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ABSTRACT: 

 

Wheat is one of the most important food supply and food security globally, especially in developing countries. Therefore, predicting 

the performance and determining the factors that affect the production of this product is very important. Biomass is one of the crop’s 

most important biophysical parameters, and its correct estimation can help improve accurate monitoring of growth and crop 

performance forecasting. With the recent advances in remote sensing, access to aerial images taken by unmanned aerial vehicles (UAV) 

for monitoring crops has been provided. This study investigates the potential of visible UAV images and the resulting vegetation 

indices to estimate the dry biomass of two types of Brazilian wheat. For this purpose, the performance of three regression algorithms, 

including Random Forest (RF), eXtreme Gradient Boosting (XGB), and Gradient Boosting Machine (GBM), to estimate wheat biomass 

was evaluated. Also, to improve the performance of regression models, Bayesian optimization (BO) was used to adjust the Hyper-

parameters, and random forest feature selection was used to select the optimal subset of features. Based on the results, the XGB 

algorithm with the Root Mean Square Error (RMSE) of about 911.86 (Kg/ha) and coefficient of determination (R2) of about 0.89% 

showed better performance in biomass estimation than other algorithms. 

 

 

1. INTRODUCTION 

According to global research, the world’s population will grow 

by 66% by 2050, and food security will become a significant 

challenge in agriculture due to this growth (Besthorn, 2013; 

Jalali et al., 2021). Wheat is crucial for food security; thus, 

timely monitoring of its growing status aids in maintaining 

sustainable agriculture (Ali et al., 2015a). Biomass is an 

essential indicator for crop evaluation of yield, grain quality, 

and gross primary production (Yue et al., 2017). Therefore, 

crop biomass estimation is essential for monitoring crop 

growth, improving crop management efficiency, and 

forecasting crop yield (Liu et al., 2019). Also, monitoring 

biomass production is a method for interpreting and evaluating 

the need for fertilizer, particularly nitrogen(N) deficiency in 

crops (Cilia et al., 2014).  

Field measurements and remote sensing data are the two types 

of biomass estimation methodologies. Field measuring is an 

expensive and time-consuming method that can only be used 

in small-scale surveys (Du et al., 2019). Due to its high spatial 

resolution, consistency and cost-effectiveness, remote sensing 

technology is very effective in precision agriculture, especially 

for estimating crop biomass accurately (Dadras Javan et al., 

2019; Ren & Feng, 2015). Recent advances in remote sensing 

have provided access to aerial images collected by unmanned 

aerial vehicles (UAV). The most important feature of UAVs is 

preparing aerial images with the very high spatial and temporal 

resolution desired by the researcher. In addition, the 

operational cost and complexity are much lower than other 

remote sensing platforms (Moradi et al., 2022). Also, 

compared to other UAV sensors, RGB sensors have been 
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considered due to their low cost in precision agriculture 

(Acorsi et al., 2019; Moradi et al., 2021).  

Based on research conducted in the last two decades, biomass 

estimation and biophysical parameters of products from 

remote sensing images have been performed using statistical 

models (Yue et al., 2019). These models fall into two main 

categories: first, machine learning techniques (such as 

artificial neural networks (ANN), random forest regression 

(RF), and support vector machine (SVM)), and second 

technique: Conventional regression methods (such as multiple 

linear regression (MLR), stepwise multiple regression (MSR) 

and partial least squares regression (PLSR)) (Ranjbar, 

Akhoondzadeh, et al., 2021; Ranjbar, Zarei, et al., 2021). The 

most common method for estimating biomass using remote 

sensing data is vegetation indices and forming statistical 

models (Ali et al., 2015b). Kross et al. found a positive and 

significant correlation between maize, soybean biomass, and 

vegetation indices Green-NDVI, RVI, MTVI1, and NDVI 

from SPOT and Landsat images (Kross et al., 2015). Gao et al. 

Suggested that maize biomass could be estimated using the 

NDVI, RVI, and EVI vegetation indices from Chinese HJ-

1A/B satellite imagery (Gao et al., 2013). Wang et al. Used HJ 

satellite images and 15 vegetation indices to estimate wheat 

biomass and compared the three algorithms ANN, SVR, and 

RF and showed that RF performed better than the other two 

algorithms (Wang et al., 2016). Gahrouei et al. used UAVSAR 

data to estimate three crops’ biomass and leaf area index and 

compared ANN and MLR performance (Reisi-Gahrouei et al., 

2019). Researchers also evaluated 2020 the potential for using 

vegetation indices derived from RapidEye multi-temporal data 

and two ANN and SVR techniques to estimate crop biomass 
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and leaf area index (Reisi Gahrouei et al., 2020). Pranga et al. 

used the features obtained from UAV visible and multispectral 

images and three RF, SVR, and PLSR algorithms to estimate 

the dry grassland biomass, which according to the results of 

the RF algorithm, had the best performance in biomass 

estimation (Pranga et al., 2021).  

A review of previous studies shows that satellite remote 

sensing data is increasingly being used to monitor and estimate 

agricultural metrics. According to previous research, this study 

aims to use visible UAV images and ensemble learning 

algorithms to estimate wheat biomass with various genotypes 

and phenotypes. The main objectives of this research include 

1) investigating the potential of UAV visible images to

estimate wheat biomass and 2) assessing and comparing three

ensemble machine learning regression techniques based on

Bayesian optimization to forecast wheat biomass, including

XGB, GBM, and RF.

2. CASE STUDY AND DATASET

2.1 Study Area 

The study area is an experimental wheat field in southern 

Brazil with geographical coordinates (51 ° 40 ‘W, 30 ° 6’ S) 

consisting of several rectangular patches measuring 2.5 m by 

1 m, which are plots with two types of Brazilian wheat 

(Schreiber et al., 2022). The genotypes used are TBIO Toruk 

and BRS Parrudo (48 Toruk plots and 40 Parrudo plots in 

Figure 1). Variation in crop growth was created for all test 

areas to receive a different amount of nitrogen. Nitrogen (N) 

rates have been used to diversify crop growth, assess biomass 

response, and grain yield to nitrogen availability called 

phenotypic diversity. 

2.2 Data Collection 

Data collection has been done in two stages; in the first stage, 

biomass was collected manually to obtain the ground truth data 

of the earth. The data were collected from May to October 

2018. Dry biomass has been collected in three stages of wheat 

growth, including six fully expanded leaves called V6, three 

nodes, and a flowering stage in 0.27 square meters per plot. 

The collected plants were dried and weighed at 65 ° C, then 

the values per kg/h were extrapolated. In the second stage, the 

images were taken 50 meters above the ground using a sensor 

connected to the DJI Matrice 100 Quadcopter. The sensor used 

is DJI X3 Visible (RGB) with a resolution of 12 MB and a 

depth of 8-bit pixels. 80% frontal and 70% side overlap were 

considered for image collection with a resolution of 2.14 

cm²/pix.   

3. PROPOSED METHOD

In this research, the dry biomass of two varieties of Brazilian 

wheat was forecasted via UAV images utilizing the RF, GBM, 

and XGB ensemble learning algorithms (ELAs). According to  

Figure 2, first, the spectral bands and vegetation indices 

obtained from RGB images were extracted, and then using the 

random forest feature selection algorithm, an optimal subset of 

these features was selected and considered as the input of 

ELAs. Input data were randomly divided into training and 

testing, which (70%) and (30%) data were considered for 

training and testing of ELAs, respectively. In order to increase 

the accuracy and performance of ELAs, the Bayesian 

optimization method was used to fine-tune the hyper-

parameters of the three algorithms. Figure 2 shows the three 

processes involved in the implementation: 1) feature 

extraction, 2) biomass estimation, 3) accuracy assessment, and 

performance comparison of three ensemble learning 

algorithms in biomass prediction. 

Figure 2. Flowchart of the proposed method. 

3.1 Feature Extraction 

Vegetation indices are a combination of two or more spectral 

bands effectively used to detect vegetation and have been used 

in extensive research to classify vegetation and monitor 

droughts and environmental changes (Yue et al., 2018). Also, 

many researchers have demonstrated that Vegetation indices 

can be used to estimate biophysical and biochemical 

parameters of crops, such as leaf area index (LAI), biomass, 

grain yield, and nitrogen accumulation (Lu et al., 2019). In this 

section, according to previous research (Lu et al., 2019; 

Maimaitijiang et al., 2019), the best Vegetation indices were 

used to predict biomass and were calculated for each plot 

(Table 1). Each plot’s region of interest (ROI) was selected to 

remove pixels containing soil. For each ROI, the average 

digital number of RGB bands was also computed, as well as 

changing the RGB colour space to HSL (Hue, Saturation, 

Lightness) and HSI (Hue, Saturation, Intensity) (Table 2). 

Figure 1. Schematic overview of (a) the study site location in Eldorado do Sul, Brazil, and (b) the experimental plot design 

with TBIO Toruk and BRS Parrudo varieties (https://data.mendeley.com/datasets/3ntkg88d4d/1). 
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     Visible 

image spectral 

bands and color 

space 

*R, G, and B represent the digital number of red, green, and blue 

channels. r=R/(R+G+B), g=G/(R+G+B), b=B/(R+G+B) 

Table 1. Summary of vegetation indices used in this study. 

Table 2. Features extracted from visible UAV images. 

3.2 Regression analysis 

3.2.1 Random Forest (RF) 

RF is a powerful supervised ML method that was proposed by 

(Breiman, 1984)and has been widely used in RS and GIS 

applications, such as image classification (Stumpf & Kerle, 

2011) and landslide susceptibility mapping (Ghorbanzadeh et 

al., 2019). This method is based on decision trees and operates 

by constructing many decision trees during the training 

process, making it less sensitive to over-fitting issues 

(Ghorbanzadeh et al., 2019). In the RF method, each decision 

tree generates outputs, and output weights derived from the 

votes are dedicated. The advantages of RF are that it is easy to 

apply because it requires only a few parameters, and it yields 

higher accuracy than other ML methods due to the bagging 

process (Rahmati et al., 2019). Additionally, it can deal with 

high-dimensional and complex data structures (Biau & 

Scornet, 2016). Hyper-parameters are very important for 

model optimization that involve 1) n estimator: the number of 

trees in the forest that will be optimized using the gride search 

method, 2) min samples leaf: The minimum number of 

samples required to be at a leaf node. A split point at any depth 

will only be considered if it leaves at least min leaf training 

samples in each left and right branch. This may have the effect 

of smoothing the model, especially in regression, and 3) max 

depth: this parameter determines how deep each tree grows in 

each reinforcement period. 

3.2.2 Gradient Boosting Machine (GBM) 

The GBM approach is used to transform weak learning trees 

into powerful ones. Each new tree in boosting is inserted into 

a modified version of the original dataset. To put it another 

way, trees are built sequentially in boosting so that each 

successive tree is reduced to the errors of the prior trees. Each 

tree learns from its predecessors and corrects any faults that 

remain. As a result, the tree that grows next learns from a 

previously updated version (Friedman, 2001). The primary 

distinction between the GBM and the random forest methods 

is that the random forest makes each tree independent. The 

GBM technique, on the other hand, accepts trees as an add-on 

(group) and introduces a weak tree to fix the weaknesses of 

existing susceptible trees in a step-by-step way, while the 

random forest approach merges the outcomes after the process. 

GBM, on the other hand, mixes the outcomes along the path. 

The gradient rise can outperform random forests if 

appropriately tuned parameters (Bahrami et al., 2021; Zarei et 

al., 2021). 

3.2.3 eXtreme Gradient Boosting (XGB) 

The XGB method is a type of GBM that searches for the 

optimal tree model using the most precise approximation. 

Gradient Boosting is the method’s basic computation 

foundation, and it has two advantages over GBM: the first is 

execution speed, and the second is model performance. 

Increasing gradient trees with XGB is one of the quickest 

methods. The algorithm accomplishes this by exploiting the 

Gradient Boosting method’s significant flaws by considering 

the cost function for all possible divisions when generating a 

new member. XGB overcomes this limitation by looking at the 

distribution of features across all data points on a sheet and 

using that knowledge to narrow the search space for 

prospective feature sharing. Calculating second-order 

gradients, or the cost function’s second-order partial 

derivatives, gives you more information about the slopes’ 

direction and how to get to the minimal cost function (Chen & 

Guestrin, 2016). In addition to the two parameters stated in the 

random forest technique (n estimator, max features, and max 

depth), two other essential parameters in XGB and GBM 

consist of 1) learning rate: this parameter defines the 

proportion of each tree in the final result and affects the pace 

of the algorithm in response to slope changes, and 2) max 

features: the number of features that should be considered 

when searching for the best subsets, Which is optimally 

defined in the training process as “auto”, “sqrt”, “log2” based 

on the number of input features. 

3.2.4 Hyperparameter Tuning 

Hyper-parameters must be initialized in any machine learning 

algorithm before creating a model. Precise adjustment of 

model Hyper-parameters maximizes model performance and 

accuracy (Yang & Shami, 2020). Manual tuning of Hyper-

parameters is made by trial and error, which is very time-

consuming. Another method for selecting Hyper-parameters is 

the use of optimization methods, the most common of which 

are Grid Search (GS), random search (RS), and Bayesian 

optimization (BO) (Arabi et al., 2022). The BO method is 

more accurate and faster than the GS and RS methods because 

it detects Hyper-parameters in each iteration by analyzing the 

values in the previous iteration (Hutter et al., 2019). BO is an 

advanced method used to tune the Hyper-parameters of the 

deep learning network. It has recently been used to adjust the 

Hyper-parameters of machine learning (Hutter et al., 2019), so 

the BO method has been used in this research. The 

optimization process in BO is made up of four key 

Index Formula 

GLI (2 × 𝐺 − 𝑅 − 𝐵) (2 × 𝐺 + 𝑅 + 𝐵)⁄  

VARI (𝐺 − 𝑅) (𝐺 + 𝑅 − 𝐵)⁄  

EXR 1.4 × 𝑟 − 𝑔 

EXG 2 × 𝑔 − 𝑟 − 𝑏 

EXGR EXG − EXR 

VEG 𝐺 RaB(1−a)⁄ , 𝑎 = 0.667

CIVE 0.441𝑅 − 0.881𝐺 + 0.385𝐵 + 18.78745 

COM1 𝐸𝑋𝐺 + 𝐸𝑥𝐺𝑅 + 𝐶𝐼𝑉𝐸 + 𝑉𝐸𝐺 

COM2 0.36EXG + 0.47CIVE + 0.17VEG 

RI 𝑅 − 𝐺 𝑅 + 𝐺⁄  

SCOM 0.25EXG + 0.30ExGR + 0.33CIVE

MEXG 1.262𝐺 − 0.884𝑅 − 0.311𝐵 

IF 2 × 𝑅 − 𝐺 − 𝐵 𝐺 − 𝐵⁄  

TGI 
–0.5 [ (λr – λb) (Rr – Rg) – (λr – λg) (Rr –

Rb)]

NGRDI (𝐺 − 𝑅) (𝐺 + 𝑅)⁄  

Feature 

HSL-SR

HSL-LG

HSI-IB

HSL-H
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components: search space, objective function, surrogate 

model, and acquisition function. Instead of splitting the data 

into two independent training and validation sets, the BO 

approach uses K-fold cross-validation to evaluate and update 

hyper-parameters using a validation dataset. The training data 

is divided into k parts in the k-fold. One of the k parts is 

considered evaluation data, and the remaining part is 

considered training data during k distinct phases. Then the 

average values of evaluation results are determined. 

3.3 Accuracy Assessment 

In this research, the R2 and RMSE has been used to validate 

and compare the results of three regression models (Equations 

1 and 2) . 

( )

( )

2

2 1

2

1

ˆ

1

N

i

N

i

i

y y

R

y y
=

−

= −

−




  ,   (1) 

( )
2

1

1
ˆ

N

i i

i

RMSE y y
N =

= − ,   (2) 

where N = the total number of observations 

yi = vector of observed values 

iy = mean of the observed variables 

ˆ
iy = vector of predicted dependent variables 

4. RESULT AND DISCUSSION

This section analyzes the potential of an optimal subset of 

features derived from visible UAV images and the 

performance of three regression models for estimating wheat 

biomass. Also, the results of fine-tuning of hyper-parameters 

of the three regression models are given by BO, each of which 

is discussed separately in the following sections. 

4.1 Features Selection 

According to Tables (1, 2), 22 features were extracted from 

UAV images to estimate wheat biomass, which in Figure 3 

shows the Pearson coefficient correlation matrix, the 

relationship between the extracted features and biomass. Some 

of the extracted features such as COM2, VEG, MEXG, 

SCOM, and COM1, in addition to AGB, have a high 

correlation with each other, and if all the features are used, 

there will be a problem of multicollinearity and data 

redundancy. It seriously affects regression performance and 

runtime, so selecting the optimal subset of the extracted 

features is necessary. The random forest feature selection 

algorithm is a way to automatically select the optimal features 

that were used according to Figure 4, twelve features of higher 

importance including (Blue and green bands, changing the 

color space of HSL-L, HSL-S, HSL-I, HIS-I, and, vegetation 

indices of TGI, EXR, IF, VARI, NGRDI, RI). 

4.2 Bayesian Optimization 

This study used cross-validation and BO to fine-tune the 

hyper-parameters. In cross-validation, the training sets were 

divided into ten folds. Each time, one of the folds was used 

for validation, and the remaining nine-fold was used for 

training. Also, according to Figure 5, 150 iterations were 

considered to adjust the hyper-parameters.  

The hyper-parameters adjust for GBM, and XGB includes: 

Shrinks the contribution of each tree (learning rate), The 

number of boosting stages to conduct (n_estimators), Limits 

the number of nodes in the tree (max_depth), and the number 

of features to consider when searching for the best split 

(max_features). Also, four hyper-parameters n_estimators, 

max_depth, max_features, and the minimum number of 

samples required to be in a leaf nod (min_samples_leaf) were 

adjusted for the random forest regression algorithm. Figure 5 

shows the BO results and optimal values for each hyper-

parameter with an asterisk; the horizontal axis represents the 

number of iterations, and the vertical axis represents the search 

space for the hyperparameter values. Also, the value of 

max_features is considered in three regression algorithms 

equal to the root of the features. 

4.3 Accuracy of the Reconstructed Models 

To compare the performance of three regression machine 

learning algorithms for estimating wheat biomass, validation 

values are given in Table 3. The XGB algorithm with RMSE 

= 911.86 and R2 = 0.89 has the best performance compared to 

other algorithms. In fact, according to a recent study (Zarei et 

al., 2021), for two major causes, the XGB algorithm performs 

better than the other two algorithms: First, in the  

XGB algorithm, by calculating second-order gradients, the 

loss function’s second partial derivatives provide more 

information on the gradient direction and how to get to the loss 

Figure 3. Pearson’s correlation coefficient (r) between wheat 

biomass and features derived from UAV visible images. 

Figure 4. Random forest for feature importance on a 

regression problem. 
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Figure 5. Results of fine-tuning hyperparameters using Bayesian optimization. 

 

function’s minimum. Furthermore, advanced regularization 

(L1, L2) improves model generalization. According to Table 

3, although the RMSE and R2 values of XGB and GBM are 

almost similar, the learning of XGB is much faster than 

GBM. Similarly, the performance of XGB in terms of 

execution time is better than the other two algorithms. 
 

 

Table 3. Accuracy assessment of three ELAs in estimating 

dry AGB. 

According to scatter plots in Figure 6, the closer the 

distribution of points to the line (x = y), the higher the 

accuracy of wheat biomass estimation. The vertical axis of 

the scatter plots shows the predicted biomass, which is 500 

to 1000 (kg/h) for the V6 stage, 800 to 4000 (kg/h) for the 

three-node stage, and 4000 to 10000 (kg/h) for the flowering 

stage. According to Figure 6, all three regression models 

accurately estimated the biomass in the initial stage of wheat 

growth. However, these steps are less accurately predicted 

because the vegetation indices are saturated in the medium 

to high canopy cover in the second and third stages of wheat 

growth and wheat biomass. Nevertheless, the accuracy of the 

proposed method for estimating wheat biomass is higher 

than or equal to the accuracy of previous research methods. 

Wang et al. used HJ satellite images and 15 vegetation 

indices to estimate wheat biomass and compared the 

performance of three ANN, SVR, and RF algorithms to 

estimate wheat biomass in three growth stages and showed 

ELAs-Regression R2 

(%) 

RSME 

(kg/h) 

Runtime 

(min) 

RF 0. 78 1279.59 55 

GBM 0. 87 994.24 18 

XGB 0.89 911.86 5 
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that the RF algorithm in three stages of Wheat growth, 

respectively with RMSE 477, 1126.2 and 1808.2 has the best 

performance compared to other algorithms (Wang et al., 

2016). In our research, although the RF algorithm performed 

worse than the other two regression algorithms compared to 

previous research, for two main reasons was able to predict 

wheat biomass with higher accuracy: 1) Since the images 

obtained from the UAV have a higher spatial resolution; as 

a result, biomass estimation is done with higher accuracy, 

and 2) Due to the fine-tune of hyper-parameters based on 

BO, the performance of regression algorithms has improved 

compared to previous research. 

In another study, researchers used visible images from UAV 

to estimate the biomass of two types of Brazilian wheat 

(TBIO Toruk and BRS Parrudo) and compared the 

performance of the ANN and Convolution neural network 

(CNN) algorithms. Based on the results of this study, ANN 

and CNN algorithms could estimate wheat biomass with 

RMSE values of 826.4, 940.5, and R2 values of 0.9056% and 

0.9065%, respectively (Schreiber et al., 2022). 

 

5. CONCLUSION 

Due to the direct relationship between biomass and crop 

yield, biomass can be used indirectly to estimate wheat yield 

and predict overproduction or shortage of wheat. In this 

study, to estimate the dry biomass of wheat with different 

phenotypes and genotypes, the visible images of the UAV 

and the resulting vegetation indices, as well as three machine 

learning algorithms (RF, GB, XGB), have been used. 

Finally, the main results obtained in this research are as 

follows. 1) UAV Imagery to estimate biomass is a low-cost 

and fast data collection method that provides more 

information and accuracy. 2) Among machine learning 

techniques, the XGB algorithm with RMSE = 911.86 and R2 

= 0.89 has the best performance and accuracy in biomass 

estimation. It is also faster than the other two algorithms. 3) 

The fine-tuning of the hyperparameters improves the 

performance of machine learning algorithms. 4) Comparing 

the accuracy of the XGB algorithm with other studies that 

used deep learning methods to estimate biomass showed that 

our results are close to the results of other researchers and 

can be promising . 

To sum up, the proposed method is simple and fast. 

However, despite the high accuracy, deep learning methods 

require many training data and expensive GPUs, which 

requires a lot of time and money. Despite the efficiency and 

high speed of the proposed method in estimating wheat 

biomass, in the second and third stages of wheat growth, the 

forecast was less accurate, so it is suggested that in future 

research, in addition to vegetation indices, other features 

should be used. 
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