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ABSTRACT:

Civil infrastructure Structural Health Monitoring (SHM) and its preservation from deterioration is a crucial task. In general, natural
disasters like severe earthquakes, extreme landslides, subsidence or intensive floods directly influence the health of civil structures
such as buildings, bridges, roads, and dams. Evaluation and inspection of defects and damages of the aforementioned structures
help to preserve them from destruction by accelerating rehabilitation and reconstruction. An automatic and precise crack detection
framework is required for periodic assessment and inspection due to the large number of the structures. In this study, a two-step
crack segmentation and its 3D reconstruction procedure is proposed. The crack segmentation is carried out by using Deeplabv3+
architecture and Xception as the backbone. Next, Squeeze-and-Excitation is added as an attention module to achieve higher accur-
acy. Integration of predicted masks and original images into a structure-from-motion procedure is additionally taken into account.
In the last step, ground control points and scale bars are considered to overcome the problem of datum rank deficiency in absolute
orientation through the bundle adjustment procedure in aerial triangulation. The most probable segmented cracks are overlaid on
the 3D point clouds in the global coordinate system with true scales. Our network is trained based on 8000 images and their corres-
ponding masks, leading to 69% in Intersection over Union (IoU) index. Sub-millimetre accuracy of crack reconstruction using the
proposed methodology is validated with a scale bar.

1. INTRODUCTION

Among 17460 in-serviced bridges in New York between 1992
and 2014, 98 bridges collapsed. Collapsing 46% of the bridges
was due to structural deficiency, and 5% of them were asso-
ciated with a life loss. The substantial influencing factor was
the age of constructions. Therefore, it was suggested to regu-
larly and precisely inspect and assess the bridges older than 52
years (Cook and Barr, 2017). The United States spends more
than 200 billion dollars each year on the maintenance of fa-
cilities and public civil infrastructures. One third of approx-
imately 576, 600 American bridges are structurally deficient,
which may require repair, replacement or functionally obsol-
ete. By increasing the age of infrastructures and also consid-
eration of maintenance and repairs, their related cost increased
sharply. Performing Structural Health Monitoring (SHM) in a
regular manner leads to the condition assessment of the struc-
tures and the prediction of their remaining life time. On the
one hand, SHM ensures the safety of the structures, and on
the other hand, reduces maintenance cost (Giurgiutiu, 2014).
However, it can increase life span by in-time deficient detection
and rehabilitation. Furthermore, it provides additional inform-
ation to be used in the design, operation and management of
civil infrastructures (Vardanega et al., 2022). Cracks are the
most common structural deficiency signatures. They typically
occur due to overloading, drying shrinkage, thermal contrac-
tion/expansion, and structural deterioration. These structural
damages should be sealed to ensure long-term durability and to
prevent future cracking (Al-Mahaidi and Kalfat, 2018). Having
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prior information about the severity and extent of deficiencies
accelerates rehabilitation. This investigation can be conducted
visually, semi-automatically or automatically. The visual evalu-
ation by human experts is the simplest method with high labour
costs, unreliable, and the inspector-dependent results. Human
response to the crack would be different and depends on the per-
son’s skills and knowledge. An expert considers a crack a nuis-
ance while the other may consider the feature as a fine crack or
vice versa. Therefore, making a decision based on human vis-
ion and skills is a time-consuming task with a certain level of
reliability (Van Grieken, 2008).

Alternatively, the accuracy of crack assessment can be influ-
enced by the choice of the sensors, detection, and reconstruc-
tion method. With improvements in robotics as well as the
development of low-cost sensors like digital cameras, most at-
tention is attracted to automatic methods (Zakeri et al., 2017).
In other words, the advent of robotic-based inspection, e.g.,
drones, makes the SHM easier and a new era of technological
activity (Ozer and Feng, 2020). Although SHM has many ad-
vantages but also has limitations impacting the reliability and
accuracy of data collection. Besides the age of structures, dif-
ferences in their shape and size are the other influencing factors.
This variations in structure leads to the necessity for compre-
hensive unique monitoring techniques. However, the SHM
standard technique should save time and cost, reduce the er-
ror of data collection, being accurate in the case of inspecting
any kind of structures (Alokita et al., 2019). Segmentation is a
fundamental task in photogrammetry and computer which en-
ables to detect objects in the images based on their correspond-
ing pixel homogeneity. It has many applications in autonom-
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ous driving, remote sensing, and medical image analysis (Ham-
ishebahar et al., 2022; Hsieh and Tsai Yichang, 2020). Zakeri
et al. (2017) performed comprehensive research about tradi-
tional image-based techniques for crack segmentation, detec-
tion, and classification. There are many traditional methods
based on morphological operations (Landstrom and Thurley,
2012; Maode et al., 2007; Tanaka and Uematsu, 1998), edge
detection (Abdel-Qader et al., 2003), thresholding (Akagic et
al., 2018; Oliveira and Correia, 2009), and textural filters (Hu
et al., 2010; Salman et al., 2013) which are obsolete due to their
accuracy and sometimes disability to segment cracks. Some of
the drawbacks of the traditional techniques are described in the
following:

• They are not generalised and objective methods. These
methods are scene or image dependent, and their results
vary from image to image (Zakeri et al., 2017). For in-
stance, parameter determination in thresholding or mor-
phological methods and their dependencies on image con-
ditions.

• Traditional methods work better when combined. Hybrid
techniques are more robust and have better results com-
pared to the individual techniques (Basavaprasad and Ravi,
2014).

• Many of these approaches work based on pixel intensity
values. Therefore, by changing the image illumination res-
ults will be varied.

• Edge detector-based, texture-based, and threshold-based
algorithms don’t achieve good results due to the back-
ground complexity and illumination condition during the
image acquisition step.

• Crack pixels are a minor part of an image in comparison
to the background. The low magnitude ratio of the crack
pixel to the background pixel is another problem that tra-
ditional methods have to deal with. These approaches fail
in complex backgrounds due to the aforementioned para-
meter

• Texture-based and threshold-based techniques fail when
cracks are embedded in surfaces with similar features like
wires or tiles boundary. In addition, they will fail to
identify the crack pixels in case of appearing shadow of
branches of a tree on the road (Salman et al., 2013).

• It is difficult to segment and quantify cracks, since cracks
do not propagate in deterministic orientations. This is due
to the random nature of the cracks and their various pos-
sible orientations. Zhang et al. (2013) proposed an al-
gorithm to detect the cracks aligned at 12 different ori-
entations based on a matching filter. Medina et al. (2010)
assumed that cracks are aligned parallel and orthogonal
concerning the road or pavement.

• Traditional methods are sensitive to image degradation
such as noise or low light conditions.

• Oliveira and Correia (2014) and Tang and Gu (2013) as-
sume a crack as a thin object which might not be the case.
Scale-invariant methods are required which are independ-
ent of the magnitude of the crack’s width, length, and
depth. Therefore, methods that assumed crack as a thin
object have less generality and might not be suitable.

The next generation of techniques is dedicated to machine
learning methods. Support Vector Machine (SVM) (Li et al.,
2009; Prasanna et al., 2016) and Random Forest (Shi et al.,
2016) are the most popular and efficient algorithms. The main
problem of the machine learning approaches is that they con-
tain shallow learning and cannot deal with complex or dark

scenes (Hsieh and Tsai Yichang, 2020). The state-of-the-art
approaches are described in details in Wang et al. (2022).
More specifically, Hamishebahar et al. (2022) and Hsieh and
Tsai Yichang (2020) addressed the deep learning methods in
crack identification. Hamishebahar et al. (2022) divided the
task into image classification, object recognition, and segment-
ation. Hsieh and Tsai Yichang (2020) explained machine
learning- and deep learning-based methods and reviewed public
data sets and the evaluation metrics. Ronneberger et al. (2015)
proposed a segmentation method for medical image analysis
based on encoder-decoder architecture and convolutional neural
networks (CNN) based on U-net. It was useful both in med-
ical and non-medical image segmentation applications. Many
crack segmentation techniques were developed based on the U-
net (Jenkins et al., 2018; Liu et al., 2019; Qiao et al., 2021). Fu
et al. (2021) used Deeplabv3+ (Chen et al., 2018) and Xcep-
tion (Tang and Gu, 2013) for bridge crack segmentation. Zhang
et al. (2020) added Squeeze-and-Excitation (Hu et al., 2018)
and could improve the accuracy by adding a few parameters
to a network. Zhao et al. (2022) proposed another architec-
ture the so-called Crack-FPN for crack segmentation exclus-
ively and reported 86% IoU. They have just trained their net-
work on 717 images and tested them on 79 images, which were
then compared with improved U-net. In addition to segment-
ation, the 3D reconstruction of the cracks is of great import-
ance. 3D reconstruction is known as a 3D representation of
an object, which points can be obtained by photogrammetric
methods or laser scanners. In computer vision, there are many
methods implemented on multiple images instead of the ste-
reo geometric images (Hartley and Zisserman, 2003; Stereop-
sis, 2010). Latter methods decrease occluded areas and help
to have dense matching, dense point clouds, and better texture
mapping. Ma and Liu (2018) addressed the main steps of 3D re-
construction and their corresponding references, such as feature
extraction and matching, bundle adjustment, and 3D dense re-
construction. Then, they investigated the point cloud processing
approaches and applications of 3D reconstruction in civil en-
gineering infrastructures such as buildings, roads, and bridges.
They also performed a crack assessment, deformation assess-
ment, and bridge disease detection. Liu et al. (2016) proposed
an image processing step to extract crack features before 3D
reconstruction and project crack pixels with a pinhole camera
model. They claimed that the main challenges in crack quan-
tification with image-based techniques are absolute scale and
camera orientation. They reconstructed point clouds to obtain
working distance for accurate crack assessment. Shokri et al.
(2020) compared the two common segmentation networks U-
net (Ronneberger et al., 2015) and Seg-net (Badrinarayanan et
al., 2017) with different loss functions. Next, they chose the
network with the best result and reconstruct the cracks. They
also considered the condition of the crack which is distributed
along the plane and performed one-step refinement in a bundle
adjustment. Xue et al. (2022) proposed a Structure from Mo-
tion (SfM) based deep learning method to quantify the defects
in tunnels. First, they segmented images with Mask R-CNN
(He et al., 2017) and then reconstruct the 3D scene with SfM
and CMVS. Next, they used the segmented image with Mask
R-CNN for texture mapping and visualisation. The scale para-
meter was obtained with known scale bars through the tunnel
route. Finally, the 3D segmented point clouds with true dimen-
sions were obtained.

In this research, we develop and implement a deep learning-
based method for crack detection and its 3D reconstruction
which overcome the deficiencies of the traditional methods.
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The strength of our work lies in the integration of Xception
and Squeeze-and-Excitation modules as well as training the net-
work on a large data set which therefore increases its reliability.
We used Deeplabv3+ with Xception as a feature extractor and
Squeeze-and-Excitation to boost the result of crack segmenta-
tion. The crack pixels detected from captured images are seg-
mented which are then input to the SfM algorithm to be 3D
reconstructed. To specify the position of the cracks in 3D space
with their true scales, Ground Control Points (GCPs) are meas-
ured which enables the estimation of similarity transformation
parameters including one scale, three orientations, and three
translation parameters. In this research, low-cost smartphones
are used instead of metric digital cameras or Terrestrial Laser
Scanners (TLS). The framework of our proposed approach is
illustrated in Figure 1.

Figure 1. The framework of our proposed algorithm.

2. METHODOLOGY

2.1 Segmentation

To develop the framework in this research, Deeplabv3+ (Chen
et al., 2018) is used which is a deep learning encoder-decoder
architecture. In addition, Xception (Tang and Gu, 2013) net-
work as the backbone is integrated to extract features. In addi-
tion, Squeeze-and-Excitation (Hu et al., 2018) module is con-
sidered to add channel-wise attention to our network. Figure 3
represented the proposed network architecture. It is shown
Xception in the Deep Convolutional Neural Network section
and Squeeze-and-Excitation block after the ASPP step. We in-
troduced images and corresponding masks and trained our net-
work. A combination of the prediction of the network with the
original image was imported to the 3D Reconstruction. The
segmentation is performed based on the following steps:

1. added images and their corresponding masks,
2. performed image preprocessing,
3. trained model and storing,
4. patchified images, and then performing prediction on the

real image,
5. unpatchified predicted masks,
6. locate mask pixels on the original image.

Our network was trained on 128 × 128 images but our real im-
ages are larger than 128 pixels. Therefore, it is required to di-
vide a large image into smaller sections by patching the large
image and then performing the segmentation. Figure 2 depicts
the patchified image to be ready for prediction. Table 1 presents
the results on train and test data sets. We got 69% IoU in the
training data set and 65% in the test data set. In addition, we
got 99% and 94% in the Precision criterion for the train and
the test data sets, respectively. Figure 4 shows three samples
of test data sets. The first and second columns show the test
images and their corresponding masks, respectively. The first
two columns are related to the ground truth image and annot-
ated mask. The third column indicates the predicted mask and
the fourth column is a combination of images with the predicted
masks. Figure 5 depicts the performance of the network on real
images. Although we trained our model on a large data set, we
could not increase the epochs by more than 500 according to the
limited sources. There were the pixels that were recognised as
a crack feature while, they were not cracks (false detections or
false positives) like tiles intersections, black cables, the bound-
ary of windows, and any other similar features. There were
crack pixels that were not segmented by the network (false neg-
atives). It is obvious that there is not a method or model to
segment any feature entirely with 100% accuracy but, by in-
creasing the number of training images and epochs, it is ex-
pected to have a more accurate model. Moreover, the resolu-
tion of training images impacts the segmentation quality. We
might get better results by training our model on 416 × 416 ×
3 images instead of 128 × 128 × 3, since this space will let
the model distinguish between crack and non-crack pixels dur-
ing the patch prediction. However, some of the aforementioned
errors and weaknesses are unavoidable because of the limited
hardware like GPU and RAM and it is not due to the network
architecture. Furthermore, to get better results, adding a data
set that is similar to our condition and workspace is helpful. By
training the network with a large data set and fine-tuning with
conditionally similar images, our model becomes more com-
patible with our work. Although adding similar images cause
better results, it should be considered that image annotation is
also a time-consuming and costly task. The usage of encoder-
decoder network architecture, strong feature extractors as back-
bone, and large data sets improve the flexibility and reliability
of our work while the model is trained in fewer epochs. The
model will be more accurate while the models are trained in
thousands of epochs and be prevented from overfitting.

Data set IoU (%) Recall (%) Precision (%)
Train 0.69 0.62 0.99
Test 0.65 0.61 0.93

Table 1. Evaluation result.

2.2 Reconstruction

To reconstruct the cracks, the SfM algorithm is applied which
consists of feature extraction, feature matching, bundle adjust-
ment, and sparse/dense point cloud generation. The use of
individual masks which have been predicted in the segmenta-
tion step failed due to imperfect feature extraction and feature
matching procedures. Furthermore, the lack of textures as well
as the nonexistence of the accurate segmentation network, im-
pose additional problem to the SfM step when using only mask
images as input.

To solve the aforementioned problem, the segmented crack
pixels are specified and highlighted with red colour on the ori-
ginal images. Next, the original images and their corresponding
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Figure 2. Patchified image.

Figure 3. Architecture of network for crack segmentation.

segmented masks are considered within the point cloud gen-
eration procedure. Existence of the high-quality textures and
distinctive features enable the algorithm to successfully recon-
struct the whole scene and cracks. By doing this, not only prob-
lem of network deficiency in the segmented masks will not de-
struct the SfM, but also missed cracks will be compensated in
the original images. In addition, crack pixels are emphasised
and considered with more importance and attention. Next, a
statistical noise reduction is conducted on a sparse point cloud
and points with high re-projection errors are removed. After-
ward, dense point cloud generation and texture mapping are
carried out, respectively. Image segmentation followed by the

Figure 4. Prediction of network on the test data set.

Figure 5. Prediction of network on real images.

3D reconstruction can be an alternative to 3D segmentation de-
rived by deep learning methods. Figure 6 represents the point
clouds which are reconstructed from the images captured by a
smartphone. Figure 7 depicts the 3D segmented crack points
in the object space, which are highlighted with red colour at
cropped sections. Although point clouds are generated, it is
still required to be georeferenced. To solve the absolute ori-
entation problem, the 10 coded targets as GCPs and 2 scale
bars are added. Therefore, they allow to transform the model
space to the real object space with local or world coordinates.
The GCP points are measured by the total station of type Leica
TC03, which are later extracted in captured images. To verify
the accuracy, the GCPs and scale bars are divided into check
and control points. By solving the absolute orientation prob-
lem, the point cloud is aligned in true orientations, translations,
and scale. Figure 8 indicates the segmented point cloud in true
position and scale. Finally, orthophoto and DEM are generated.
Reconstruction error is defined as the distance between the in-
put and re-projection points that are defined based on the pos-
ition of the markers and their estimates. The root mean square
error (RMSE) is calculated for the markers and over all images
where each marker is visible in at least two images. Table 2
provides information about reconstruction and re-projection er-
rors of check and control points which are calculated in both
millimetre and pixel units. Consequently, 1.2 mm in the re-
construction error and 1.031 pixels of the re-projection error
have been calculated considering the control points. However,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-443-2023 | © Author(s) 2023. CC BY 4.0 License.

 
446



1.2 mm and 1.177 pixels have been calculated in checkpoints.
For control and check scale bars, the precision of 0.9 mm and
0.98 mm are calculated, respectively. It means that measuring
the distances with a precision of less than one millimetre is feas-
ible. The Ground Sampling Distance (GSD) is defined as the
distance between two consecutive pixels on the ground which is
equal to 0.36 mm in this research. By considering the pixel as a
square, each pixel in the image space is equivalent to 0.12 mm2

in the object space.

The optimum number of images is important in the 3D recon-
struction. Although increasing the number of images causes a
large coverage area and high-quality model texture, it increases
the run-time processing and computation. However, by using
less number of images occluded areas remain. Furthermore,
the integration of tilted images and stereo images reduces oc-
cluded areas by covering the fovea and bulge. Domical im-
agery geometry with tilted images, shown in Figure 9, causes
the tie points to be observed on various images and overlaps
are increasing. As a result, details of specific features will
be appeared in the model and are measured accurately. In the
one hand, if the crack features are extracted in various images
with different perspectives, the cracks will be reconstructed,
textured, and quantified more accurately and precisely. It de-
creases the occluded areas as well. On the other hand, image
resolution and quality play a significant role in precise 3D re-
construction. High-resolution and noise-free images with ap-
propriate light conditions are also necessary. Using calibrated
high-resolution metric cameras instead of non-metric low-cost
sensors can improve the results in 3D reconstruction. However,
systematic and random errors during land surveying must be
checked and compensated. Calibrated measurement tools with
expert operators reduce the errors like sighting or instrument
leveling. It should be noted that precise and accurate absolute
orientation parameters are directly influenced by the precision
and accuracy of target positions that are obtained by land sur-
veying.

Figure 6. Dense textured point cloud.

Points Error (mm) Error (pixel)
Control Points 1.2 1.03
Check Points 1.2 1.17

Table 2. Error magnitude in GCPs.

3. EXPERIMENTAL DETAIL

This research was conducted on a personal computer with spe-
cifications of, intel CORE i7-10750 2.60 GHz, 16 GB RAM,
and GEFORCE GTX 1660 ti as GPU. We used 8000 images
with a size of 128 x 128 including all kinds of cracks and non-
crack scenes for training and 2000 crack images from another

data set for network validation. We also used Intersection over
Union (IoU), Recall, and Precision as metrics for both train and
test evaluations as well as Dice loss as a loss function. We
trained our network with 500 epochs. For reconstruction, we
added 33 images to the SfM network. Images were taken from
Samsung A-71 with a focal length of 5.23 mm and a resolution
of 4624 x 3468 pixels.

4. CONCLUSION

We proposed a framework to accurately reconstruct crack fea-
tures in 3D space. It is attempted to decrease the probability
of missing cracks. First, crack pixels were segmented with
Deeplabv3+ which achieves an IoU of 65%. Next, mask im-
ages as well as original images were additionally used as input
for the reconstruction step. Subsequently, it helps missing im-
portant crack pixels by performing one level emphasising. To
transform points from the model space to the real object space
in either local or global coordinates, measuring the crack size,
and assessing the propagation of the cracks accurately, GCPs
were added. The reconstruction error of 1.2 mm, both in con-
trol and checkpoints was obtained while the check scale bars
reached the precision of 0.98 mm. With an imaging resolu-
tion of 0.12 mm2, cracks in a range of the aforementioned value
were detectable and distinguishable. In order to merely recon-
struct the crack features, the original images and mask images
were added into the SfM procedure to obtain 3D position of
the cracks in the model space. It is expected that by increas-
ing the accuracy and precision of the whole scene’s reconstruc-
tion, crack pixels will be reconstructed more accurately. Fur-
thermore, there are many deficiencies in 3D reconstruction and
3D segmentation steps using deep learning approaches. Point
clouds derived from deep learning methods are not accurate.
In addition, they are not aligned in true position, orientation,
and scale. Fortunately, 3D reconstruction by photogrammetric
methods overcomes the following deficiency. Due to the lack
of the data set for 3D segmentation and 3D reconstruction of
the cracks by deep learning methods, the use of artificial intelli-
gent approaches is less possible. By considering the framework
proposed in this research, it is feasible to obtain the segmented
crack features in the 3D space with true and accurate coordin-
ates.
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