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ABSTRACT: 

Continuous progress in navigation, sensor-based, and GPS technologies have made smart devices essential to our daily lives and 

many location-based applications. However, the trajectory datasets generated by these applications require the management of large 

data volumes while preserving their main properties and semantics. One of the most popular methods for compressing trajectory 

data offline is the Douglas–Peucker (DP) algorithm, but its principles should be applied to a diverse range of contexts when 

considering real-time trajectory data. This paper introduces a Flexible Douglas-Peucker algorithm (FDP) that takes into account 

the data’s diversity, underlying properties, and semantics. The proposed framework is applied to the Geolife benchmark dataset 

with a series of  different thresholds that reflects different contexts and constraints when performing a trajectory compression 

process. The results show that the proposed algorithm achieves a significant compression rate while preserving trajectory data 

points that have a semantic role concerning different modes of transportation. 

 

1. INTRODUCTION 

Recent advances in navigation and positioning have made 

smart devices (such as smartphones, tablets, and wearable 

gadgets) essential to our daily lives (Yang, Stewart, Tang, 

Xie, and Li, 2018). GPS positional data collected by these 

devices support a wide range of applications such as route 

planning, anomaly detection, and decision-making (Zhang, 

Zhao, and Liu, 2022; Zhao and Shi, 2019). However, data 

collection processes are typically performed in real-time 

with usually very short time intervals, resulting in very large 

data volumes. These data are usually formalized and stored 

as sequences of annotated trajectories. A problem that 

immediately arises is that raw trajectories contain a large 

amount of duplicate data. Therefore,  storing, retrieving, 

managing, processing, and querying these trajectories is 

computationally expensive and requires large storage spaces 

(Nasiri, Azimi, and Abbaspour, 2018; Zhao and Shi, 2019). 

A critical step in trajectory representation and pre-

processing is to reduce incoming data volumes while 

preserving the main properties and semantics associated 

with these trajectories and resulting movement patterns 

(Makris, Kontopoulos, Alimisis, and Tserpes, 2021).  

Over the past few years, several compression methods have 

been proposed to reduce the volume of trajectory data. These 

methods can be categorized into two groups: offline and 

online. When applying offline methods, compression is 

applied after trajectory data collection and according to 

preselected spatial, temporal, and semantic parameters. In 

online methods, trajectory data selection is processed on the 

fly then reducing data storage but increasing computational 
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time (Sun, Xia, Yuan, and Li, 2016). Although offline 

methods often result in higher accuracy, online methods are 

usually preferred to avoid the generation of large data 

volumes and to facilitate further data processing and mining 

(Zhang et al., 2022).  

This paper introduces a Flexible Douglas–Peucker (FDP) for 

trajectory compression and whose peculiarity is to consider 

the semantic and spatial dimensions. The rest of this paper is 

organized as follows. Section 2 gives the motivation of this 

research while Section 3 briefly outlines related work.  The 

proposed framework is introduced in Section 4.  Section 5 

describes the implementation and evaluation of the results, 

while finally section 6 draws the conclusions and a few 

perspectives for further work. 

 
2. MOTIVATIONS 

One of the first methods applied for compressing trajectory 

data offline is the Douglas–Peucker (DP) algorithm 

(Douglas and Peucker, 1973). The DP algorithm reduces the 

number of points in a curve that is approximated by a series 

of points. It is based on the deviation distance of the 

trajectory curve from the straight line connecting the starting 

point and the endpoint of this curve, suitable points of the 

trajectory are selected and maintained. Then the trajectory 

from these selected points is divided into two sub-

trajectories. This process continues recursively and 

hierarchically until the distance of the mentioned deviation 

is less than the threshold of the distance determined at the 

beginning of the process. The distance used is the 

Perpendicular Euclidean Distance (PED).  shows the 
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successive steps of the DP method to compress one single 

trajectory (from a to d). 

Figure 1. Douglas Peucker compression algorithm (a-d) 

A limitation of the DP algorithm is that it relies on a constant 

threshold to determine the minimum deviation to maintain 

spatial points along the trajectory (Xiao-li and De, 2010). 

This constant threshold is suitable when the trajectory 

properties are solely spatio-temporal and not specifically 

associated with additional semantics. When representing 

multi-modal trajectories in urban environments, this is not 

the case as most human routes combine several modes of 

transportation with different speeds and then spatio-

temporal constraints. This implies considering variable 

thresholds during the compression processes. A 

conventional application of the DP algorithm with a constant 

threshold to a multi-modal trajectory is illustrated in Figure 

2. Based on the usual DP method and setting a constant 

threshold for the entire trajectory, several points in the 'Walk' 

mode (points B, E, H) that embed useful semantic 

information have been removed.

 

Figure 2. Constant threshold limitation 

3. RELATED WORK 

This section describes some of the existing methods 

developed for trajectory compression. Tobler (Tobler and 

Geovisualization, 1989) developed a trajectory compression 

method known as Uniform Sampling Algorithm specifically 

applied to map generalization. The principle is to keep the 

most representative trajectory points from a cartographical 

point of view.  Bellman (Bellman, 1961) proposed a dynamic 

compression algorithm for fitting line segments to trajectory 

curves. These line segments are chosen in such a way that 

they have the best fit and connect the main trajectory points. 

One of the most applied algorithms for line compression is 

the Douglas Peucker algorithm (Douglas, Peucker, and 

geovisualization, 1973). This algorithm applies a recursive 

process in which points are selected based on the amount of 

deviation they create in the straight line connecting the 

starting point and the endpoints.  The Douglas Peucker 

algorithm's main limitation is that it is primarily based on the 

trajectory spatial dimension. Meratnia and de By (Meratnia 

and de By, 2003) have extended the Douglas-Peucker so-

called Top-Down Time-Ratio algorithm that integrates the 

time dimension. A time synchronized Euclidean distance is 

used to calculate the deviation.  The Opening Window 

algorithm (Keogh, Chu, Hart, and Pazzani, 2001) is still 

based on the Douglas Peucker algorithm and applies a 

moving window, where on each trajectory point, the amount 

of deviation is calculated, compared to the threshold, and 
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when this deviation is greater than the threshold, the 

aforementioned point is saved. This point is considered the 

first point of the next moving window and this process 

continues until the end point of the trajectory. Similarly, Wu 

and Cao (Wu and Cao, 2002) suggested an Opening Window 

Time-Ratio algorithm based on a synchronized Euclidean 

distance. Additional spatial constraints such as speed and 

direction of the trajectory points have been considered by 

Potamias et al (Potamias, 2006) and the STTrace algorithm. 

Trajcevski et al. (Trajcevski, Cao, Scheuermanny, 

Wolfsonz, and Vaccaro, 2006)  presented an online 

algorithm, Dead Reckoning, which selects the most 

appropriate points with the location and velocity of each 

trajectory point. The SQUISH method (Muckell et al., 2011) 

selects the most important points locally for the compressed 

trajectory by prioritizing the trajectory points and using a 

fixed-size buffer. The SQUISH-E method (Muckell, Olsen, 

Hwang, Lawson, and Ravi, 2014) is an extension of the 

previous method in which, in addition to prioritizing the 

points, the minimization of the synchronized Euclidean 

distance error is also considered. Stop points can be also 

considered to extract the main semantics of urban 

trajectories (Hosseinpoor, Abbaspour and Claramunt, 2018). 

Overall, most of existing research consider a constant 

threshold or allowed error value, for all trajectory points and 

all trajectories in the dataset. To the best of our knowledge, 

none of these works take into account variable thresholds or 

diverse error values influenced by semantic parameters in 

addition to spatial parameters.  

 

4. PROPOSED METHODOLOGY 

We introduce the principles of a Flexible DP algorithm 

(FDP) applied to a multi-modal trajectory, in which 

appropriate thresholds for each part of a multi-modal 

trajectory are based on the semantic properties of the 

associated transportation modes. The main steps of the 

proposed framework are briefly illustrated in Figure 3 and 

hereafter described. 

First, at the pre-processing stage, the raw trajectory is 

examined to remove outliers and noisy data. At this stage, 

incomplete data and data without time stamps are removed 

from the dataset. Then, raw trajectory data is enriched by 

semantic information related to respective transportation 

modes. 

 

Secondly, and to reflect different contexts, trajectory data are 

also annotated by specific user data and temporal data (e.g., 

day of occurrence).  The displacement between two 

consecutive trajectory  points is calculated based on the 

Haversine formula (Kerley, 1965): 

 

∆𝑙𝑎𝑡𝑖 = 𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡𝑖−1                    (1) 

∆𝑙𝑜𝑛𝑖 = 𝑙𝑜𝑛𝑖 − 𝑙𝑜𝑛𝑖−1                   (2) 

𝐷𝑖 = 2𝑅√𝑠𝑖𝑛2(
∆𝑙𝑎𝑡𝑖

2
) + cos(𝑙𝑎𝑡𝑖−1) cos(𝑙𝑎𝑡𝑖) 𝑠𝑖𝑛2(

∆𝑙𝑜𝑛𝑖

2
)          (3) 

 

where R denotes the Earth radius and 𝑙𝑎𝑡𝑖, 𝑙𝑎𝑡𝑖−1, 𝑙𝑜𝑛𝑖, 

𝑙𝑜𝑛𝑖−1 successive trajectory points 

 

 

Figure 3. Proposed Framework 

Thirdly, appropriate scale factors and thresholds are 

determined for each transportation mode and associated with 

the FDP algorithm. Therefore, the average displacement for 

each mode of transportation and each user per day is 

calculated as follows: 

 

�̅�𝑗 = (∑ 𝐷𝑖
𝑛𝑗

𝑖=1 )/𝑛𝑗   (4) 
 

where  �̅�𝑗 = Average displacement of the jth mode 

 𝐷𝑖 = Displacement of ith point in the jth mode 

 𝑛𝑗 = Number of points in the jth mode 

 

Since the amount of displacement for each transportation 

mode is likely to be specific to it, every threshold should be 

specific too to each mode. However, as the displacement rate 

and the threshold have a direct relationship, the threshold 

value should be considered as a suitable coefficient of 

average displacement rate for each mode of transportation. 

Finally, the compression algorithm is applied, and the most 

relevant points generated by the FDP algorithm are kept. 

Figure 4 depicts the pseudocode of the generalized FDP 

algorithm. The output of the framework is a compressed 

trajectory data set based on spatial, and semantic parameters, 

and that reflects the specific properties of the multi-modal 

and contextual trajectory properties.  

 

Figure 4. FDP Algorithm 
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5. IMPLEMENTATION AND EVALUATION 

The trajectories used to implement the proposed framework 

are taken from the Geolife benchmark dataset (Zheng, Li, 

Chen, Xie, and Ma, 2008; Zheng, Xie, and Ma, 2010; Zheng, 

Zhang, Xie, and Ma, 2009). The Geolife dataset was 

collected by 182 users over 5 years from 2007 to 2011. A 

large part of this data is recorded in the city of Beijing in 

China. The GPS points of this collection contain information 

such as longitude and latitude, time, date of collection, user 

index, and transportation mode. The data are collected using 

different GPS devices and mobile phones and have different 

sampling rates. Several modes of transportation are available 

such as ‘walk’, ‘bus’, ‘train’, ‘taxi’, and ‘car’. 

Daily trajectories were selected representing 4326 points and 

four transportation modes (bus, train, walk, taxi) for 

implementation purposes, but the proposed algorithm can be 

extended to the entire data set and all transportation modes. 

Figure 5 shows a trajectory sample used for the 

implementation, where the transportation modes are shown 

in different colors.  

 

 

Figure 5. Case study 

To approximate potential thresholds for each transportation, 

vector coefficients are defined according to common 

displacement speeds for each transportation mode, as these 

represent levels of precision that should be considered when 

applying the FDP algorithm (Table 1). Accordingly, for each 

transportation mode, the product of these respective 

coefficients with the average distance in each transportation 

mode generates the threshold value. The higher the velocity 

of the moving average, the higher the possibility of moving 

it per second. Therefore, to calculate the threshold limit of 

the coefficient, a higher value should be considered for the 

mentioned threshold limit. These values have been 

calculated as optimal values after repeating the algorithm 

several times. 
The proposed framework has been compared to current DP 

algorithms to illustrate its performance. First, trajectories 

were compressed using the DP algorithm with different 

thresholds (i.e., 20 m, 50 m, 100 m, 200 m). The results 

obtained from these three different thresholds are shown in 

Figures 6-9. Next, these trajectories were also compressed 

using the FPD algorithm for comparison purposes. 

 
Transportation Mode Coefficient 

Walk 4 

Run 5 

Bus 7 

Train 9 

Car 8 

Taxi 8 

Bicycle 6 

Motorcycle 7 

 

Table 1.Transportation mode coefficients 

 

Figure 10 shows the output of the proposed algorithm for the 

mentioned trajectory.   As it is seen in Figures 6-9, regarding 

the trajectories compressed by the DP algorithm, except for 

the start and endpoints of the sub-trajectory with 

transportation mode ‘walk’, no other point of this sub-

trajectory is preserved. The exception is the compressed 

trajectory with a threshold limit of 20 meters, where a middle 

point of the path with the mode ‘walk’ is preserved.  

However, when considering the ‘walk’ mode, changes in the 

user's location are semantically more important than in the 

‘train’ or ‘bus’ transportation modes. Therefore, 

semantically, the more points of this mode are preserved, the 

compressed trajectory gives a better generalization for 

reconstructing the original trajectory and a more suitable 

representative for extracting additional information and 

knowledge. On the other hand, for other transportation 

modes such as ‘bus’ and ‘train’ where the average 

displacement is higher and small changes are not very 

important, the number of compressed points can be lower 

compared to the ‘walk’ mode.  Using the semantic 

information of the transportation mode, it appears that the 

flexible threshold has significantly improved the quality and 

performance of the FDP algorithm in maintaining the points 

of 'walk ‘mode during the compression process. Moreover, 

in other modes of transportation, the overall shape of the 

trajectory is preserved with minimal compressed points 

(Figure 10). 

To compare the proposed algorithm with the DP algorithm, 

the trajectory compression rate (Zheng and Zhou, 2011) 

criterion is used. The compression rate is the ratio of the 

number of compressed trajectory points to the number of 

original trajectory points, it is given as follows. 

 

𝐶𝑅 =
|𝑁𝐶|

|𝑁𝑂|
                                  (4) 

 

Where  CR =  Compression Rate 

 𝑁𝐶 = Compressed trajectory points 

 𝑁𝑂 = Original trajectory points 

The compression rate results of the DP algorithm with four 

different thresholds and our algorithm (FDP algorithm) are 

given in Table 2.
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Figure 6. DP trajectory compression with a threshold of 20 m 

 

Figure 7. DP trajectory compression with a threshold of 50 m 

 

Figure 8.  DP trajectory compression with a threshold of 100 m 
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Figure 9. DP trajectory compression with a threshold of 200 m 

 

 

 

Figure 10. FDP trajectory compression with flexible threshold

As expected, the overall compression rate decreases with the 

increase of the threshold value in the DP algorithm. The 

compression rate of the proposed algorithm is 0.0143, which 

is lower than the compression rate of the DP algorithm with 

a threshold of 20 meters, and of the DP algorithm with a 

threshold of 50 meters. However, the compressed trajectory 

based on the FDP algorithm provides a better approximation 

of the original trajectory, while preserving the underlying 

semantics. Also, the compression rate for the ‘walk’ mode in 

the proposed algorithm is higher than the compression rate 

of the other four trajectories, which shows that the ‘walk’ 

mode points are better preserved in the compressed 

trajectory of the FDP algorithm. The Computational times of 

all algorithms are exhibited in Table 2. Unsurprisingly, it 

appears that the FDP execution time is greater than that of 

the DP algorithm with the threshold of 100 meters and 200 

meters, while it is equal to the DP execution time with a 50 

meters threshold. These comparative results show that the 

application of the FDP algorithm does not increase 

computational times while significantly improving the 

quality and accuracy when considering the spatial and 

semantic dimensions.  
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Compression 
method 

Number of 

compressed 

points 

Compression 
rate 

Transportation 
mode 

Number of Total 

points for each  
Transportation 

mode 

Number of 

compressed points 
for each 

Transportation mode 

Compression rate 

points for each 
Transportation 

mode 

Run 
time 

DP with 20m 
threshold 

102 0.0236 

Walk 344 10 0.0291 

15 s 
Bus 1903 41 0.0375 

Taxi 1586 30 0.0189 

Train 493 21 0.0426 

DP with a 
50m 

threshold 

66 0.0153 

Walk 344 8 0.0233 

13 s 
Bus 1903 23 0.0121 

Taxi 1586 19 0.0120 

Train 493 16 0.0324 

DP with 

100m 
threshold 

47 0.0109 

Walk 344 6 0.0174 

12 s 
Bus 1903 16 0.0084 

Taxi 1586 13 0.0082 

Train 493 12 0.0243 

DP with 

200m 

threshold 

32 0.0074 

Walk 344 6 0.0174 

11 s 
Bus 1903 8 0.0042 

Taxi 1586 9 0.0056 

Train 493 6 0.0122 

FDP with 
flexible 

threshold 

62 0.0143 

Walk 344 18 0.0523 

13 s 
Bus 1903 24 0.0126 

Taxi 1586 14 0.0088 

Train 493 6 0.0122 

Table 2. Results of compression algorithms

6. CONCLUSION AND FUTURE WORK 

This paper introduces a framework for spatial trajectory 

compression, which is a flexible extension of the well-

known DP algorithm applied to line compression. The 

peculiarity of this FDP algorithm is that, while also 

considering the spatial dimension, additional semantic 

constraints are considered to reflect different transportation 

modes that qualify the considered trajectories. Accordingly, 

different thresholds are derived to reflect respective 

displacement speeds associated with these transportation 

modes when applying point displacements and filtering 

constraints. The framework has been applied to the Geolife 

data set that has the advantage of qualifying trajectories 

according to transportation modes. The results show that the 

compression algorithm not only has a substantial 

compression rate of 0.0143, but it also preserves trajectory 

data points that have a semantic role in relation to different 

modes of transportation, while finally maintaining a 

satisfactory accuracy and similarity of the compressed 

trajectory to the original trajectory. Further work, in addition 

to the semantic dimension obtained from the mode of 

transportation, additional semantic information such as 

temporal data will be used to enhance the trajectory 

compression process. 
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