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ABSTRACT: 

 

In this paper, an improved Tornado method for filtering LiDAR (Light Detection and Ranging) point clouds is presented. The original 

method uses a vertical cone with a downward vertex and an upward base to remove the points within it as non-ground points. The 

remaining points are ground points. The cone moves on the ground surface over the entire region of the point cloud. In this work, the 

regions of the objects are predicted by extracting the vertical features that have points in the vertical plane or vertical column. Therefore, 

the tornado method is only used in regions that contain objects. In addition, our improved method uses a specific height for a tornado 

to reduce the Type I error in mountainous areas. Also, a cylinder surrounding the cone is used to reduce the distance calculations 

between the cone and the point cloud. The results show that this method is very effective and fast compared to the original method. It 

also has promising results for the Type I error. In addition, this method was tested on the International Society for Photogrammetry 

and Remote Sensing (ISPRS) datasets and produced outstanding results. The results show that this method achieves high filtering 

accuracy. Moreover, the proposed method achieves an overall average error of 6.83%, which is lower than most other methods.  

 

 

1. INTRODUCTION 

Airborne LiDAR point clouds are nowadays used to produce 

high-quality and high-density features and models. These 

datasets are very efficient data for various applications in 

photogrammetry and remote sensing, such as building 

recognition (Yi et al., 2021), 3D building reconstruction 

(Mahphood and Arefi, 2017, Tarsha Kurdi et al., 2021), digital 

terrain model (DTM) creation (Mongus and Žalik, 2012), change 

detection (Liu et al., 2021), ground point filtering (Zeybek and 

Şanlıoğlu, 2019), point cloud registration (Favre et al., 2021), and 

building boundary extraction (Mahphood and Arefi, 2022). 

 

Ground point filtering is an important research field in remote 

sensing and photogrammetry. It can be done in a variety of 

methods. These methods can be classified into three categories. 

The first one is slope based methods (Vosselman, 2000, Sithole 

and Vosselman, 2001, Meng et al., 2009, Susaki, 2012). These 

methods are based on the ground surface consisting of several 

smooth, curved surfaces. Also, the probability of a massive 

height difference in the terrain is small. If the elevation difference 

between two adjacent points changes abruptly, the two points 

could be on different areas of the terrain surface or objects. These 

methods use a height difference threshold that allows us to 

determine if the points are ground points or non-ground points by 

comparing the heights of two nearby points. The second one is 

related to mathematical morphology methods (Zhang et al., 2003, 

Arefi and Hahn, 2005, Li et al., 2013, Pingel et al., 2013, Hui et 

al., 2016). The basic assumption of these methods is to apply 

morphological operations to the LiDAR point cloud, such as 

closing, opening, dilation, and erosion, to extract features from 

raster data. They are used to increase or decrease the size of 
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objects in raster data. The area type does not affect these 

methods, but the size of the objects to be filtered does. 

Consequently, the window size used is important in these 

methods. The third category is surface methods (Zhang and Lin, 

2013, Zhang et al., 2016, Nie et al., 2017, Qin et al., 2017, Shi et 

al., 2018, Cheng et al., 2019). The concept behind these methods 

is to use a parametric surface to simulate the bare earth stepwise. 

The parametric surfaces used in the approaches include the thin-

plate spline model (Cheng et al., 2019), weighted iterative least-

squares interpolation (Qin et al., 2017), triangulated irregular 

network (TIN) model (Shi et al., 2018), active shape model 

(Elmqvist, 2002), and the fabric simulation model (Zhang et al., 

2016). Seed points are detected (ground points) and repeatedly 

compacted to generate an output DEM that continuously refines 

the ground surface based on specific criteria. The effectiveness 

of these algorithms depends on the grid size used to select the 

seed points and the elevation and angle thresholds used to add 

additional ground points. 

 

In addition to the aforementioned methods, there is an 

unconventional method that simulates a natural Tornado, which 

uses a vertical cone to remove object points located within the 

cone (Mahphood and Arefi, 2020a). This method has been used 

to obtain good results for flat areas and Type I errors. However, 

the method has some drawbacks in terms of Type I error in 

mountainous areas and processing time for large point clouds. 

 

In this paper, an improved Tornado method is proposed to filter 

the ground points from the LiDAR point cloud. The drawbacks 

of the Tornado method are eliminated by various improvements. 

Our contribution to this paper is as follows: 
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1- Using a specific height of the vertical cone in proportion to 

the heights of the objects. Thus, it will reduce the number 

of removed ground points in the steep mountainous areas. 

2- Using a cylinder that surrounds the cone to decrease the 

distance computations between the cone and the point 

cloud. Thus, the processing will be faster. 

3- Predicting the object regions by extracting the vertical 

features. 

4- Moving the cone over the object regions in order not to 

remove ground points in the mountainous areas. Thus, the 

processing time and the Type I error will be reduced. 

  

 

2. THE PROPOSED METHOD 

Figure 1 illustrates the flowchart of the proposed method. 

Initially, the noise points are removed. Then, the vertical features 

are extracted from the point cloud. After that, the vertex points of 

the cone are extracted from the vertical features. After that, the 

cone is moved over these points using a cylinder to reduce the 

computation processing for each cone. Finally, pre-processing 

step starts to remove the remaining small objects. 

 

 
Figure 1. Workflow of the proposed method. 

 

2.1 Overview and problems 

This paper improves the tornado method for ground point 

filtering (Mahphood and Arefi, 2020a). This method simulates a 

realistic tornado to remove objects (buildings, trees, etc.) from 

the earth's surface. A vertical cone models the tornado with a 

down vertex and an up base (Figure 2). The cone moves on the 

ground surface using a series of points selected as vertices for the 

vertical cone. These points are the virtual last pulse (VLP) points 

(Mahphood and Arefi, 2020b). These pulses are extracted using 

the virtual first and last pulse (VFLP) method. It extracts the 

lowest point within a local neighborhood with dres* dres 

dimensions. The VFLP method resamples the point cloud using 

a sampling distance dres using equations (2) and (3). Thus, the 

vertex points are distributed over the entire study area. Then, 

points located inside the cone are removed as non-ground points 

and the remaining points are ground points (Figure 2(c)). This 

process is based on the cone equation (1).  

 

(𝑥 − 𝑥𝑣)2 + (𝑦 − 𝑦𝑣)2 = (𝑧 − 𝑧𝑣)2 × tan 𝜃2 (1) 

 

where     x, y, and z: the coordinates of the point cloud. 

               xv, yv, and zv: the coordinates of cone vertex. 

               θ: the aperture of the cone. 

 

  
(a) (b) 

 
(c) 

Figure 2. a) The point cloud, b) the vertical cone, and c) 

removing the points. In (Mahphood and Arefi, 2020a) 

 

𝑥res = round(𝑥/𝑑𝑟𝑒𝑠) × 𝑑𝑟𝑒𝑠 (2) 

𝑦res = round(𝑦/𝑑𝑟𝑒𝑠) × 𝑑res (3) 

 

where     xres and yres: are the resampled coordinates. 

 

This method has some problems and disadvantages. The use of 

all vertex points and the filtering procedure have many 

disadvantages. For using all vertex points, assuming there is an 

area with no object. Therefore, using vertex points for the entire 

area will lead to implementing the tornado method in areas that 

do not contain any object. That is, many cones will be used 

without obtaining results. Therefore, this will only increase the 

processing time. On the other hand, in mountainous areas (Figure 

3(a)), using cones with great θ angles will lead to removing the 

ground points and thus increase the Type I error. For handling 

these problems, the improved method will expect the objects' 

locations by extracting the vertical features. Then, only the VLP 

of the vertical features will be extracted. This improvement will 

be introduced in the tornado motion section. 

 

  

(a) (b) 

Figure 3. The disadvantages of using a) all vertex points and b) 

the cone equation. The red lines are the mountainous areas. The 

blue lines are the filtered areas. 

 

The disadvantage of the filter method is that the method is 

applied to all points for each cone, which leads to unnecessary 

calculations of the distance measurement. This only increases the 

processing time. In addition, in mountainous areas (Figure 3(b)), 

when cones with large θ-angles are used, the ground points are 

removed even if the cone is far from the mountains. This 

increases the Type I error. To deal with these problems, the 

improved method will use a height threshold for the cone and a 

cylinder model to constrain the search space. This improvement 

will be presented in the tornado modeling section.  

 

2.2 Pre-processing 

In this step, the noise points are removed because they strongly 

affect the result of the proposed method. This method depends on 

the points that are inside the imaginary column; therefore, the 

underground noise points affect the accuracy of the final results 

if they are not removed. This is because they are selected as 

vertices, while the ground points are located inside the tornado 

and are removed as object points. CloudCompare software is 

used to remove the noise points. It uses the statistical outlier 

removal (SOR) method, where the distances between 

neighboring points are averaged to remove the noise points. 
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2.3 Tornado modelling 

As mentioned earlier, the tornado is modeled using the cone 

equation (1). Then, the points located inside the cone are removed 

as non-ground points. For this purpose, two distances are 

compared. The first is the distance between the point and the 

cone, and the second is the cone radius at the point height z. The 

first distance should be equal to or less than the second to remove 

the point. In other words, equation (4) must be satisfied. 

 

(𝑥 − 𝑥𝑣)2 + (𝑦 − 𝑦𝑣)2 <= (𝑧 − 𝑧𝑣)2 × tan 𝜃2 (4) 

  

 
(a) 

  

(b) (c) 

  
(d) (e) 

Figure 4. a) The cone and the surrounding cylinder, b) the cone, 

c) the point cloud and the surrounding cylinder, d) the points 

inside the surrounding cylinder, and e) implementing the 

tornado method with the detected points. 

 

However, this filtering method has some problems, as seen in the 

previous section. To deal with the problem in mountainous areas, 

a height threshold hc is used for the cone so that this height is 

related to the highest object in the area under study. In other 

words, we need to know approximately the height of objects, 

especially buildings and trees. The height threshold hc should be 

equal to or greater than the maximum object height to ensure that 

all objects are removed. Therefore, an additional conditional 

equation (5) is added to equation (4) to remove the point. In this 

way, the mountainous areas will not be affected when the cone is 

used in the flat areas. This procedure reduces the number of 

removed ground points in steep mountainous areas. 

 

𝑧 − 𝑧𝑣 <= ℎ𝑐 (5) 

 

To handle the search space problem, a cylinder is generated so 

that it has the maximum cone radius rc related to the cone height 

hc. This cylinder surrounds the cone (Figure 4(a) and (c)) and has 

the same vertical axis. It detects the points that should be 

classified as ground or non-ground points using equations (4) and 

(5) (Figure 4(d)). This process reduces the research space for 

each cone (Figure 4(e)). The radius rc is computed using equation 

(6). The cone vertex is used as the center of the surrounding 

cylinder to detect the points. Then the points are detected in the 

2D space using the radius rc (Figure 4(d)). 

 

𝑟𝑐 = ℎ𝑐 × tan 𝜃2 (6) 

 

2.4 Tornado motion 

As mentioned earlier, the tornado method uses the VLP as the 

vertex point for the motion. These points are extracted by VFLP 

method so that the lowest point is selected for each dres*dres 

region (Figure 5(a) and (b)). These points are scattered 

throughout the studied area. The use of these points has problems, 

as mentioned in section 2.1. To handle these problems, only 

vertex points related to objects will be extracted. In other words, 

the virtual last pulse points of the vertical features VLPvf will be 

extracted. Vertical features have points located in a vertical plane 

or vertical column (such as trees, walls, etc.) (Mahphood and 

Arefi, 2020b). Therefore, these points will ensure that the 

filtering procedure is applied only to objects. This process will 

reduce the possibility of removing the ground points. The 

processing speed will also increase significantly because the 

number of vertex points is much smaller. 

 

 
Figure 5. The VFLP method. a) The points inside the column 

before resampling, b) The points inside the column after 

resampling, and c) the VFP and VLP matrices extraction. In 

(Mahphood and Arefi, 2020b) 

 

To extract the vertical features, the virtual first pulse matrix VFP 

and the virtual last pulse matrix VLP should be extracted 

(Mahphood and Arefi, 2020b) (Figure 5(c)). In the beginning, the 

points are resampled using equations (2) and (3) (Figure 5(a) and 

(b)). The resampled coordinates inside the virtual column will 

have the exact horizontal coordinates (Figure 5(b)). Thus, these 

points will be exactly above each other. After that, the resampled 

points' matrix is duplicated twice. The first one is for VFP matrix 

extraction, and the second one is for VLP matrix extraction 
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(Figure 5(c)). The order of the points in the two matrices is 

changed by rearranging the points as follows: 

 

1- In the first order, the rearrangement is in descending order 

according to the x-axis. 

2- In the second order, the rearrangement is in descending 

order according to the y-axis. 

3- In the third order, the rearrangement is in descending order 

(for the VFP matrix) and ascending (for the VLP matrix) 

according to the z-axis. 

 

Then, equation (7) is used. Where pi and pi+1 represent the point 

and the next point, respectively. Finally, to extract the points of 

the VFLP, the equations (8)-(10) are applied to detect primary 

points pi. After that, the following point pi+1 is removed 

 

∆𝑥𝑦𝑧𝑖 = 𝑝𝑖 − 𝑝𝑖+1 (7) 

∆𝑥𝑖,𝑖+1 = 0 (8) 

∆𝑦𝑖,𝑖+1 = 0 (9) 

∆𝑧𝑖,𝑖+1 ≥ 0  for VFP extraction. 

∆𝑧𝑖,𝑖+1 ≤ 0  for VLP extraction. 
(10) 

 

The resulting matrices are the VFP matrix (Figure 6(b)) and the 

VLP matrix (Figure 6(c)). The count of points in two matrices is 

the same, and the points have the same order. Finally, the vertical 

features can be extracted using these matrices so that two height 

difference thresholds (hmin and hmax) are used to detect the points 

in this range of height difference. hmin threshold is used to restrict 

the extracted vertical features by avoiding the low-height features 

that may relate to the ground (such as small rocks, earth surface 

ripples, etc.) (equation (11)). At the same time, this threshold is 

related to the lowest objects in the studied area, such as cars and 

low vegetation. Thus, if there are cars or low vegetation, this 

threshold is set to 0.5 or 1 m. If there are no low-height objects, 

it is set to 2.5 m (minimum possible height of buildings). It is 

worth noting that this parameter can be set to zero. hmax threshold 

restricts the extracted vertical features by avoiding the unwanted 

high features (equation (12)). This parameter is significant for our 

method, especially for areas with steep or vertical slopes. These 

areas will be excluded from the filtering procedure of the tornado 

method. But this threshold should be equal to or greater than the 

maximum object height to ensure that all vertical features of the 

objects will be detected. In other words, this parameter is equal 

to the cone height threshold: hmax = hc.  

 

𝑧VFP − 𝑧VLP ≥ ℎmin (11) 

𝑧VFP − 𝑧VLP ≤ ℎ𝑚𝑎𝑥 (12) 

 

where     zVFP and zVLP: the z coordinates of VFP and VLP points. 

 

Thus, the VFP and VLP points of the vertical features can be 

extracted using equations (11) and (12). The extracted VFP 

points of the vertical features are denoted as VFPvf (red points in 

Figure 6(d)), and the extracted VLP points of vertical features are 

represented as VLPvf (blue points in Figure 6(d)). For our 

improved tornado method, the VLPvf is used for tornado motion 

instead of VLP. Figure 6 shows that the VLPvf points are very 

few compared to the VLP points. This will reduce the time 

processing and the number of misclassified ground points in the 

mountainous area. Thus, Type I error will be better. 

 

  

(a) (b) 

  
(c) (d) 

Figure 6. VFP and VLP point extraction. a) The point cloud, b) 

the VFP points, c) the VLP points, and d) the VFPvf points (red 

points) and the VLPvf points (blue points). 

  

2.5 Post-processing 

After implementing the method and getting the results, several 

sparse points and segments have not been removed in the 

proposed method. Where a few tiny regions are leftover from 

plants or objects that aren't classified as objects. As a result, an 

area threshold Ta is utilized to eliminate these regions. Thus, the 

region growing method is used to segment the resulting points 

using a distance threshold r related to the point cloud density of 

the studied area. 

 

 
3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Data Description 

The used point cloud is the ISPRS dataset. It is divided into two 

categories: urban and rural areas and has a wide range of features 

(open fields, vegetation, small and large buildings, roads, trains, 

rivers, steep and vertical slopes, low vegetation, gaps, ramp, 

bridges, discontinuity, cars, etc.). The density in the urban areas 

is 0.67 points/m2, whereas, in the rural area, it is 0.18 points/m2, 

corresponding to point spacing of 1-1.5m and 2-3.5m, 

respectively. 

 

3.2 Evaluation Systems 

The qualitative and quantitative evaluations of the results are 

described in this section. The state of the removed objects will be 

discussed for the qualitative evaluation. The proposed method 

evaluates the metrics: Type I (equation (13)), Type II (equation 

(14)), and Total error (equation (15)) for quantitative evaluation. 

 

Type I =
𝑏

𝑎 + 𝑏
 (13) 

Type II =
𝑐

𝑐 + 𝑑
 (14) 

Total =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 (15) 

 

where    a is the number of ground points which are correctly 

detected as ground.  

               b is the number of ground points that are incorrectly 

detected as an object.  

               c is the number of object points that are incorrectly 

detected as ground.  

               d is the number of object points that are correctly 

detected as an object. 
 

3.3 Improved Tornado Method evaluation 

Results of the improved method with some advantages and 

disadvantages are shown in Figure 7, Table 1, Table 2, and Table 

3. For qualitative evaluation, Figure 7 shows that the proposed 

method successfully removed all types of objects. It removed the 

bridges (samples 21, 22, and 71), large buildings (samples 22, 23, 
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and 31), buildings on steep slopes (sample 11), low-resolution 

buildings (sample 54), vegetation on steep slopes (samples 11 

and 51), and other. Also, the gaps and discontinuity are not for 

our method. From the previous results, we can observe that the 

improved method achieves promising results. But there are some 

problems. Some buildings are not removed completely in the 

areas with steep slopes (squares in Figure 7 (b)) because the roofs 

are very near the ground surface from one of their sides. 

Therefore, the buildings will not be located inside the cone and 

will not be removed. Other disadvantages are shown inside the 

black circle in Figure 7 (c), where some ground points are 

removed in the post-processing step. As these points are not 

connected with the rest of the ground points. Also, from samples 

51, 52, and 53, vegetation is not removed completely because 

these samples have steep slopes and the used angles θ are small, 

so the ground points are not removed. 

 

 
Figure 7. The results of the improved method. a) The samples, 

b) the filtered ground points, and c) the removed non-ground 

points. The blue and red points represent the ground points and 

the non-ground points, respectively. 

 

All samples of the ISPRS datasets are used. These datasets cover 

different types of areas and terrain features. From Table 1, all the 

results of the Type I error are perfect. The best result is 0.44% 

which is related to an area with a steep slope (sample 51). The 

average of the results is 4.48%. This result is excellent. Most of 

the results are close to each other. But samp11 has the worst 

result, which is 12.44%. This result is due to ramps between the 

ground and buildings (Figure 7 (c)). So, the regions of the ramps 

were partly removed. Samples 21, 31, 51, 61, and 71 have the 

best results. However, they contain various features: slight 

slopes, flat areas, steep slopes, and ramps. The method obtains 

21.39% for the average Type II error, which is significantly 

higher than the Type I error. Sample 53, which contains vertical 

slopes and ground surface discontinuities, has the worst result, 83 

%. Due to the vertical slopes, a small cone angle (20 degrees) is 

employed. Therefore, the object points are not removed 

completely. The same problem appears with sample 52. Also, the 

improved method achieves good results for samples 12, 41, and 

42. These samples have different objects: large buildings, low 

vegetation, vegetation, cars, and others. For the Total error, the 

average result is 6.83% which is very good. The best result is 

2.52%, and the worst is 17.55% which is related to sample 11, 

which has bad results for Type I error and Type II error. In 

general, our improved method gives excellent results for Type I 

error but at the expense of Type II error. Also, the Total error 

results are very good. 

 

Samples 

ITM TM 

Type I 

(%) 

Type II 

(%) 

Total 

(%) 

Type I 

(%) 

Type II 

(%) 

Total 

(%) 

samp11 11.83 25.62 17.55 12.44 23.88 17.19 

samp12 5.44 7.94 6.62 6.04 6.77 6.38 

samp21 0.7 11.77 3.17 1.15 10.99 3.39 

samp22 4.23 17.04 8.13 5.17 12.61 7.43 

samp23 7.81 12.08 9.81 8.28 10.9 9.51 

samp24 6.62 27.25 12.3 7.5 23.41 11.88 

samp31 1.31 11.44 5.84 1.6 8.36 4.64 

samp41 7.71 3.52 5.66 8.48 3.19 5.88 

samp42 7.36 1.32 3.1 8.47 0.9 3.13 

samp51 0.44 19.87 4.7 0.44 16.16 3.88 

samp52 4.6 40.71 8.51 4.88 35.33 8.1 

samp53 3.17 83 6.41 5.24 77.71 8.21 

samp54 3.16 6.09 4.73 3.79 4.68 4.26 

samp61 1.41 33.66 2.52 1.89 23.3 2.62 

samp71 1.41 19.61 3.47 1.66 13.35 2.99 

Mean 4.48 21.39 6.83 5.14 18.10 6.63 

Min 0.44 1.32 2.52 0.44 0.9 2.62 

Max 11.83 83 17.55 12.44 77.71 17.19 

Std 3.30 20.37 4.03 3.45 18.93 3.99 

Table 1. Comparison of errors of the ITM with the TM. (The 

bold text refers to the best values, TM refers to the Tornado 

method, and ITM refers to the proposed method). 

 

Samples 
dres 

(m) 

VLP 

(point) 

VLPvf 

(point) 

Percentage of 

reduction (%) 

samp11 2.5 6575 3028 53.95 

samp12 2.5 8667 4407 49.15 

samp21 4 955 524 45.13 

samp22 3 3891 847 78.23 

samp23 3 3481 809 76.76 

samp24 2.5 1485 382 74.28 

samp31 5 1187 522 56.02 

samp41 4 826 333 59.69 

samp42 6 1292 888 31.27 

samp51 3.5 7753 1761 77.29 

samp52 3 13574 3314 75.59 

samp53 3 20615 1187 94.24 

samp54 4 3137 1730 44.85 

samp61 3.5 15116 1394 90.78 

samp71 3.5 6881 830 87.94 

Mean 3.53 6362.33 1463.73 66.34 

Min 2.5 826 333 31.27 

Max 6 20615 4407 94.24 

Std 0.97 5978.03 1211.10 19.09 

Table 2. The number of VLP points and VLPvf points for the 

samples. 

 

3.4 Comparison and Discussion 

Our method is proposed to improve the tornado method by 

reducing the processing time as much as possible. At the same 

time, it improves Type I errors by reducing the number of the 

used vertex points. Therefore, in this section, we will compare 
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the results of the original and improved methods in terms of the 

number of points used as cone vertices, the processing time, and 

the metrics of the results. At the same time, the proposed method 

will be compared with other methods. The results of the two 

methods are shown in Table 1, Table 2, and Table 3. 

 

Samples 
θ    

(degree) 

VLP 

(second) 

VLPvf 

(second) 

Percentage of 

improvement 

(%) 

samp11 30 28.21 5.79 79.48 

samp12 50 48.98 10.78 77.99 

samp21 60 2.03 0.73 64.04 

samp22 45 16.56 1.92 88.41 

samp23 35 10.32 1.17 88.66 

samp24 35 1.91 0.54 71.73 

samp31 60 4.06 1.09 73.15 

samp41 45 1.48 0.4 72.97 

samp42 70 5.26 2.1 60.08 

samp51 50 17.8 2.31 87.02 

samp52 40 39.26 4.3 89.05 

samp53 20 107.07 2.76 97.42 

samp54 65 3.34 1.28 61.68 

samp61 45 78.65 3.13 96.02 

samp71 55 14.83 1.08 92.72 

Mean 47 25.32 2.63 80.03 

Min 20 1.48 0.4 60.08 

Max 70 107.07 10.78 97.42 

Std 13.73 31.34 2.70 12.41 

Table 3. Time of the processing. 

 

To compare the original and improved tornado method in terms 

of the metric errors, the Type I error, Type II error, and Total 

error are computed using the same parameters for both methods. 

The values of the distance dres and the angle θ are shown in Table 

2 and Table 3. The results of the errors are listed in Table 1. From 

Table 1, we find that the proposed method improved all the 

results of the Type I error. As all results are better than the 

corresponding ones in the original method. The average Type I 

error is 4.48% which is less than the average of the original 

method by 0.66%. For the Type II error, we note that all the 

results have become worse. These results are due to the fact that 

all points of the vertical features were not completely extracted. 

This problem is due to the low density of the used point clouds, 

which leads to incomplete extraction of the vertical features. 

Therefore, the objects are not surrounded by sufficient cone 

vertex points to remove these objects. As a result, the Total error 

was affected by these results. Therefore, the average of this error 

is 0.2% less than that of the original method. In any case, it is 

preferable to use the improved method in the density point 

clouds. 

 

For comparison of the used vertex points, from Table 2, we find 

that the number of VLPvf points used as vertex points in the 

improved method is much less than the number of VLP points 

used in the original method. This difference is mainly related to 

the vertical features of the studied area. For example, the 

difference between the numbers of points is large for samples 53, 

61, and 71 because they do not have many vertical features. In 

contrast, the difference is much less for samples 42 and 54. Also, 

we can see that the number of the used vertex points has been 

reduced by at least 90% for samples 53 and 61. Table 2 shows 

that the best reduction is 94.24%, while the worst is 31.27%. 

Also, the average reduction is 66.34% which is more than half of 

the points. As mentioned previously, these results follow the 

presence of vertical features. The above results certainly affect 

the processing time. From Table 3, we find that the best 

improvement is 97%. This improvement is excellent because the 

processing time has been reduced by 50 times for sample 53. In 

contrast, the worst is 60%, which is an excellent improvement. 

From these results, we find that our method gives promising and 

excellent results in improving processing time. This method is 

suitable for huge point clouds. 

 

To compare with other methods, Table 5 shows that the Total 

errors are better than most methods. At the same time, only the 

Axelsson method is better than ours. Also, our method ranks first 

for two samples and second for five samples. The average Type 

I error achieved 4.48% (Table 4). This accuracy is better than the 

results of other methods. This indicates that the proposed method 

performs better than the other ones. In addition, our method ranks 

first for five samples and second for six samples. Unfortunately, 

from Figure 8, our method does not work well in the areas with 

ramps, discontinuities, and steep slopes. Where some of the 

samples (52, 53, and 61) have extremely bad results. Thus, these 

samples have an impact on the average Type II error. 

 

Samples Sithole Roggero Axelsson Wack Sohn Brovelli Pfeifer Elmqvist ITM 

samp11 37.69 33.16 15.96 39.12 26.56 62 28.26 33.63 11.83 

samp12 19.19 11.92 4.89 11.94 8.87 29.63 7.29 12.36 5.44 

samp21 9.64 12.46 0.46 5.15 8.38 11.35 2.81 25.91 0.7 

samp22 29.29 33.43 2.68 9.73 5.68 31.19 8.25 20.55 4.23 

samp23 40.92 41.88 3.69 18.4 7.25 50.25 12.08 18.74 7.81 

samp24 32.79 30.43 3.38 14.41 13.17 47.63 8.54 31.8 6.62 

samp31 4.85 3.03 7.91 3.15 4.81 21.75 1.6 8.47 1.31 

samp41 47.13 21.55 25.81 17.63 19.25 32.41 19.85 14.42 7.71 

samp42 12.18 13.37 4.68 10.65 1.01 20.4 8.02 4.3 7.36 

samp51 7.03 1.9 0.13 14.03 10.33 28.23 4.21 49.34 0.44 

samp52 30.41 9.8 1.78 26.49 12.34 50.43 21.27 85.05 4.6 

samp53 38.41 17.81 8.58 28.33 20.48 54.93 12.53 92.45 3.17 

samp54 12.38 1.01 1.25 15.93 6.72 49.54 10.66 27.91 3.16 

samp61 22.39 19.64 1.94 13.94 2.96 22.45 7.15 91.28 1.41 

samp71 24.57 5.41 0.14 18.88 1.26 39.41 9.78 75.19 1.41 

Mean 24.59 17.12 5.55 16.52 9.94 36.77 10.82 39.43 4.48 

Table 4. Comparison of Type I errors (%). (The bold text refers to the best values, and the italic value in the ITM column means ITM 

ranks second. ITM refers to our method). 
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Samples Sithole Roggero Axelsson Wack Sohn Brovelli Pfeifer Elmqvist ITM 

samp11 23.25 20.8 10.76 24.02 20.49 36.96 17.35 22.4 17.55 

samp12 10.21 6.61 3.25 6.61 8.39 16.28 4.5 8.18 6.62 

samp21 7.76 9.84 4.25 4.55 8.8 9.3 2.57 8.53 3.17 

samp22 20.86 23.78 3.63 7.51 7.54 22.28 6.71 8.93 8.13 

samp23 22.71 23.2 4 10.97 9.84 27.8 8.22 12.28 9.81 

samp24 25.28 23.25 4.42 11.53 13.33 36.06 8.64 13.83 12.3 

samp31 3.15 2.14 4.78 2.21 6.39 12.92 1.8 5.34 5.84 

samp41 23.67 12.21 13.91 9.01 11.27 17.03 10.75 8.76 5.66 

samp42 3.85 4.3 1.62 3.54 1.78 6.38 2.64 3.68 3.1 

samp51 7.02 3.01 2.72 11.45 9.31 22.81 3.71 21.31 4.7 

samp52 27.53 9.78 3.07 23.83 12.04 45.56 19.64 57.95 8.51 

samp53 37.07 17.29 8.91 27.24 20.19 52.81 12.6 48.45 6.41 

samp54 6.33 4.96 3.23 7.63 5.68 23.89 5.47 21.26 4.73 

samp61 21.63 18.99 2.08 13.47 2.99 21.68 6.91 35.87 2.52 

samp71 21.83 5.11 1.63 16.97 2.2 34.98 8.85 34.22 3.47 

Mean 17.48 12.35 4.82 12.04 9.35 25.78 8.02 20.73 6.83 

Table 5. Comparison of Total errors (%). (The bold text refers to the best values, and the italic value in the ITM column means ITM 

ranks second. ITM refers to our method). 

 

 
Figure 8. Comparison of Type II errors (%). 

 

 

4. CONCLUSION 

This paper proposes a novel method for ground point filtering 

from the LiDAR point cloud. So, the proposed method is an 

improved version of the tornado method, which uses one 

parameter (the cone angle) for one equation (the cone equation) 

to remove the non-ground points. The method removes the points 

inside the cone as object points, and the remaining points are 

considered ground points. The cone of the original method moves 

on the VLP points, which act as vertex points. The improved 

tornado method extracts the vertical features related to the 

objects. Then, it extracts the VLP of the vertical features and uses 

them as vertex points. The results show that the processing time 

is improved up to 97%, which is excellent. Also, the Type I error 

is improved for all datasets and achieves 4.48%. This result is 

better than the results of the other methods. Also, the method 

achieves 6.83% for the average total error, which is better than 7 

of the eight methods. 
 

Finally, our method is very good for removing buildings with 

different shapes, sizes, and heights. Also, it is good for removing 

vegetation and bridges. It is very good for flat areas. The 

remaining issue is that the areas with very steep slopes still 

significantly challenge the tornado and improved method. 
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