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ABSTRACT: 

 

Semantic segmentation of aerial data has been one of the leading researches in the field of photogrammetry, remote sensing, and 

computer vision in recent years. Many applications, including airborne mapping of urban scenes, object positioning in aerial images, 

automatic extraction of buildings from remote sensing or high-resolution aerial images, etc., require accurate and efficient 

segmentation algorithms. According to the high potential of deep learning algorithms in the classification of complex scenes, this paper 

aims to train a deep learning model to evaluate the semantic segmentation accuracy of UAV-based images in urban areas. The proposed 

method implements a deep learning framework based on the U-Net encoder-decoder architecture, which extracts and classifies features 

through layers of convolution, max pooling, activation, and concatenation in an end-to-end process. The obtained results compare with 

two traditional machine learning models, Random Forest (RF) and Multi-Layer Perceptron (MLP). They rely on two steps that involve 

extracting features and classifying images. In this study, the experiments are performed on the UAVid2020 semantic segmentation 

dataset from the ISPRS database. Results show the effectiveness of the proposed deep learning framework, so that the U-Net 

architecture achieved the best results with 75.15% overall accuracy, compared to RF and MLP algorithms with 52.51% and 54.65% 

overall accuracy, respectively. 

 

 

1. INTRODUCTION 

In recent years, photogrammetry and remote sensing have 

achieved significant progress in the field of information 

extraction from databases (image, video, point cloud datasets, 

etc.). In the last three decades, data semantic segmentation has 

been one of the most challenging tasks in the photogrammetry 

and remote sensing community (Yuan et al. 2021). Semantic 

segmentation, as part of scene understanding, describes 

assigning each segment in an image to a class label (e.g., car, 

tree, vegetation, road, sky, person, etc.). In other words, semantic 

segmentation by dividing images into meaningful semantic 

objects has the task of labeling each image pixel into a predefined 

set of classes. Segmentation is used in a wide range of various 

urban applications, including; urban planning (Yao et al. 2019), 

land cover mapping (Matikainen and Karila, 2011), building and 

road extraction from high-resolution aerial images (Wei et al. 

2017; Li et al. 2015), automated driving of autonomous vehicles 

(obstacle detection, pedestrian detection, traffic signs, etc.) 

(Wang et al. 2021). However, with the progress of deep learning 

networks and the significant improvement of their performance 

in recent years, Semantic segmentation in the understanding of 

urban aerial scenes has become an essential and, at the same 

time, challenging issue (Minaee et al. 2021). 

 

Segmentation techniques can be classified into two categories: 

traditional approaches based on manual feature extraction and 

processes based on deep learning. Traditional methods are multi-

step classifying images into several regions by considering the 

similarity between pixels. In these methods, the steps of 

extraction and classification of pixel-based features are done 

independently; firstly, the pixel-based features are extracted, and 
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then the classification process is done by one of the typical 

classifiers. Although these methods can segment the image into 

separate parts, there is no semantic communication with the 

segmented areas in their results (Shi and Malik, 2000; Rother et 

al. 2004; Ullah and Alaya Cheikh, 2018). Consequently, 

semantic segmentation models that are a part of supervised 

methods, and are also carried out in an end-to-end framework, 

have gained the attention of researchers in the last decade 

(Garcia-Garcia et al. 2018; Neupane et al. 2021). In deep 

learning, due to the high capacity of feature learning, deep 

semantic segmentation methods, especially convolutional neural 

networks, have achieved high performance (Chen et al. 2014; He 

et al. 2016). 

 

In this work, we used a symmetric encoder-decoder 

convolutional network (U-Net) (Ronneberger et al. 2015) for 

semantic segmentation of urban aerial scene images. U-Net is a 

well-known deep learning model which contains two parts: 

encoder and decoder. Its architecture is such that the encoder 

extracts the features through convolutional layers, max pooling, 

and activation. Next, the extracted feature vectors are decoded 

by the decoder module through convolution, transfer, 

concatenation, and activation layers. Each block of U-Net 

architecture consists of two convolutional layers with Batch 

Normalization and Rectified Linear Unit (ReLU) activation 

function. In addition, the features of each convolution block in 

the encoder are connected to the corresponding convolution 

block in the decoder by Concatenated layers to step-by-step 

obtain high-resolution features (Liu et al. 2019). 

 

The structure of the paper is as follows: In Section 2, the related 

work is presented in the semantic segmentation of UAV images. 
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Then, in Section 3, the proposed method will be presented in 

detail. In Section 4, we evaluate the performance of the 

implemented strategies. Finally, in Section 5, the conclusion is 

presented. 

 

 
2. RELATED WORK 

The development and appearance of various machine learning 

methods occurred in the 1990s. At that time, the support vector 

machine algorithm performed well in many fields. Soon after the 

2000s, the era of big data began, which helped the development 

of various learning algorithms and made deep learning the focus 

of researchers' attention  (Cox and Dean, 2014). Most early 

methods (Silberman et al. 2011; Khan et al. 2014) performed 

processing operations on the input data in several steps. At first, 

pre-processing is performed; then, features are extracted from 

the input data, and finally, the extracted features are used as input 

to the machine learning algorithms (such as Gray Level Co-

occurrence Matrix (GLCM) and Histograms of Oriented 

Gradients (HOG)). In these approaches, the feature extraction 

step encounters challenges such as the generation of feature 

space with high dimensions and the existence of additional and 

dependent features, etc. 

 

Recently, with the development of deep learning models, there 

has been an effort to solve the challenges in the field of machine 

learning in such a way that the extraction and classification of 

features automatically during the training operation by the 

learning algorithm itself, in an end-to-end process (Krizhevsky 

et al. 2012). 

 
A wide range of studies have been published in semantic 

segmentation and classification of remotely sensed data. These 

approaches can be classified based on the type of data worked 

on, the method used to classify the segments, the segmentation 

type, and the object detection and tracking method. In this 

section, the related work is presented into two parts: semantic 

segmentation of UAV data based on traditional and deep 

learning methods. 

 

2.1 Semantic segmentation based on traditional machine 

learning approaches 

In these approaches, the segmentation process is performed in 

two separate steps feature extraction and classification. 

Morandozzo and Mellagni (2012) presented a combined 

approach based on corresponding feature extraction by scale-

independent feature transform (SIFT) algorithm and feature 

classification with a support vector machine (SVM) classifier to 

identify vehicles in UAV images (Moranduzzo and Melgani, 

2012). They (2014) proposed a method of extracting HOG 

gradients histogram features using horizontal and vertical 

filtering in the problem of vehicle detection based on UAV 

images (Moranduzzo and Melgani, 2014). Ammour et al. (2017) 

presented an automatic vehicle detection method in UAV images 

based on the extraction of candidate regions and the 

classification process. In this approach, a pre-trained 

convolutional neural network (VGG16) has been used to extract 

features. The classification operation of "car" and "non-car" has 

also been done by training the SVM support vector machine 

algorithm (Ammour et al. 2017). Bhatnagar et al. (2020) 

segmentation of UAV images using machine and deep learning 

approaches (combination of random forest algorithm and 

convolutional neural network methods) was presented for 

mapping marsh plant communities (Bhatnagar et al. 2020). 
 

2.2 Semantic segmentation based on deep learning 

approaches 

In these approaches, feature extraction and classification are 

carried out automatically in an end-to-end process. Micheal et al. 

(2021) presented a method based on deep learning to detect and 

track objects from UAV-based data. The proposed approach 

included deep supervised object detector training for object 

detection and long-short-term memory training for detecting 

detected objects (Micheal et al. 2021). Girsha et al. (2019) used 

the fully convolutional neural network (FCN) and U-Net 

convolutional encoder-decoder network for semantic 

segmentation of UAV video frames (Girsha et al. 2019). Wang 

et al. (2019) presented a deep learning method for semantic 

segmentation of drone video frames. The approach proposed is a 

combination of the fully convolutional network (FCN) and 

convolution long-short-term memory (Conv-LSTM) for 

semantic segmentation of video frames (Wang et al. 2019). Qiu 

et al. (2017) used a combination of three deep fully convolutional 

neural networks for semantic segmentation of video frames. The 

proposed framework combines 2D and 3D fully convolutional 

networks and convolutional long short-term memory (Qiu et al. 

2017). Valipour et al. (2017) proposed and implemented an 

approach called fully convolutional recurrent networks for real-

time segmentation of video sequences with the aim of video 

semantic segmentation. The architecture proposed in this paper 

consists of a fully convolutional network and a recurrent unit that 

operates on a sliding window of time data (Valipour et al. 2017). 

Kentsch et al. (2020) used a transfer learning technique and 

Multi-Layer Perceptron (MLP) classifier to analyze forest 

images obtained by drones (Kentsch et al. 2020). 
 
In the recent two decades, due to the appearance of large-scale 

data, the traditional machine learning methods have been 

affected by the challenges of the feature extraction space. These 

approaches had low computational speed and accuracy in fitting 

training data. Due to the high dimensions of the training data, 

they required a system with increased memory, which was 

uneconomical. The development of deep learning approaches 

and their remarkable efficiency compared to traditional methods 

has been one of the research interests in various scientific fields 

in recent years. 
 

In this paper, we propose a U-Net convolutional encoder-

decoder neural network for semantic segmentation of UAV-

based aerial images that can extract and classify features during 

the training operation in an end-to-end process. U-Net is a 

network with two encoder-decoder modules that, for image 

semantic segmentation, first, image features are extracted and 

encoded by the encoder module. Next, the extracted features are 

decoded using the decoder module. Finally, the prediction 

vectors of each class are presented through a classifier layer. 

 

 

3. METHODOLOGY 

The proposed method includes four key steps, whose flowchart 

is shown in Figure 1. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-451-2023 | © Author(s) 2023. CC BY 4.0 License.

 
452



 

Figure 1. Flowchart of the proposed method. 

The proposed model is a convolutional encoder-decoder deep 

learning structure. We have used the U-Net encoder-decoder 

neural network for semantic segmentation of high-resolution 

urban UAV-based images. This research aim is the semantic 

segmentation of urban UAV-based images using deep learning 

methods and comparison with traditional machine learning 

methods. For this purpose, after loading the original and the 

ground truth images through the pre-processing operation, we 

make the initial settings related to the neural network training 

process on the input dataset. The next step concerns tuning the 

parameters, defining the layers, and training the neural network. 

Then, we have the operation of training the neural network, 

during which the spatial features of the input image sets are 

extracted. Then they are given to a classifier. Finally, we provide 

the test image sets as input to the trained neural network and 

evaluate the performance of the proposed segmentation model in 

terms of segmentation of data classes and labeling by analyzing 

the prediction vector of the labels with the ground truth map. In 

this research, we used Random Forest (RF) and Multi-Layer 

Perceptron (MLP) to compare with the proposed approach. 

 

Implementation of the proposed approach is based on four 

following steps: 
 

1. Loading input data: the original and the corresponding ground 

truth images from the UAVid2020 dataset (Lyu et al. 2020). 

 

2. Pre-processing: initial settings of the model training process 

on the input dataset. Settings include resizing input images, data 

normalization, label encoding (converting the labels into 

numerical form to present to the neural network), split data into 

train/test/validation, and statistical analysis of class label 

distribution. 

 

3. Training of the neural network: after performing pre-

processing on the input image sets and splitting them into 

training and test data, we generate the image sets by setting the 

dimensions, data class, and batch size in the Keras Library's 

Sequential class. The layers of the neural network are also 

defined. In addition, the optimizer, loss function, accuracy 

metric, and learning rate parameters on the neural network are 

set. Training is carried out, so feature extraction and 

classification are done end-to-end during the training operation. 

 
4. Performance evaluation: test images are fed to the trained 

model and get the prediction vector of the classes in the output. 

The results of semantic segmentation are compared with ground 

truth maps. To analyze the performance of the proposed 

segmentation model with machine learning methods, we 

calculate the segmentation metrics (accuracy, IOU of each class, 

MeanIOU, and MeanBFScore). 

 
3.1 U-Net convolutional encoder-decoder architecture 

In this paper, U-Net neural network is used for semantic 

segmentation of urban aerial images. The U-Net architecture 

consists of two encoder-decoder modules. The encoder module 

extracts the spatial features from the training data, and the 

decoder module generates the prediction vector of data class 

labels from the encoded components. U-Net neural network 

module consists of four blocks. Each encoder block is separated 

by a Max Pooling layer, and each decoder block is separated by 

a Transposed convolutional layer. In the neural network, Max 

Pooling and Transposed convolutional layers with size (2,2), 

stride two are applied.  Each block consists of two successive 

convolution layers (3,3), two batch normalization layers, and two 

activation functions of the Rectified Linear Unit (ReLU). Also, 

each decoded feature is connected to the corresponding feature 

map in the encoder through a Concatenate layer. Finally, using 

the softmax activation function, the vector of data class labels is 

predicted during the up-sampling process. The neural network 

architecture is shown in figure 2. 

 

 

Figure 2. U-Net architecture (dimensions of input images 

256×256×3 and dimensions of output segmentation map 

256×256×7). We specified the size and number of channels of 

the feature maps above all layers of each network block. 

 

3.2 Traditional machine learning 

Random Forest (RF) and Multi-Layer Perceptron (MLP) 

machine learning algorithms are implemented to compare with 

the proposed approach. Figure 3 shows the flowchart of 

traditional machine learning methods. In these methods, feature 

extraction and classification are done independently. 
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Figure 3. Flowchart of machine learning approaches. 

Random Forest is trained in two steps; first, the data are sampled 

independently, and a decision tree is built for each sample. The 

decision trees are then combined for training, and each tree 

generates a classification prediction vector as output. Finally, 

one vote is taken for each predicted result, and the prediction 

with the most votes is selected as the final classification outcome. 

figure 4 shows the structure of the tenth decision tree from the 

trained Random Forest (RF). 

 

 

Figure 4. The structure of one of the decision trees from our 

random forest algorithm (tenth decision tree). 

 

Multi-Layer Perceptron neural network is another classifier that 

is implemented for comparison. It consists of two Dense 

consecutive layers (fully connected layers). Next to each dense 

layer, a ReLU activation layer and a dropout layer are defined 

(figure 5). Since we have a multi-class segmentation, the softmax 

activation function is used as the last layer to discriminate the 

classes. We used a neural network including an input layer with 

three units (RGB values), six hidden layers with 512 units, and 

an output layer with seven units (number of class labels). Each 

input of the neural network is a 65536-dimensional array 

obtained from an image with dimensions of 256×256.  

 

 

Figure 5. Multi-Layer perceptron architecture. 

 

3.3 Evaluation metric 

Performance evaluation is an essential  issue in the classification 

process. The common way to analyze trained models is the 

evaluation of the diagonal and non-diagonal elements of the 

confusion matrix (figure 6 shows a confusion matrix for seven 

label classes.). 

 

Figure 6. Confusion matrix. 

 
To evaluate the experimental results in this paper, we calculated 

overall accuracy, the intersection-over-union (IoU) score for 

each class, the mean IoU, and the MeanBFScore (Mean 

Boundary F1 Score) (equations 3, 5, 6, and 7). The Mean 

BFScore measures the matching of the predicted boundary of the 

objects with the ground truth boundary over the entire dataset 

(Csurka et al. 2013). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝐶𝑖𝑖

∑ 𝐶𝑖𝑗
𝑁𝑐𝑙𝑠

𝑗=1

,                                                           (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝐶𝑖𝑖

∑ 𝐶𝑗𝑖
𝑁𝑐𝑙𝑠

𝑗=1

,                                                                   (2) 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝐶𝑖𝑖

𝑁𝑐𝑙𝑠
𝑖=1

∑ ∑ 𝐶𝑖𝑗
𝑁𝑐𝑙𝑠

𝑗=1
𝑁𝑐𝑙𝑠

𝑖=1

,                                    (3) 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
,                                     (4) 

 

𝐼𝑂𝑈𝑖 =
𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=

𝐶𝑖𝑖

∑ 𝐶𝑖𝑗
𝑁𝑐𝑙𝑠

𝑗=1 + ∑ 𝐶𝑗𝑖
𝑁𝑐𝑙𝑠
𝑗=1
𝑖≠𝑗

,      (5) 

 

𝑀𝑒𝑎𝑛𝐼𝑂𝑈 =
1

𝑁𝑐𝑙𝑠
∑ 𝐼𝑂𝑈𝑖

𝑁𝑐𝑙𝑠

𝑖=1

,                                                      (6) 

 

𝑀𝑒𝑎𝑛𝐵𝐹𝑆𝑐𝑜𝑟𝑒 =
1

𝑁𝑐𝑙𝑠
∑ F1Score𝑖

𝑁𝑐𝑙𝑠

𝑖=1

,                                   (7) 

 

where  Ncls = Number of classes 

 𝐶𝑖𝑖 = The number of pixels belong to class i that are 

         correctly labeled as class i 

 𝐶𝑖𝑗 (𝑗𝑖) = Number of pixels belong to class i (j) but 

     classifier labels them as class j (i). 

 

 

4. EXPERIMENTAL RESULTS 

In this section, we analyze the details of training models, 

including the data set used, setting up deep and machine learning 

models, and evaluating the results of different methods. 
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4.1 Dataset 

The dataset used in this work is the UAVid2020 dataset from the 

ISPRS database. UAVid2020 is a high-resolution UAV semantic 

segmentation dataset (high-resolution 4K images in oblique 

views) focusing on urban scenes. The images in this dataset are 

annotated into eight classes, Building, Road, Tree, Low 

Vegetation, Moving Car, Static Car, Background Clutter, and 

Human. The size of the original images is 3840×2160 pixels or 

4096×2160 pixels (Lyu et al. 2020). Due to RAM limitations, we 

resized the training and test images to 256×256 pixels. Also, by 

reducing the dimensions of the images, the number of training 

pixels related to the human class in each image is significantly 

reduced, affecting the evaluation. Therefore, the human class is 

removed from evaluation, and we use seven classes to perform 

semantic segmentation of images. The total data used in this 

work includes 200 training images and 70 test images. 

 
4.2 Results 

In this work, the U-Net model is implemented in Python version 

3.6 using the Sequential class of the Keras library and uses 

TensorFlow as the backbone. To train the neural network, we 

compiled categorical_crossentropy loss function, adam 

optimizer, and accuracy metric on the neural network. U-Net 

neural network training has been done in 30 epochs with a 

learning rate of 0.01. Moreover, to train the RF, the number of 

trees is considered to be 100, and used the Gini function to 

measure the quality. This algorithm is implemented using the 

Scikit-learn (Sklearn) machine learning library. The Sequential 

class of the Keras Library is also used to implement MLP. To 

model training, categorical_crossentropy loss function, adam 

optimizer, and accuracy metric are compiled on the neural 

network. Neural network training is done in 30 epochs. 

In this section, the potential of the U-Net neural network is 

evaluated in comparison with traditional machine learning 

algorithms in the semantic segmentation of UAVid2020 urban 

UAV-based image sets. For this purpose. Seventy (70) images 

are used as test data (these data are not contributing in the 

training process.). The experimental results of semantic 

segmentation obtained from the U-Net deep learning neural 

network and two other machine learning algorithms are 

presented in Table 1 and the statistical graph in Figure 7. Table 

1 shows the IoU metric for each dataset class. 

 

IOU Metric Methods 

MLP RF U-Net 

Background clutter 0.2099 0.2026 0.4054 

Building 0.4758 0.4530 0.7627 

Road 0.2577 0.2578 0.6040 

Tree 0.4584 0.4278 0.5035 

Low vegetation 0.2738 0.2862 0.4934 

Moving car 0.0095 0.0162 0.4443 

Static car 0 0.0063 0.2123 

Table 1. IOU metric results for each class. 

 

Table 1 proves the high ability of U-Net in discriminate of all 

seven classes of complex urban areas. It depicts a low overlap 

percentage of the segmentation results of RF and MLP machine 

learning algorithms with the ground truth, especially in the 

classes with small samples (static and moving cars). At the same 

time, the U-Net deep learning network has a very high 

performance in overlapping with ground truth data, even the 

category of moving and static cars. 

 

Figure 7 shows a comparison of three metrics of overall 

accuracy, mean IoU, and MeanBFScore (mean boundary F 

Score) for U-Net, MLP, and RF models. 

 

 

Figure 7. Comparison of OA, MIOU, and MeanBFScore 

metrics for three RF, MLP, and U-Net models. 

Analyzing figure 7 shows the superiority of the U-Net deep 

learning network in all three measures of OA, MIOU and 

MeanBFScore compared to traditional machine learning 

algorithms (RF, MLP). The proposed U-Net neural network has 

performed more than 20% better than traditional methods in the 

semantic segmentation of urban aerial images in all three-

evaluation metrics. 

 
The visual results of semantic segmentation of the proposed 

model with machine learning models on three images from the 

test dataset are shown in figure 8.  
 

 

Figure 8. Segmentation results of U-Net, RF, and MLP models 

on the UAVid2020 test set. The first row shows the original 

image. The second row shows the ground truth images. The 

three last rows show the results of the RF, MLP, and U-Net 

models, respectively. 
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By investigating the visual results (the 3rd and 4th rows of figure 

8), we can find that the two traditional machine learning 

approaches, RF and MLP, perform poorly in the semantic 

segmentation of UAV images and have problems matching the 

overlap boundaries with ground truth. Also, they performed the 

worst in classifying objects with small sample sizes, such as 

static and moving cars. On the other hand, the U-Net neural 

network has had an acceptable performance in the semantic 

segmentation of urban UAV-based images. According to the 5th 

row in figure 8, this model performs better than the other two 

approaches in the semantic segmentation of most classes, 

especially the small-scale classes of the moving car and, to some 

extent, the static car. 

 

5. CONCLUSIONS 

Our goal in this study was to perform semantic segmentation of 

UAV-based aerial imagery based on a deep learning approach. 

In this paper, we proposed a U-Net convolutional encoder-

decoder architecture for semantic segmentation of urban aerial 

imagery. Experiments were performed on the UAV-based 

UAVid2020 dataset. The experiments performed on the test data 

showed the effectiveness of U-Net convolutional encoder-

decoder architecture compared to Random Forest (RF) and 

Multi-Layer Perceptron (MLP) machine learning algorithms. 
The U-Net neural network provided acceptable performance in 

segmenting all seven data classes (especially those with smaller 

dimensions (static and moving car)). The results of the test 

dataset segmentation show that U-Net architecture with an 

overall accuracy of 75.15%, Mean IOU of 48.94%, and 

MeanBfScore score of 53.86% has a better balance in matching 

the predicted boundaries and ground reality in comparison with 

traditional machine learning classifiers. 

 

For future works, it is suggested to use a transfer learning 

approach along with convolutional neural network training to 

achieve more accurate semantic segmentation. In this research, 

we resized the training dataset due to memory limitations. For 

more accurate semantic segmentation of urban scenes, it is 

suggested to use a set of higher-resolution images in a system 

with better hardware. 
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