.45 0.71 

KNN 5.18 2.85 2.27 0.68 

SVR 6.48 3.15 2.53 0.59 

Decision tree 7.35 2.89 2.7 0.72 

Lasso 6.29 3.19 2.5 0.61 

LR 5.35 2.97 2.31 0.58 

Table 2. Evaluation metrics for the proposed approach 

 

 

Figure 3. Location and map of displacement by a) DInSAR technique and b) GCN (Unit: CM) 
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