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ABSTRACT: 

 

Point clouds are among the most important photogrammetry and remote sensing data that provide three-dimensional information about 

objects and features. These points have unorganized, irregular structures and do not have uniform spacing. In this paper, two innovative 

methods for converting the point cloud into a grid are presented. The first method is called the mesh method. It generates all possible 

3D grid points covering the point cloud. Then, the distances between the generated grid points and the original points are measured. 

Based on these distances, the required grid points are determined. The second method is the resampling method. It uses three equations 

to resample the original point so that the points are moved to new coordinates to create the grid points. The methods are tested on three 

different point clouds. The results show that the two methods are very fast. However, the resampling method is much faster, especially 

for very large areas. 

 

 

1. INTRODUCTION 

Nowadays, point clouds are used to create high-quality and high-

density features and models. These datasets are acquired by laser 

scanning techniques such as Airborne LiDAR (Light Detection 

And Ranging) or ALS, Terrestrial Laser Scanning (TLS), and 

Mobile Mapping System (MMS). They are also created using 

photogrammetric methods and datasets (Alidoost and Arefi, 

2015, Mahphood et al., 2019) to provide efficient data for various 

applications.  

 
The point clouds have an unstructured irregular structure, which 

leads to high time consumption in processing. Therefore, in some 

studies they are converted into constructed regular networks (in 

point or pixel space) or irregular networks (such as Triangulated 

Irregular Network (TIN)) (Chen et al., 2006, Awrangjeb, 2016). 

By using these networks, the processing speed is increased. Thus, 

the raster technique creates regular points from irregular points 

and reduces the size of the point cloud, increasing the processing 

speed for very dense point clouds. This technique can be divided 

into the pixel-based technique (raster space) and the point-based 

technique (vector space). In the pixel-based technique, the points 

are converted into raster images such as a digital surface model 

(DSM) (Brédif et al., 2013, Yu et al., 2021) or a binary image 

(Galvanin and Dal Poz, 2011, Yang et al., 2013) or a normalized 

digital surface model (nDSM) (Haithcoat et al., 2001), or a 3D 

raster (Gorte and Pfeifer, 2004). In the point-based technique, 

points are divided into a regular grid of cells in 2D space 

(Mahphood and Arefi, 2017, Mahphood and Arefi, 2022) or a 

grid of voxels (cubic) in 3D space (Xiong et al., 2021, Xu et al., 

2021). For the 2D grid, a point is selected instead of the points 

within the cell. For the 3D grid, one point is selected instead of 

the points within the voxel. Usually, the selected points are the 

centers of the cells or voxels. Nevertheless, the point-based grid 

technique is used in many applications, such as filtering ground 
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points (Qin et al., 2018, Mahphood and Arefi, 2020a), building 

boundary extraction (Zhou and Neumann, 2008, Mahphood and 

Arefi, 2022), digital terrain model (DTM) generation (Mongus 

and Žalik, 2012), segmentation (Deschaud and Goulette, 2010, 

Wang and Tseng, 2011), forest canopy vertical space 

characterization (Chasmer et al., 2004, Popescu and Zhao, 2008), 

skeletonization (Bucksch et al., 2009), and point cloud 

registration (Xiong et al., 2021). 

 

Few studies explain how to generate grid points from a point 

cloud, as they may use the axiomatic method (Weishampel et al., 

2000, Popescu and Zhao, 2008). In this method, a horizontal 

widow moves in horizontal space with a vertical interval (or bin) 

to detect the points within that interval. Xiong et al. (2021) 

created the grid of point clouds by finding the minimum values 

of the coordinates in the X, Y, and Z directions. Then, these 

values are subtracted from the coordinates of the points, and the 

resulting values are divided by a grid distance (or voxel size). 

This method creates a grid point in a local coordinate system. 

Gorte and Pfeifer (2004) converted the point cloud into a 3D 

raster. This 3D raster represents the 3D grid in raster space with 

elements called voxels. In this method, voxels have two values: 

0 and 1. If a voxel has 0, it is an empty voxel; if it has 1, it contains 

points. 

 

In this paper, we present two new and fast methods for converting 

point clouds into 3D grid points. The first method creates grid 

points in the first step. Then the required grid points are selected. 

This method is called the mesh method. In the second method, 

the points are resampled in x, y, and z directions. The resampled 

points are the required grid points. Therefore, this method is 

called the resampling method. Then, the two methods are 

compared in terms of the speed and size of the generated grid 

points. In this work, the programming code was written in Matlab 

R2020b. 
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2. THE PROPOSED METHODS 

Figure 1 illustrates the flowchart of the proposed methods. First, 

the mesh method is implemented by creating the covering grid 

points. Then, the final grid points are selected based on the 

distances between the covering grid points and the original 

points. In the resampling method, the grid points are generated 

using three equations. Then, the duplicate points are removed. 

Finally, these methods are compared with each other. 

 

 
Figure 1. Workflow of the proposed methods. 

 

2.1 Overview 

There are two cases in which a point cloud can be converted into 

a grid in point space: 2D space and 3D space (Figure 2). The two 

cases are similar in terms of the working mechanism. In the first 

case, the point cloud is divided into a mesh of cells with an equal 

grid distance Gd (squares) (Figure 2 (a)). The required cells are 

the cells that contain at least one point (the black cells in Figure 

2(a)). In contrast, the empty cells are invalid and are removed 

from the post-processing (red cells in Figure 2(a)). In the end, the 

centers of the remaining cells are selected as the required grid 

points. In the second case, the procedure follows the exact 

mechanism. The voxels with at least one point are detected, and 

the remaining ones are removed. 

 

 

 
Figure 2. Examples of converting a point cloud into a grid. a) 

2D space, b) 3D space. Top) the point clouds, middle) the 

boundaries of the grid, bottom) the resulting grid points. The 

black points are the point cloud. The red points are the grid 

points. The dashed black lines are the non-empty cells or 

voxels. The dashed red lines are the empty cells or voxels. 

 

2.2 Mesh Method 

This method initially generates all possible grid Points without 

using the coordinates of the original points. Then, it selects the 

required grid points. Subsequently, this method has two steps: 

 

2.2.1 Possible Grid Points Generation: In this step, all 

possible grid points for the point cloud are generated. First, the 

extreme values of the point cloud are extracted: min x, min y, min 

z, max x, max y, and max z. The two extreme values, min and 

max are used for each axis to generate a vector of points separated 

by a distance equal to Gd. A 3D grid is then generated using the 

meshgrid function in Matlab (Figure 3(b)). The resulting points 

are all possible grid points for the point cloud. 

 

2.2.2 Final Grid Points Selection: Each generated grid point 

is checked to see if it should be kept or removed. To do this, the 

distances between the generated grid points and the original 

points are measured using the K-nearest neighbor method. Thus, 

for each point in the point cloud, the nearest grid point is 

determined. The result of this process is an index vector that 

indicates the number of grid points closest to each point in the 

point cloud. This index contains duplicate numbers because grid 

points are inevitably located near multiple points. Subsequently, 

the duplicate numbers are removed from this vector. The 

resulting index vector represents the final grid points (Figure 

3(c)). 

 

 
Figure 3. Mesh method. a) Point cloud, b) Possible grid points 

generation, c) final grid points selection. 

 

2.3 Resampling Method 

This method works in reverse compared to the first method. The 

grid points are not generated, but the original points are shifted 

towards the grid points. The original points will be converted into 

grid points through the resampling process of the original points. 

The point cloud is resampled using the equations (1)-(3). 

Mahphood and Arefi (2020b) used the equations (1)-(2) to 

resample the point cloud and extract the virtual first and last pulse 

within each local area. As the points that have the same 

resampled horizontal coordinates are detected. Then the highest 

point is detected as the first pulse, and the lowest is detected as 

the last pulse. 
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𝑥G = round(𝑥/𝐺d) × 𝐺d (1) 

𝑦G = round(𝑦/𝐺d) × 𝐺d (2) 

𝑧G = round(𝑧/𝐺d) × 𝐺d (3) 

 

where     x, y, and z: the coordinates of the point cloud. 

               xG, yG and zG: the coordinates of the grid points. 

 

This paper presents a new method for generating a grid network 

using the equations (1)-(3). The resampling procedure needs a 

sampling distance. Therefore, the sampling distance is the same 

as the grid distance Gd. Thus, using the equations (1)-(3), primary 

grid points (resampled points) will be generated. In other words, 

the original points inside each voxel will shift towards the voxel 

center to generate the primary grid points (Figure 4(a)). But, after 

resampling, there are duplicate grid points at the same locations 

(Figure 4(b)). Thus these points are removed by detecting the 

points with the same coordinates. The remaining grid points are 

the final ones.  

 

To explain the resampling mechanism, from the equations (1)-

(3), the coordinates of the original points are rounded to the 

nearest number of the specified grid distance. In other words, the 

original points are resampled to the grid points in x, y, and z 

directions using the equations (1)-(3), so that the coordinates are 

transferred to the nearest grid distance Gd. The three expressions 

of x/Gd, y/Gd, and z/Gd are calculated and then rounded to the 

integer values. Finally, the values are multiplied by Gd in order 

to give grid point coordinates xG, yG, and zG. 

 

 
Figure 4. Resampling method. a) Shifting the original points 

inside each voxel towards the voxel center, b) duplicate grid 

points. The black points are the point cloud. The red points are 

the grid points. 

 

Data 
Dimension 

(m2) 

Number 

of points 

(point) 

Terrain Features 

Area 

1 
42*82 297082 

Trees, cars, small 

buildings. 

Area 

2 
106.3*83.7 986442 

A mixture of vegetation 

and small buildings, 

power lines. 

Area 

3 
140.3*133.7 1751014 

Cars, complex and large 

buildings, power lines. 

Table 1. Characteristics of the studied areas. 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Datasets 

To evaluate the results, the LiDAR point cloud of the 2015 IEEE 

(Institute of Electrical and Electronics Engineers) GRSS dataset 

is used (Figure 5(a)). The data cover an urban and harbour area 

in Zeebruges, Belgium. The density of the LiDAR point cloud is 

approximately 65 points/m², which is related to the point spacing 

of about 10 cm. Three areas are extracted from this data to 

evaluate the proposed methods (Figure 5(b)-(d)). These areas 

differ in the number of points, dimensions, and Terrain features 

(trees, buildings, land, etc.). The characteristics of the areas are 

shown in Table 1. 

 

3.2 Results, Evaluation, and Comparison 

The two proposed methods are performed in areas with different 

grid distances. The distances used are 0.5, 0.75, and 1 m. The 

results are shown in Figure 6, Table 2, and Table 3. From the 

visual interpretation of Figure 6, we notice that the results of the 

methods have almost the same shape and structure for all the 

areas and used grid distance. However, there are some 

differences between the generated grid points in some regions. In 

Figure 6 (b) and (c), the regions that are inside the red circles are 

a little different from each other. In other words, the structure of 

the grids differs in these regions between the two proposed 

methods. For accuracy, Table 2 shows that the number of 

generated grid points for the proposed methods is slightly 

different for corresponding regions and grid distance. This 

confirms the previous result. Moreover, the difference between 

the number of corresponding grid points increases when the 

number of area points increases. 

 

 
Figure 5. a) IEEE dataset of the Zeebruges, Belgium area, b) 

area 1, c) area 2, d) area 3. 

 

For quantitative evaluation, Table 2 shows the number of grid 

points generated for each area, method, and grid distance. This 

number clearly decreases as the grid distance increases. Table 3 

shows that the two proposed methods are very fast in terms of 

processing time. For the mesh method, the processing time 
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increases when the grid distance decreases or the data size 

increases. The maximum running time is about 6.5 seconds for 

the largest area (area 3) and the smallest grid distance (0.5 m). 

The minimum runtime is about 0.5 seconds for the smallest area 

(area 1) and the maximum grid distance (1 m). The main 

disadvantage of this method is that it consumes a lot of time for 

large areas with minimum grid distance. This disadvantage 

results from measuring the distances between the original points 

and the possible grid points. When resampling distance, it can be 

seen that this method is not affected by the grid distance. This is 

because the times are almost the same. So this is one of the main 

advantages of this method. For area size, the time increases by a 

tiny amount as the area size increases. The maximum run time is 

about 0.5 seconds for the largest area (area 3), and the minimum 

run time is about 0.08 seconds for the smallest area (area 1). This 

is another advantage of this method. 

 

Data 

Mesh method Resampling method 

Grid distance (m) 

0.5 0.75 1 0.5 0.75 1 

Area 

1 
38046 18808 10458 38826 17991 10563 

Area 

2 
89541 42454 23082 90654 41914 22464 

Area 

3 
145710 65071 37016 143559 70740 41462 

Table 2. The number of grid points for each gridded area and 

each method. 

 

Data 

Mesh method Resampling method 

Grid distance (m) 

0.5 0.75 1 0.5 0.75 1 

Area 1 2.929 0.729 0.564 0.13 0.109 0.081 

Area 2 6.045 2.363 1.609 0.312 0.275 0.269 

Area 3 6.573 3.153 2.339 0.475 0.445 0.503 

Table 3. The processing time of the methods (in second). 

 

3.3 Discussion 

From the previous section, it can be seen that the two methods 

differ in the number of generated grid points, as shown in Figure 

6. This difference is due to the different structures of the grid, i.e., 

the positioning of the grid lines according to the point cloud. The 

position of these lines has a great influence on the number of 

generated grid points. From Figure 7, it can be seen that there are 

two cases where the grid lines are positioned according to the 

same point cloud (Figure 7(b) and (d)). In the first case, the 

generated grid points are three points (Figure 7(b) and (c). The 

second case is created by shifting the grid lines of the first case 

in x and y directions (Figure 7(d). Thus, the generated grid points 

are six points (Figure 7(e)). Thus, the difference between the two 

cases is significant because only half as many grid points were 

generated in the first case as in the second case. At the same time, 

the mesh structure of the mesh method is related to the extreme 

coordinates of the point cloud. On the other hand, the resampling 

method is related to the grid distance. As a result, the grid lines 

of the two methods may not be identical. Thus, the number of 

generated grid points will be different. 

 

In terms of processing time, we find that the two proposed 

methods generate grid points quickly. However, the resampling 

method is much faster than the mesh method because it is not 

affected by the grid distance or the area size. From Table 3, the 

maximum running time for the mesh method is about 6.5 seconds 

for area 3, and the grid distance is 0.5m. In contrast, the 

corresponding time for the resampling method is about 0.48 

seconds, which is 13 times less. This is a big difference, which 

becomes even bigger for larger areas. 

 

 
Figure 6. The results of gridding the point clouds of the areas: 

1, 2, and 3. a), b) and c) The results of the mesh method. d), e) 

and f) The results of the resampling method. 

 

 
Figure 7. The effect of the grid network structure on the 

number of the generated grid points. a) The point cloud, b) the 

first structure of the grid network, c) the generated grid points of 

the first structure (three points), d) the second structure of the 

grid network by shifting the first one in the x and y directions, 

e) the generated grid points of the second structure (six points). 

The red points are the grid points. The dashed black lines are 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-437-2023 | © Author(s) 2023. CC BY 4.0 License.

 
440



 

 

the grid lines. The dashed green lines are the grid lines of the 

first case. 

 

 

4. CONCLUSION 

In this paper, two novel and fast methods for gridding point 

clouds are proposed. The first method is the mesh method, which 

first generates all possible grid points and then determines the 

final points. This method is fast, but it is strongly affected by the 

size of the data used and the grid distance Gd, as it becomes slow 

for large data and small spacing. Since the time required 

multiplies with the change of the previous variable, this method 

is not recommended for large areas. 

 

The second method is the resampling method, which uses three 

equations ((1)-(3)) to convert the points to grid points. This 

method is very fast and is not affected by the size of the data used 

and the grid distance Gd. Therefore, it is faster than the previous 

method, especially for large areas. Ultimately, the two methods 

are recommended for small areas (less than one million points), 

since the time difference between the two methods will not be too 

large. In contrast, the resampling method is recommended for 

large areas, as the difference will be noticeable. 
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