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ABSTRACT: 

 

In this paper, a new building detection method based on a density of LIDAR point clouds is proposed. In this method, trees, vegetation, 

and any objects that have points in a vertical plane or column are removed. In the density-based method, a cube is utilized to calculate 

the density therein. For each point, the cube is used to determine the number of neighbouring points. The density is calculated in two 

cases: 3D and 2D space. In 3D space, the volumetric density is calculated using the cube. In 2D space, all points are projected onto the 

horizontal plane, and the surface density is calculated using a square. Next, the two densities are compared and the points with different 

values in both cases are removed. The method leads to promising results in the removal of vegetation and trees. Moreover, the results 

achieve more than 94% completeness and correctness at the per-area level.  

 

 

1. INTRODUCTION 

Airborne LiDAR (Light Detection And Ranging) and 

photogrammetry point clouds are nowadays employed to produce 

high-quality features and models. These datasets are very 

efficient data for different applications in photogrammetry and 

remote sensing, such as building detection (Yi et al., 2021), 3D 

building reconstruction (Mahphood and Arefi, 2017, Tarsha 

Kurdi et al., 2021, Yastikli and Cetin, 2021), digital terrain model 

(DTM) generation (Mongus and Žalik, 2012), change detection 

(Liu et al., 2021), ground point filtering (Zeybek and Şanlıoğlu, 

2019), point cloud registration (Favre et al., 2021), as well as 

building boundary extraction (Widyaningrum et al., 2019, 

Mahphood and Arefi, 2022). 

 

One of the most important research fields in remote sensing and 

photogrammetry is building detection. In general, detecting the 

building from the LiDAR data depends on the removing of the 

other objects (Sajadian and Arefi, 2014, Awrangjeb and Siddiqui, 

2017, Mahphood and Arefi, 2020b). The main objects that pose 

the greatest challenge to building detection are vegetation and 

ground. These objects have the greatest size in the dataset. For 

the removal of ground points, some studies have used DTM for 

this purpose (Dorninger and Pfeifer, 2008, Awrangjeb and 

Fraser, 2014, Awrangjeb et al., 2014, Awrangjeb and Siddiqui, 

2017). Another study used a threshold as a flat plane. It is used if 

the region is flat (Sajadian and Arefi, 2014). However, for 

mountainous areas, the previous method cannot be carried out. 

Other studies have used commercial software (Ao et al., 2017). 

Some methods use the morphological method, which is not 

affected by the area type (Arefi and Hahn, 2005, Cheng et al., 

2013). Neidhart and Sester (2008) used a mathematical model 

(polynomial). Mahphood and Arefi (2020b) detected the 

buildings without handling the ground point filtering issue using 

the virtual first and last pulse method. For vegetation removal, 
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most of the methods use features that are extracted using textural 

and spatial information to remove the vegetation points. These 

features are flatness, distribution of neighbourhood points, 

curvature, eigenvalue features, a variance of normal directions, 

etc. (Alharthy and Bethel, 2002, Forlani et al., 2006, Ekhtari et 

al., 2008, Maltezos and Ioannidis, 2015, Hui et al., 2016, 

Mahphood and Arefi, 2020b). The information of pulses has been 

used to remove the vegetation from LiDAR data (Alharthy and 

Bethel, 2002, Vögtle and Steinle, 2005, Tarsha-Kurdi et al., 2007, 

Niemeyer et al., 2011, Shiravi et al., 2012, Hui et al., 2016, 

Mahphood and Arefi, 2020b). 

 

This paper proposed a novel method to detect the buildings from 

the LiDAR point cloud by removing the vegetation, trees, and 

objects that have points located in the imaginary column. The 

proposed method used a volumetric shape (cubic) to detect the 

density for each point in two cases: 3D and 2D space. Depending 

on the density difference between the two cases, the points are 

removed or retained.  

 

 

2. THE PROPOSED METHOD 

Figure 1 explains the workflow of the proposed method. At first, 

the noise points are removed. Then, the ground points are filtered 

by the tornado method. After that, the vegetation and trees are 

removed by the density method. Finally, the resulting buildings 

are refined using some other filters.  

 

2.1 Pre-processing 

The noise points should be removed because they significantly 

affect the results of the proposed method, which depends on the 

points located in the imaginary column; therefore, the accuracy 

will be affected if the noise points are used in the other processing 
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steps. The CloudCompare software is utilized to implement this 

step. It utilizes the statistical outlier removal method, which 

averages the distances between adjacent points to remove the 

noise points. 

 

 
Figure 1. Workflow of the proposed method. 

 

Ground point filtering is considered one of the most important 

challenges in building detection because the ground points have 

the most significant number of points. This paper uses the 

tornado method for this purpose (Mahphood and Arefi, 2020a). 

This method simulates a realistic tornado for removing objects 

from the ground. A vertical cone models the tornado so its vertex 

is down and its base is up (Figure 2(a)). The cone moves on the 

ground surface using a series of points selected as vertices. Points 

that are inside the cone are classified as non-ground points and 

removed (Figure 2(b)). 

 

  
(a) (b) 

Figure 2. Tornado method. a) The vertical cone, and b) the 

procedure of point removal. In (Mahphood and Arefi, 2020a) 

 

2.2 Density-Based Method 

After the previous step, the remaining objects are trees, 

vegetation, and small objects. For filtering these objects, the 

density of points in 3D and 2D space is used. First, the 

neighborhood density of each point is calculated using a cube 

(with dimensions: length l, width w, and height h as shown in 

Figure 3(a)) in the three-dimensional space (volumetric density). 

Then, these points are projected on a horizontal x-y plane, and 

the density of the points is calculated using the cube (surface 

density as shown in Figure 3(b)). Then, the points of the walls, 

power lines, trees, and vegetation are removed by comparing the 

two densities. In other words, all objects with points in the 

vertical plane or vertical column will be removed. Thus, the 

remaining points are related to the building and some small 

objects, which will be handled in the next step. 
 
After obtaining the preliminary detected buildings, several sparse 

points have not been removed. Furthermore, the building outlines 

are affected due to the findings of the density method in the 

vegetation removal step. As a result, three filters are used to 

improve the results. 

  
(a) (b) 

Figure 3. Density-based method. a) The used cube dimensions 

to detect the neighborhood of each point, b) detecting the point 

neighborhood in 3D and 2D space. The red and green points 

represent the interest points and the points inside the cube, 

respectively. 

 

2.2.1 Building Boundary Refinement: The points of the 

building boundaries are removed because of using the cubic for 

vegetation removal. Thus, the detected buildings should be 

refined. Therefore, the nearest neighbor method adds points from 

the removed points. Where the used threshold of the nearest 

neighbor is equal to half the cube width. 

 

2.2.2 Area Threshold: A few tiny regions are leftover from 

plants or objects that aren't recognized as buildings. As a result, 

an area threshold Ta is utilized to eliminate these regions. 

 

2.2.3 Length Threshold: Because of the use of the tornado 

method to filter the ground points, ground regions related to 

longitudinal objects, such as rivers, are not filtered well. As a 

result, a length threshold Tl is used to remove these regions. 

 

2.2.4 Eigenvalue-Based Feature: Some trees and vegetation 

are impenetrable. Therefore, their points cannot be removed 

using the density method. To handle this issue, the eigenvalue-

based feature is utilized. Where the eigenvalues (λ1, λ2 and λ3) 

are extracted. The feature λ3 is used for this step (Ao et al., 2017, 

Mahphood and Arefi, 2020b). 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Data Description 

To evaluate the results, the LiDAR point cloud of the 2015 IEEE 

GRSS dataset is used (Figure 4). The dataset contains an urban 

and harbour area in Zeebruges, Belgium. The point cloud density 

is 65 points/m². In other words, the point spacing is about 10 cm. 

 

 
Figure 4. IEEE dataset. 
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3.2 Evaluation System 

The qualitative and quantitative assessments are described in this 

section. For the qualitative assessment, the detected buildings and 

other detected objects will be discussed visually. For the 

quantitative assessment, the metrics of CP completeness (%), CR 

correctness (%), and Q quality (%) (equations (1)-(3)) are 

computed for the results on a per-object and per-area level 

(Rutzinger et al., 2009). Unfortunately, there is no reference data 

for the dataset. Thus, reference data is extracted manually using 

an orthophoto for the same areas. 

 

𝐶𝑃 =
TP

TP+FP
     (1) 

CR =
TP

TP + FN
 (2) 

𝑄 =
TP

TP + FP + FN
 (3) 

 

where     TP, FP, and FN indicate a true positive, a false positive, 

and a false negative, respectively. 

 

3.3 Density-Based Method Evaluation 

3.3.1 Horizontal Dimensions Analysis of the Cube (length 

l and width w): To analyze the horizontal dimensions of a cube, 

we see from Figure 5(a) that the minimum width and length must 

be greater than the point cloud density. Because if the dimensions 

are less than the density, the density inside the cube is not found 

at any point (red point), and the method becomes meaningless 

(Figure 5 (b)). Also, in this cube, the length is always equal to the 

width. 

 

 

 

(a) (b) 

Figure 5. The cube dimensions are greater than density (a) or 

less than density (b). The green points are the points inside the 

cube. The black points are the points outside the cube. 

 

The main purpose of the density-based method is to remove 

vegetation and tree points. Therefore, the effect of the horizontal 

dimensions of the cube on the count of the removed points should 

be investigated. To evaluate these parameters and select the best 

values, nine sets of tree points are extracted manually from the 

data (Tr1, Tr2, Tr3, Tr4, Tr5, Tr6, Tr7, Tr8, and Tr9). After that, 

the density-based method is used for different width values (or 

length), and the removed points percentage is computed for each 

value and each set. The method is implemented for nine width 

values, so we start with a width equal to the mean density D. It is 

increased by the amount of density until we reach ten times the 

density.  

 

Obviously, if the width increases, the removal percentage will 

increase (Table 1). The lowest width should be selected so that 

this width has a high removal ratio. The width should also be 

small because the greater width will affect the height (this effect 

is analyzed in the next step). Also, the removal percentage is 

higher for greater width. Therefore, the width at which the 

percentage is at least 99% is selected to ensure the best results. 

From Figure 6, it can be seen that widths equal to 2.5D and more 

are the best widths that guarantee the previous percentage. Thus, 

a distance of 3D is utilized to ensure the best results. The results 

of mean values of the groups' results are shown in Table 1 and 

Figure 6(b). These results prove that this method has promising 

results for removing vegetation points from the LiDAR data. At 

the same time, this process is an essential step for detecting 

buildings. 

 

 
Figure 6. The relationship between the cube width and the 

removal percentage. a) Results of nine tree sets, b) Average 

results. 

 

1 D 1.5 D 2 D 2.5 D 3 D 3.5 D 4 D 4.5 D 5 D 

79.39 94.36 98.04 99.21 99.63 99.89 99.96 99.98 99.98 

Table 1. Average results for nine tree sets. (The best values are 

bold, and D refers to the average density). 

 

3.3.2 Cube Height Analysis: This method may remove roof 

points for the high-slope building roofs (Figure 7). From Figure 

7(a), we see roof points inside the cube in the 2D space. But they 

are outside the cube in the 3D space (blue points). Therefore, the 

roof points will be removed. To handle this issue, the relationship 

between the cube height, cube width, and the largest inclination 

angle θ of the roof is found. From Figure 7(b), the relationship 

between the previous parameters can be expressed by equation 

(4) so that the roof points are not removed. The angle θ is 

assumed according to the knowledge of the roof slope of the 

existing buildings where it cannot be calculated accurately. 

 

ℎ𝑚𝑖𝑛 >= 𝑤 × tan 𝜃 (4) 

 

where     θ = largest inclination angle of the roofs. 

               hmin = the minimum height of cube. 

               W = cube width. 
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(a) (b) 

Figure 7. Issue of the building roof with a steep slope. a) The 

difference between the number of neighborhood points in the 

3D and 2D space, b) The relationship between the minimum 

height, width, and the inclination angle of the roof. The red line 

is the building roof. The red, green, and blue points represent 

the interest, the neighborhood, and the new points in 2D space, 

respectively. 

3.4 Building Detection Evaluation 

3.4.1 Overall Results and Evaluation: The results of the 

proposed method for detecting the building are shown in Figure 

8, with some advantages and disadvantages. 

 

For qualitative assessment, it can be seen from Figure 8 that 

small, large, residential, and complex buildings (Figure 8(f)) are 

successfully detected. According to Figure 8(f), the method 

detects the buildings that contain sloping, flat, and hipped roofs. 

Also, the buildings which have one or a block of buildings are 

detected (Figure 8(f)). This is an advantage of our method. Also, 

we see that all trees and vegetation are removed successfully 

using the density-based method. As an initial vision, the results 

are excellent, especially with regard to removing vegetation 

points and detecting different shapes of buildings. Our method 

achieves promising results. However, some problems arose 

during the procedure. 

 

Some buildings (Figure 8(e)) are not fully detected because trees 

surround some parts of the building. These parts are occluded 

areas that are not detected by this method. Also, we note from 

Figure 8(f) that the building boundaries (inner and outer) that 

have height displacement were removed. This is because the 

points of the outer and inner walls and the neighbouring points 

were removed. Where the density of each point was different 

between 3D and 2D space. For vegetation, some vegetative walls 

are not removed, as shown in Figure 8(c). They have a flat surface 

and are non-penetrated. The cars are removed. But some are not 

removed (Figure 8(d)). Because they are behind each other and 

considered as a large object. Figure 8(b) shows that some ground 

points are not filtered. This problem is due to the ground filtering 

step. The cone (tornado) did not remove the river points 

completely. This is because these points have a high slope. 

 

For quantitative assessment, the metrics: completeness, 

correctness, and quality are computed and listed in Table 2 for 

the IEEE 2015 data. From Table 2, our method obtains 94.17% 

completeness, 94.66% correctness, and 89.44% quality at the per-

area level and 91.53% completeness, 82.63% correctness, and 

76.75% quality at the per-object level. Also, it obtains the 

completeness of 100%, correctness, and quality of 96.4% for the 

buildings whose areas are larger than 50 m2. As a result, the 

density-based method provides promising results, especially at 

the per-area level, where the completeness and correctness are 

more than 94%. Also, these results provide promising results for 

completeness metrics for all levels. Also, these results are very 

good for buildings whose areas are larger than 50 m2. Correctness 

is relatively low due to the presence of unfiltered ground points. 

 

 
(a) 

 
 

 
(b) (c) (d) 

 
 

(e) (f) 

Figure 8. The results of the building detection. a) Results: false-

negative FN (blue), true positive TP (yellow), and false-positive 

FP (red), (b)-(f) Examples of TP, FP, and FN. 

 

Metric Per-area (%) 
Per-object 

(%) 

Per-object > 

50 m2 (%) 

CP 94.17 91.53 100 

CR 94.66 82.63 96.4 

Q 89.44 76.75 96.4 

Table 2. The results of the building detection. 

 

3.4.2 Parameters Analysis: There are two important 

parameters that affect the results. The first one is the cube width. 

This parameter was analyzed previously. The second one is the 

slope angle of the building roof to calculate the cube height. This 

angle is set to 70 degrees. The area threshold Ta is set to 9 m2, as 

most buildings in the IEEE 2015 data are interconnected and 

large. For the length threshold, Tl is set to 200 m, as most 

buildings are less than 100 m. The eigenvalue λ3 shows the spatial 

difference in the vertical direction. Thus, √𝜆3 is used as the 

standard deviation and set to 5 cm. 

 

 

4. CONCLUSION 

A novel method has been proposed for tress and vegetation 

removal by using the density inside a cube in 2D and 3D space to 

detect the buildings from the LiDAR point cloud. The density-

based method used a cube with dimensions related to the point 

cloud density and the maximum roof slope. The results achieve 

d 

b 

c 

f 
e 
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the completeness of 94.17%, correctness of 94.66%, and quality 

of 89.44% for the per-area level. Also, the method provides 

promising results for completeness metrics for all levels. The 

small, large, and complex buildings are detected well. In other 

words, the type or size of roofs does not affect the results of the 

proposed method. Also, the trees and vegetation are removed 

perfectly. This is an essential step for the methods of building 

detection. 

 

Finally, our method is very good for detecting buildings with 

different shapes, sizes, and heights. But the building boundaries 

are affected slightly. Also, the method cannot extract the 

occluded areas of the buildings surrounded by trees. This issue is 

considered the major disadvantage of our method. 
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