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ABSTRACT: 

 

In this article, a method for the extrinsic calibration of a 2D laser range finder and a camera is presented. This technique produces a 

3D point cloud from the test field by connecting a laser range finder to a servomotor. In this study, ping balls and standard 

photogrammetric targets were employed as a test field. Ping pong balls are used because they can be easily recognized in data from 

laser range finder and camera. To calculate extrinsic calibration parameters between a camera and laser range finder, these balls are 

employed as control points in the data. The extrinsic calibration of the Laser range finder and camera is carried out using the point 

cloud created from the test field and the photos captured from the test field. In this method, a sphere is fitted to each ping pong ball's 

points in the 3D point cloud, and the coordinates of that sphere's center are taken to be the coordinates of that ball. By measuring the 

distances between various targets in the test field, the scale can be resolved. This approach was compared with another state-of-the-

art method. The proposed method is more accurate and stable than the alternative way, taking into account the average inaccuracy of 

check points. 
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1. INTRODUCTION 

High-resolution cameras and 2D laser LRFs (LRFs) are 

commonly used in mobile robots and mobile mapping systems, 

and integrating these two sensors is a common difficulty in 

some applications. To give 3D geometry and color texture 

information in some systems, these two sensors must be 

correctly calibrated (Zhu et al. 2020), (Zhang and Singh 2014). 

To create a 3D LRF system, the LRF may be attached to a servo 

motor, and estimating the poses of the LRF using visual 

odometry is required to have a mobile 3D laser scanner (Zhang 

and Singh 2015)(Xi et al. 2019)(Bi et al. 2021). Acquiring a 3D 

point cloud from an indoor (J. Li, He, and Li 2015)  or outdoor 

environment (L. Wei 2013), detection of pedestrians (P. Wei et 

al. 2018) construction of semantic maps (Iocchi and Pellegrini 

2007), object distance estimation (Kumar et al. 2020) or lane 

detection (Yenıaydin and Schmidt 2019) for self-driving 

vehicles are only a few applications for using this kind of 

configuration. To effectively employ information from both 

types of sensors, an accurate estimate of their relative position, 

or extrinsic calibration, is required. Due to the difficulty of 

precisely installing and aligning the camera and LRF, data 

misregistration is a common problem. 

 

The following features should be present in any extrinsic 

calibration method for calibrating a 2D LRF and a camera for 

non-experts: 1) The calibration target should be simple to build 

and detect, 2) The capability of the system to determine 

transformation values from a single sample, and 3) the system 

must be capable of coping with circumstances in which the 

camera and laser are not pointed in the same general direction 

(Palmer et al. 2020)  4) In situations where extrinsic calibration 

is used, such as in autonomous cars, it should be possible to 

update or modify it. Previous techniques (Ahmad Yousef et al. 

2017)(Hillemann and Jutzi 2017)(Vasconcelos, Barreto, and 

Nunes 2012) (Gao et al. 2003)  depended on identifying lines in 

laser readings and checkerboard patterns in images. However, it 

is challenging to use similar techniques to detect displacement 

in the Z-axis. Trihedron-based techniques for figuring out the 

height at which the laser meets the target have been created as a 

result(Gomez-Ojeda et al. 2015) (Hu et al. 2016).  These targets, 

however, suffer from rotating problems, which is why 

techniques that made use of a v-shaped test field (Palmer et al. 

2020) were created. Additionally, it has the benefit of allowing 

calibration from a single sample. Only  (Palmer et al. 2020) 

employed ping-pong balls in any of the earlier techniques to 

calibrate the laser and camera, which had vastly different 

perspectives of the target. However, their method was not 

compared with the trihedron-based methods and The advantage 

of employing photogrammetric bundle adjustment (Fraser 1997) 

(Cronk, Fraser, and Hanley 2006) (Abbas et al. 2014) 

(Hosseininaveh et al. 2014) for precisely predicting the center of 

the ping pong balls were neglected because they used just one 

image for calibration. 

 

This paper suggests a method for calibrating a camera and a 2D 

LRF using a photogrammetric test field to address the 

shortcomings and restrictions of earlier methods. Trihedron-

based approaches (Zhu et al. 2020) (Fan et al. 2019) and 

spherical target-based methods (Palmer et al. 2020)  can both 

use the test field. In addition to employing the room's corner 

and ping-pong balls, bundle adjustment was employed as a 

contribution of this study to the related work (Zhu et al. 2020) 

(Palmer et al. 2020) (Fan et al. 2019) as an accurate approach 

for 3D measurements of targets (the center of the ping-pong 

balls) and the posture of the camera. Additionally, this work 
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compares spherical target-based approaches with trihedron-

based methods, which have not before been done in the 

literature. A current state-of-the-art approach (Fan et al. 2019) 

in the category of trihedron-based methods is implemented, and 

a different version of this method with various benefits is shown 

and compared with the original method. 

Figure 1 displays a test field with some black targets and ping 

pong balls. The room's walls and floor are covered in targets 

that are equally spaced. No prior knowledge of the coordinates 

for the control point is necessary for the operations outlined 

here. Due to the contrast between black and white, the control 

points in the photos are visible. In addition to being simple to 

recognize in photographs, ping pong balls are also simple to 

recognize in LRF data due to their spherical shape. The 

approach described in this work can be used to perform 

calibration operations using targets and ping pong balls placed 

in any room corner. 

 

 
Figure 1. The photogrammetric test field 

 

The remainder of this paper is structured as follows. In the 

section that follows, an overview of related literature is given. 

The third section discusses the proposed method for extrinsic 

calibration between 2D LRF and camera. Experiments and 

results are described in the fourth section, which goes into great 

detail about how to use a designed system to apply the method. 

The fifth section evaluates the method. The conclusion is the 

sixth section. 

 

 

2. RELATED WORKS 

The literature can be classified into two categories based on the 

types of range finders employed with the intention of extrinsic 

calibration between the camera and the rangefinder: beams that 

can be seen and unseen (Kim and Ha 2020). Regarding the 

calibration methods, (Khurana and Nagla 2021) offered an 

exhaustive review of all current calibration techniques for 

calibrating LRF and camera extrinsically. Both sensors 

simultaneously examined either natural sceneries (targetless) or 

predetermined targets (target-based) in the approaches. Based 

on the human or automatic extraction of feature 

correspondences, these two groups were then categorized 

(point-to-plane, point-to-line, point-to-point, line-to-plane). 

Target-based and manual calibration has been the subject of 

long-term research, whereas targetless and automation 

calibration have recently drawn greater interest. Contrarily, 

target-based methods rely on prior knowledge of the target, 

which increases the accuracy of calibration results but decreases 

the system's usability because it calls for the design and 

construction of the target and isn't always appropriate for 

runtime adjustments in the event of de-calibration. Target-based 

approaches frequently employ artificial calibration objects that 

are simple to identify by both sensor modalities, either manually 

or automatically. Examples include checkerboards, custom-

designed targets, and polygonal boards. More than one view of 

the calibration board is typically needed to extract feature 

correspondences between the 2D LRF and camera to establish 

geometric constraints between these two sensors to estimate 

relative transformation. Researchers (28,29) developed a 

calibration method utilizing a chessboard and the point-on-plane 

constraint. This method requires at least 20 images of diverse 

postures to provide an initial closed-form solution for the 

extrinsic parameters. Sometimes it takes more than 20 shots to 

get good initials. Researchers have presented a calibration 

method based on trihedrons. The employment of specially 

designed boards, such as the circular, v-shaped (31,32)(Yang, 

Liu, and Patras 2012) (Itami and Yamazaki 2019), right-angled 

triangulation (G. Li et al. 2007), and cubic boards (Chen et al. 

2012), was another strategy.  

 

The above-mentioned strategies have two significant 

shortcomings. Despite taking numerous pictures, a few 

awkward photographs could trick the solution or make it 

unstable. They have many solutions or converge to a local 

minimum early, which could produce inaccurate calibration 

findings. Hu et al. suggested an extrinsic calibration method that 

only needed one shot at the target and produced a distinctive 

outcome (Hu et al. 2016). They used a tri-rectangular trihedron 

as their calibration pattern and estimated the camera and LRF 

positions using perspective-three-line (P3L) and perspective-

three-point (P3P), respectively. To accomplish a trustworthy 

and precise calibration between the camera and the LRF in a 

single shot, Fan et al. used a photogrammetric test field. The 

calibration of each sensor independently using the shared 

reference was used to perform the extrinsic calibration of the 

two sensors. By using the test field's room corner to solve a 

condensed P3P problem, they calibrated the LRF concerning the 

test field. The camera's extrinsic parameters concerning the test 

field were then obtained using a large number of control points 

(Fan et al. 2019). Although they used the technique in both 

simulation and actual indoor and outdoor scenarios, they needed 

to know the camera's lens distortion parameters beforehand to 

correct the one image they had taken from the test field.  

 

In addition, this approach makes the unrealistic assumption that 

the walls and floor of the room are flat, devoid of curvature, and 

perpendicular to one another in pairs. This method also has the 

drawback of requiring a test field, the coordinates of which 

must be determined and made known beforehand. Despite these 

issues, their approach has the benefit of only requiring one 

image and one shot of the LRF data, as well as the ability to 

calibrate a specific corner of the room. This method is used in 

this study as the most recent state-of-the-art for calibrating LRF 

cameras, and the outcomes of the methods suggested in this 

article are contrasted with those of this method. Ping-pong balls 

were utilized to estimate the extrinsic calibration parameters 

between the laser and camera with dramatically diverse 

viewpoints of the target (Palmer et al. 2020) with the same 

objective of simplifying the calibration procedure for non-

experts. 

 

In addition to the widely used techniques, such as Levenberg-

Marquardt optimization (Moré 1978) and EPnP (Lepetit, 

Moreno-Noguer, and Fua 2009), a unique technique was 

developed for parameter estimation. Even though their method 

was demonstrated to be more accurate than others, because only 

one image was utilized for calibration, it was not possible to 

employ bundle adjustment as a reliable method for determining 

the poses of cameras and ping pong ball centers. 
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To sum up, the most recent methods for extrinsic camera and 

LRF calibration are trihedron-based methods and sphere target-

based methods. The research question arises, based on the 

literature, which of these two categories of methods has better 

accuracy. the following section describes the presented method 

based on this research question. 

 

 

3. PROPOSED METHOD 

As illustrated in Figure 2, four coordinate systems were defined 

for the 2D LRF, 3D LRF (which combines a 2D LRF with a 

servo motor), test field, and photogrammetric model. The 

coordinate system for the 2D LRF was written as ( ). 

center of the 2D LRF was defined as the origin of the 3D LRF 

coordinate system and was designated as ( ). the  

axis is located along the servomotor shaft. axis is 

perpendicular to   and is along the top of the servo motor. The 

coordinate system is also right-handed due to the definition of 

 axis. the photogrammetric coordinate system ( ) 

was thought to have its origin in the optical center of the 

camera. The optical axis of this camera was the y-axis of this 

coordinate system, and the image plane of the camera was 

parallel to the plane. ( ) is used to 

represent the coordinate system for the test field. The test field 

coordinate system was constructed with the vertex of a room 

corner as its origin and its edges as its axes ( ).  

Several photogrammetric retro-reflective targets and ping pong 

balls that were mounted on the room's corner walls made up the 

test field. Using a digital caliper, the distances between some of 

the coded targets were precisely measured. 

 

 
Figure 2. Configuration of the coordinate systems 

 

The approach was put out to determine the camera's relative 

orientation to the LRF. The technique is based on a 3D point 

cloud generated by a 3D LRF while a servo motor rotates a 2D 

LRF. For every point P, the coordinates of this point are = 

( , , ) in the 3D LRF coordinate system, = ( , )  in the 

2D LRF coordinate system, =( , , ) in the 

photogrammetric coordinate system, and = ( , , ) in the 

test field coordinate system. The rotation matrix and translation 

vector are abbreviated  and , serve as the extrinsic 

calibration parameters between the photogrammetric coordinate 

system and the 3D LRF coordinate system. Any desired point P 

is used to build equation (1): 

 

(1)  

Where:    rotation matrix between photogrammetric                 

coordinate system and 3D LRF coordinate 

system 

                     =  3D coordinates of  P 

translation vector between photogrammetric coordinate 

system and 3D LRF coordinate system. 

 

3.1 Calibration using 3D point cloud 

We need to locate the coordinates of some objects (the center of 

the ping pong balls) in two different 3D coordinate systems to 

establish the calibration parameters between the LRF and the 

camera. The optical center of the camera used in the main 

station (NOTE: the main station is the station where 2D LRF 

and cameras collect data) serves as the origin of the 

photogrammetric coordinate system, whereas the center of the 

2D LRF serves as the origin of the 3D LRF coordinate system, 

as was previously mentioned. The 2D LRF data are registered to 

another in the first phase of this approach to create a 3D point 

cloud by spinning the LRF with a servomotor and using the 

encoder data of the servomotor. Each point associated with a 

ping pong ball in the point cloud is fitted with a sphere. The 

fitted spheres' centers and the ping-pong balls' centers share the 

same coordinates. The test field is photographed at the main 

station and numerous other stations in the following step.  

bundle adjustment is used to calculate the positions of the balls 

in the photogrammetric coordinate system. The third and final 

stage involves using the center of the ping pong balls in two 

distinct coordinate systems to determine the calibration 

parameters using the least square. Each step is thoroughly 

explained in the sections that follow.  

 

3.1.1 Producing a 3D point cloud with rotating LRF  

  

As shown in Figure 3, to generate a 3D point cloud, information 

from the servomotor and 2D LRF must be considered 

simultaneously. For each intended point P that the 3D LRF 

system successfully captures, three observations are obtained. 

equations (2) are used to determine each point's coordinates in a 

3D LRF coordinate system, such as point P. 

 

 

(2) 

 

Where     r =  the distance between the target point P and the 

LRF center 

                  α =  the distance between the vector r and the axis  

                  β = the angle between and  axis measured by          

the servomotor encoder 

 

 
Figure 3. The structure of the 3D LRF system includes a 2D 

LRF and a servomotor connected by a gimbal. 
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equation (2) and 2D LRF and servomotor data may be used to 

create a 3D point cloud from the test field. The ping pong balls 

are spherical, thus it is easy to identify their corresponding 

points. One way to accomplish this is to separate the points on 

each ball and then fit a sphere to each of them. The common 

locations discernible in both the rangefinder data and the 

camera pictures are thought to be the center of these spheres, 

which are the center of ping pong balls. 
 

3.1.2 Estimating the control points coordinates using 

photogrammetry 

 

At the same station (main station) where the 3D point cloud was 

formed in the previous stage, a camera is used to take a picture 

of the test field. If the camera is positioned differently and 

additional images are captured from the test field the bundle 

adjustment can be used to estimate the locations of the targets 

and the centers of ping pong balls as well as the exterior and 

interior camera parameters in each station (Triggs et al. 1999). 

During the bundle Adjustment procedure, the center of ping 

pong balls and retro targets were taken into account as common 

locations in the photographs. To resolve the scale issue, the 

distances between various targets were measured and 

incorporated as a fixed constraint in the bundle adjustment 

procedure. The origin of the photogrammetric coordinate 

system was thought to be the optical center of the camera at the 

main station. 
 

3.1.3 Computing extrinsic calibration parameters 

between the LRF and the camera 
 

As was previously said, the optical center of the camera in the 

main station was the origin of the photogrammetric coordinate 

system and the origin of the 3D LRF coordinate system is the 

center of the 2D LRF in the main station. the rotation matrix 

and the translation vector  between the 3D LRF 

coordinate system and the photogrammetric coordinate system 

will be the extrinsic calibration parameters. It should be noted 

that the three shared points (ping pong balls) in the two 

coordinate systems can be used to determine the six unknown 

parameters of the translation vector and rotation matrix. On the 

other hand, these three balls shouldn't be on the same line. 

 

The relation between the photogrammetric coordinate system 

and the 3D LRF coordinate system is expressed by equation (1), 

which can also be represented as equation (3): 

 

 
(3)  

( )

11 12 13

21 22 23

31 32 33

PLPL

F X

L x

P L y

TR

r r r T

P r r r P T

r r r Tz

   
   

= +
   
      

 

 

Where     
PLR R R R  = . 

Taylor's method of linearization can be used to obtain the 

parameters of equation (3), which is referred to as 3D 

conformal. 

 

 

4. EXPERIMENTS AND RESULTS  

As shown in Figure 4, the designed gimbal was used to 

implement the proposed method. A laser range finder was 

mounted to the gimbal. The LRF is a Hokuyo URG-04LX-

UG01 that is connected to a Dynamixel MX-28T Servo Motor 

through the designed gimbal. The Hokuyo LRF had a 240-

degree field of view and a 0.352-degree angular resolution and 

an accuracy of 30 mm for ranges under one meter and 3% of the 

range for ranges over one meter, this LRF could measure 

objects out to a maximum of 5.6 meters. The MYNT EYE 

D1000 stereo camera had a 2.45 mm focal length and a 1280 x 

720-pixel image resolution. To an accuracy of 0.088 degrees, 

the encoder of the Dynamixel motor could measure the shaft 

rotation. The entire setup was powered by a power bank and the 

processor was a Jetson Xavier AGX Developer kit. 

 

 
Figure 4. The integrated sensor is composed of a 2D LRF, a 

stereo camera, and a servomotor 

 

 

78 retro-reflective targets were also regularly set on the three 

walls of a room's corner which also included 16 ping pong balls. 

The ping pong balls had a 38 mm diameter, and five distances 

between the retro targets in various directions were measured. 

The images from the left and right cameras, as well as the LRF 

data, were recorded in the main station to implement 

approaches. Additionally, some convergent stereo images were 

taken around the test field from various locations. To estimate 

the interior and exterior orientation of the camera as well as the 

coordinates of the targets and ping-pong balls in the 

photogrammetric test field, Australis (“Australis - Photometrix 

Photogrammetry Software” n.d.), a well-known 

photogrammetry package, was used to perform the  bundle 

adjustment. The camera manual was used to choose the initial 

values needed to bundle adjustment in each experiment using 

Australis. The pixel size was 3.75 nanometers, and the focal 

length was 2.45 mm.  

 

 
Figure 5. The test field provided for the calibration methods. 

The balls labeled with yellow numbers are control points used 

for estimating the calibration parameters and the check points 

are white.  
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Both our proposed method and the method proposed by Jia Fan 

(Fan et al. 2019) are implemented. 

 

4.1 Calibration using 3D point cloud 

The system was positioned in front of the test field so that all of 

the targets were dispersed throughout the picture space in the 

main station to execute the calibration. The 2D LRF was spun 

by the servomotor at the main station to produce an extremely 

high-density 3D point cloud, as explained in section 3-1-1. The 

ping pong ball points are distinguished from other points easily. 

A sphere was fitted to each of the ping pong ball's points once 

they were chosen in the GOM inspect software (“GOM Inspect” 

n.d.). Figure 6 shows the point cloud and fitted spheres. 

 

 
Figure 6. The 3D point cloud of the test field is generated with 

the proposed system and the fitted sphere to the points of the 

ping pong balls. 

 

At the main station, the image from the test field was acquired 

with the left and right cameras of the stereo camera. In addition, 

several images from the test field were captured with the stereo 

camera in other stations. According to Figure 6, the targets and 

the ping-pong balls were treated as corresponding points in the 

images. The bundle adjustment operation was accomplished in 

Australis software. according to Figure 6 to tackle the scale 

problem, the distances between the S 0-b, c-d, e-f, g-f, and h-g 

targets were measured and they were treated as constraints in 

the bundle adjustment. The origin of the photogrammetric 

coordinate system was regarded to be the optical center of the 

left camera at the main station. This method was used to 

determine the targets' and ping-pong balls' coordinates in the 

photogrammetric coordinate system. The center of ping pong 

balls in the two coordinate systems of the 3D LRF and the 

photogrammetric model was used to determine the calibration 

parameters, as explained in section 3-1-3. The positions of the 

centers of the ping pong balls marked in Figure 6 with yellow 

numerals were used to determine the extrinsic calibration 

parameters for the LRF and camera (the numbers 1, 2, 3, 5, 6, 7, 

8, 10, 13, 14, and 16).  The locations of the ping pong ball 

centers, indicated with white numerals (the numbers 4, 9, 11, 

12, and 15), served as the check points and were used to 

evaluate the extrinsic calibration accuracy. 

 

4.2 Extrinsic calibration between a camera  and a 2D LRF 

using a photogrammetric control field (Fan et al. 2019) 

16 photos from the test field were used to alter the bundle to 

determine the targets' coordinates. The single image was 

rectified by removing the effect of lens distortions with the 

known camera calibration parameters estimated in bundle 

adjustment in agisoft metashape software. Following that, the 

DLT coefficients were determined using 56 control points with 

known coordinates that were approximated using a bundle 

adjustment. The DLT coefficients were then calculated using 56 

control points with known coordinates estimated in bundle 

adjustment. The rotation matrix and translation vector of the 

single image concerning the test field were obtained using the 

DLT coefficients. On the other hand, the position vector and the 

rotation matrix of the 2D LRF relative to the test field were also 

obtained by the P3P method and using the LRF data captured 

from the corner of the room. Finally, using the rotation matrices 

and translation vectors of the camera and 2D LRF concerning 

the field test, the calibration parameters of the LRF relative to 

the camera were obtained. 

 

Table 1. The estimated extrinsic calibration parameters of the 

LRF and camera using the presented methods. 

3D Point Cloud 
Jia Fan et al method 

 (Fan et al. 2019) 

R T R T 

1.000 0.000 -0.016 65.9 1.000 -0.009 -0.004 73.3 

0.000 1.000 0.012 8.4 0.009 0.999 0.032 10.2 

0.016 -0.012 1.000 107.4 0.006 -0.032 0.999 126.0 

 

 

5. EVALUATIONS 

A 3D point cloud from the test field was used in sections 4-1 to 

determine the coordinates of the centers of the ping pong balls 

in the 3D LRF coordinate system. The bundle adjustment 

approach used in Australis was also used to get the coordinates 

of the ping-pong balls in the photogrammetric coordinate 

system. Table 2 displays the 3D coordinates of the check points 

that were acquired using the mentioned approach for both 

photogrammetric and 3D LRF coordinate systems. 

 

By translating the check points' coordinates from the 3D LRF 

coordinate systems to the photogrammetric coordinate system 

using the extrinsic calibration parameters obtained with each of 

the methods presented, the estimated 3D coordinates of the 

check points in the photogrammetric coordinate system were 

calculated. Table 3 shows the estimated 3D coordinates of the 

check points obtained using the aforementioned procedure for 

each of the two approaches. 

 

Table 2. The 3D coordinates of the check points (mm) in both 

photogrammetry and 3D LRF coordinate systems.  
 

Chec

k 

Point

s 

Photogrammetry 3D LRF 

X Y Z X Y Z 

4 142.1 1324.8 98.4 69.2 1315.7 6.5 

9 92.4 1077.5 -138.1 8.0 1073.0 -228.0 

11 542.5 1084.5 -118.6 471 1083.7 -222.6 

12 -261.6 865.08 299.8 -333.3 846.7 217.1 

15 433.0 1149.7 487.7 379.2 1135.2 394.7 
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Table 3. Coordinates of check points in two different 

coordinate systems 

Check 

Points 

Calibration Methods 

3D Point Cloud 
Jia Fan et al method  

(Fan et al. 2019) 

X Y Z X Y Z 

4 135.2 1324.1 98.9 130.2 1326 93.5 

9 77.7 1078.5 
-

133.5 
72.3 1075.2 -133.4 

11 540.5 1089.3 
-

121.1 
535.1 1090.5 -125.4 

12 
-

270.6 
857.7 308.9 -268.8 860.2 316.5 

15 439.1 1148.4 494 440.2 1161.1 489.3 

  

using the estimated 3D coordinates of the check points, the 

difference in coordinates between the estimated values and their 

coordinates in the photogrammetric coordinate system attained 

in Australis was evaluated for all techniques (DX, DY, and DZ 

in Table 4). Using the following equation, the resultant error for 

the check points was determined: 

 

(4)   
 

Where     DX, DY, DZ = differences between true and estimated                                                                                                                                                               

coordinates values of  P 

 

Figure 7 shows the error values for the check points in the 

implemented calibration techniques. The average of the errors 

for all check points is displayed in the final row of Table 4. 

Figure 7 illustrates the most accurate calibration technique, 

which makes use of the 3D point cloud (10.4 mm average 

error). The average error for Jia Fan's method (Fan et al. 2019) 

was 15.5 mm. 

 

 
Figure 7. The error values of the check points for the 

calibration methods. 

 

Table 4. The Errors in the Calibration Methods  

Check  

Points  

The Errors in the Calibration Methods (mm) 

3D Point Cloud 
The Corner of the Room 

(Fan et al. 2019) 

DX DY DZ DX DY DZ 

4 -6.92 -0.72 0.48 -11.95 1.19 -4.90 

9 -14.72 0.93 4.56 -20.07 -2.31 4.69 

11 -2.03 4.79 -2.52 -7.4 6.01 -6.83 

12 -9 -7.37 9.04 -7.24 -4.81 16.65 

15 6.08 -1.38 6.25 7.13 11.31 1.54 

Average 10.4 15.54 

Standard 

Deviation 4.4634 3.9694 

 

 

6. CONCLUSIONS 

In this study, a new test field was used to propose a trustworthy 

and practical way for the extrinsic calibration of a camera and a 

2D LRF. The presented method was then contrasted with a 

current state-of-the-art method. There were 16 ping pong balls 

on the test field in addition to the photogrammetric targets. In 

camera photos and LRF data, the ping pong balls were 

recognized due to their characteristic geometric shape. In this 

technique, a 3D point cloud was produced using servomotor 

data in addition to the range and camera data for the extrinsic 

calibration of the LRF and camera. The calibration parameters 

were calculated using the ping pong balls as common targets. In 

the (Fan et al. 2019) technique, the extrinsic calibration was 

carried out in the room's corner, and the P3P problem was 

solved using the three points acquired from the fitted lines on 

the LRF data on the walls and floor. The camera's position 

concerning the test field was then established. Finally, the 

extrinsic calibration parameters between the LRF and the 

camera were determined utilizing the external parameters of the 

LRF and the camera concerning the test field. The results of the 

trials showed how trustworthy the suggested approach is. 
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