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ABSTRACT: 

 

The Mobile Laser Scanner (MLS) system is one of the most accurate and fastest data acquisition systems for indoor and outdoor 

environments mapping. Today, to use this system in an indoor environment where it is impossible to capture GNSS data, Simultaneous 

Localization and Mapping (SLAM) is used. Most SLAM research has used probabilistic approaches to determine the sensor position 

and create a map, which leads to drift error in the final result due to their uncertainty. In addition, most SLAM methods give less 

importance to geometry and mapping concepts. This research aims to solve the SLAM problem by considering the adjustment concepts 

in mapping and geometrical principles of the environment and proposing an algorithm for reducing drift. For this purpose, a model-

based registration is suggested. Correspondence points fall in the same voxel by voxelization, and the registration process is done using 

a plane model. In this research, two pyramid and simple registration methods are proposed. The results show that the simple registration 

algorithm is more efficient than the pyramid when the distance between sequential scans is not large otherwise, the pyramid registration 

is used. In the evaluation, by using simulated data in both pyramid and simple methods, 96.9% and 97.6% accuracy were obtained, 

respectively. The final test compares the proposed method with a SLAM method and ICP algorithm, which are described further.

 

 
1. INTRODUCTION 

Mobile Laser Scanner (MLS) systems are capable of acquiring 

the most accurate and fastest data for indoor and outdoor 

environments mapping. However, knowing the location of the 

system at the time of acquisition is necessary. There are a 

number of popular methods for localization, including dead 

reckoning, Global Positioning System (GPS), localization using 

a prior map, and Simultaneous Localization and Mapping 

(SLAM). SLAM is one of the most functional method. 

 

As part of SLAM, MLS data is used to compute sensor location 

at the same time to map an unknown environment. Identifying 

where the sensor is the task of localization, while creating a 

description of the environment is mapping. By matching the 

observations with an existing map, the localization problem can 

be solved. However, it is commonly assumed that the sensor will 

operate in an unknown environment, or that a detailed map of 

the environment is generally not available. Therefore, it is 

crucial to create a map of the environment based on sensor 

observations. Another issue arises in this context because 

creating a map requires the sensor location. As a result, it is also 

referred to as "chicken and egg" in scientific publications. Since 

a map is needed for localization and also sensor location for 

mapping, localization and mapping problems are solved 

simultaneously to create an environment map. 

 

The SLAM problem was first addressed at the IEEE Conference 

in 1986 (Smith & Cheeseman, 1986), which used a probabilistic 

approach to solve it. Since then, the SLAM problem has become 

an attractive topic for robotics and computer researchers. Most 

SLAM methods give less importance to geometry and mapping 

concepts. Therefore, this research aims to solve the SLAM 

problem by considering the adjustment concepts in mapping and 

geometrical principles of the environment and proposing an 

algorithm for reducing drift. To achieve this, a model-based 

registration is proposed. In addition, during the environment 

observation, the amount of collected data is gradually increased. 

Since mobile sensors are limited in load capacity and memory, 

the goal is to reduce the amount of data used in the SLAM by 

building a model of the environment. Moreover, this model can 

be used for navigation and other purposes. 

 

2. RELATED WORK 

From 1981 to early 1991, navigation and mapping were two 

separate issues. The mapping was broadly divided into two 

categories: metric (topological) or a geometric description of 

surrounding (Chatila & Laumond, 1985). The localization 

algorithms were solved by the Kalman filters (Durrant-Whyte & 

Leonard, 1991), but the combination of mapping and localization 

areas led to the birth and development of SLAM. The origin of 

SLAM dates back to 1986 (Smith & Cheeseman, 1986). One of 

the conventional SLAM solutions is to use fine registration and 

scan matching methods. Much of the work on laser scan 

matching has been presented. In addition, a few relevant and 

recent research, including feature-based algorithms, the Iterative 

closest point (ICP) family (J. Besl & D. McKay, 1992), and some 

new methods, have been reviewed. The first category is iterative 

approximation methods, which mainly refers to the ICP and a set 

of refined algorithms (Eggert et al., 1998)(Bucksch & 

Khoshelham, 2013). The advantage of this method is that it 

solves a rigid object transformation through a precise 

mathematical process with no initial estimation of location. By 

identifying the correspondence points and decreasing the 

distance between the two scans, ICP is used to estimate the 

translation and rotation parameters that best align two scans. One 
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of the best ICP algorithms is Generalized-ICP (A Segal, D 

Haehnel, 2009), which combines the ICP and point-to-plane ICP 

algorithms into a probabilistic framework. Li and et al. designed 

a feature-based matching framework, in which extended 1D 

SIFT is used to extract salient and distinct feature point, and Split 

and Merge  for line feature extraction (Li et al., 2016). 

Consequently, distance histogram is used for feature 

descriptions, and the pairs, which achieve the best matching 

score, are selected as potential correspondence. Finally, the 

relative position and orientation parameters are calculated for 

registration process. Ryu and et al. proposed a grid-based scan-

to-map matching technique. The environment is represented as a 

grid map with multiple Normal Distribution (ND) in each cell 

(Ryu et al., 2016) and a new scan is matched with it. Park and et 

al. utilized a topological hybrid map for global localization (Park 

& Park, 2014). It uses a coarse-to-fine registration approach. In 

coarse registration step, by 2D geometric histogram-based 

template matching, candidate point is selected. Then, the SSM 

method is used to find the correct points, and relative pose is 

estimated. Using a scan-to-map algorithm, Qian et al. proposed 

SLAM in  an indoor environment (Qian et al., 2019). As a map 

representation method, it used a grid-based orthogonal feature 

weighted occupancy likelihood map (OWOLM). Afterwards, 

scan-to-map matching is used to determine the transformation 

parameter. An FFT-based scan matching method was developed 

by Jiang et al. (Jiang et al., 2018). Transform parameters are 

determined by applying FFT to the image. The match is then 

determined using ICP. Based on reference key frames (RKFs) 

involving feature-to-feature and point-to-point approaches, 

Mohamed et al. proposed a method (Mohamed et al., 2017). 

When there are no linear features, the algorithm switches to the 

ICP, and then back to the RKF once linear features are found. In 

(Biber, 2003), the Normal Distribution 

Transformation (NDT) algorithm subdivided the 2D workspace 

into cells of constant size. Afterwards, each cell's normal 

distribution is calculated. By building the NDT, two scans will 

align, and source points will map to the coordinate reference 

frame. The optimal parameter is obtained using Newton's 

optimization algorithm for each mapped point and the best 

parameters will be found. In (Lu et al., 2018), voxelization was 

used to downsamples the point cloud, and a Gaussian mixture 

model was used to calculate the probability of the negative 

likelihood function. The rotation and translation parameters 

were then solved with an EM algorithm. In (Konecny et al., 

2019), cross-correlation and differential evolution are used to 

align two scans. The cross-correlation is used between two scans 

as an efficient measure of scan alignment, and the differential 

evolution algorithm is used to look for transformation 

parameters that align scans. 

The RANSAC method was proposed by Fischler and Bolles 

(Fischler & Bolles, 1981) and has been widely used in 2D and 

3D data processing. Additionally, they have been researched for 

application in image registration (Tarsha-Kurdi et al., 2008)(Xu 

et al., 2016)(Fontanelli et al., 2007)(Weinmann et al., 2011). 

Also, as LiDAR technology has advanced, RANSAC techniques 

have been applied in numerous studies for the pre-processing 

and segmentation of point cloud data (Al-Durgham et al., 

2013)(Biber, 2003)(Takeuchi & Tsubouchi, 2006). As a result, 

using this technique for point cloud registration has become a 

crucial study area. (Fontanelli et al., 2007). The RANSAC 

method consists of three steps. First, the conversion relationship 

is computed using a number of control points that are randomly 

chosen. The conversion is used to remove external points of the 

point cloud in the second step, after which the point cloud's 

degree of registration is determined. Finally, finding the data set 

with the highest degree of registration is done using iterative 

translation, and the translation parameters are calculated (Chen 

& Hung, 1999). 

 

3. METHODOLOGY 

Using MLS is a popular method for creating a map of the 

environment. Most prominent characteristic feature of point 

clouds captured by these sensors is being sequentially, which 

every scan has rotated and transitioned with regard to the 

previous one. Consequently, to create an integrated environment 

map, all the collected data must be transferred into a determined 

coordinate system. For this purpose, a Local Coordinate System 

(LCS) of the point cloud should be determined and 

simultaneously build the integrated map. These processes are 

referred to SLAM. A method to transfer these sequential scans to 

the LCS is registration. The majority of new SLAM algorithms 

use correspondence points matching methods for registration. In 

these methods, sequential scans are matched by finding the 

corresponding points. These methods, however, is highly 

dependent on the accuracy of point matching algorithms. Finding 

correspondence points in rough point clouds is a challenging and 

complex process. Thus, to avoid point matching, a voxel-based 

registration technique to register sequential scans is proposed. 

The short distance between sequential scans is a noticeable 

feature in MLS point clouds. Consequently, by voxelization of 

two point clouds, most of the correspondence points will be 

placed in the same voxel, and finding the exact correspondence 

points is not required. Then, points within the same voxel are 

used for registration. Additionally, the ultimate goal of all SLAM 

algorithms is to create an environment map, both online and 

offline. In this method, besides the final and integrated map of 

the environment, which is created offline, a differential model of 

the environment is created online that can be used in various 

navigation areas. 

 

 

Figure 1. The overall flowchart of the proposed method. 

 

Another problem with SLAM systems is the drift error during the 

data acquisition and registration process that needs to be fixed. 

The main reason of this problem is not using all previous 

information in registration process. Since in all methods, all 

scans is transferred to the first scan coordinate system as a LCS, 

the first scan is considered error-free; then, when a new scan is 

taken, its position is determined using the previous scan. 

Assuming that the new scans' registration parameters are error-

prone, the error will increase as the number of scans increases. In 

most cases, these errors are minimized by loop closure 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-523-2023 | © Author(s) 2023. CC BY 4.0 License.

 
524



techniques. Here in this research, drift error is minimized by 

registering with a gradually updated model of the environment 

that uses information from all previous scans. By doing so, drift 

errors will be reduced significantly without any additional 

computation and complexity. The proposed algorithm involves 

the following steps: 

1) Create a pyramid of source point clouds and voxelization 

2) Creating the differential model of the environment: fitting 

the plane to points inside voxel in the reference point cloud 

3) Coarse registration 

4) Create the pyramid and voxelization of target point cloud 

5) Fine registration 

6) Update differential model 

 

3.1 Create a pyramid of source point clouds and 
voxelization (initial scan) 

In this study, a voxelization method is used instead of matching 

methods. Since the distance between the corresponding points of 

two sequential scans is small, therefore, if the voxel size were 

larger than the average distance between two point clouds and 

their density, the corresponding points will typically be placed 

in the same voxel. By using this method, it is not required to 

determine the corresponding points. Figure 1 shows an example 

of a point cloud voxelization. 

 

Another challenge with this type of data is that the distance 

between the source and the target point cloud increases as the 

scanning time of the environment increases. This challenge is 

solved with two different approaches. First, the registration 

process is divided into coarse and fine registrations. As well, to 

overcome this challenge (in case of necessity) a pyramid of the 

point clouds is built during the fine registration step. Since the 

voxelization method is used instead of matching method, so the 

average distance between two-point clouds should be less than 

the voxel dimensions; however, in some cases, the distance 

between two  point clouds is more than the dimensions of the 

desired voxel after coarse registration, so it is necessary to use 

pyramidal registration. 

 

 

Figure 2. Point cloud voxelization. 

 

With pyramid point cloud registration, we can voxelize the 

points cloud with different and larger dimensions for each 

pyramid level and registration is done in hierarchy mode. 

Therefore, by registering point clouds at the bottom of the 

pyramid and applying these parameters to the top level, the point 

clouds come close to each other, gradually. By the end of the 

pyramid, the point clouds have been registered precisely. Details 

are given in the fine registration section. 

 

In order to build a pyramid of point clouds, data resampling with 

different resolution is done. The first step is to determine the 

number of pyramid layers and the relationship between the voxel 

dimensions in these layers, which is accomplished using 

equation (1). 

 

𝐾 =  log𝑛 (
1

𝑑
) + 1       (1) 

 

As can be seen from equation (1), the number of pyramid layers 

(K) depend on the desired percentage of points remaining at the 

bottom layer of the pyramid (d) and the ratio between the 

dimensions of the two successive pyramid layers (n). 

 

The next step is resampling of the original point cloud with 

different resolution to construct each layer of pyramid. By 

doubling the actual point spacing of a point cloud, we determine 

the resolution of the resampling and the first layer of pyramid is 

constructed. For the remaining layers, the resolution in each layer 

is reduced to half and the pyramid point clouds are generated one 

by one for each layer. In addition, the final layer in the pyramid 

is the original point clouds. 

 

𝑃𝑜𝑖𝑛𝑡 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 =  √
1

𝑃𝑜𝑖𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
  (2) 

 

The next step is voxelization. The proposed algorithm has a 

challenge concerning voxel sizes, which depend on different 

factors such as density of the point cloud, range picked up by the 

sensor, and distance between sequential scans. By trial and error, 

the best size is determined. 

 

3.2 Creating the differential model of the environment 

In this research as a substitute for correspondence points 

matching, point to model matching is used. Therefore, a model 

is fitted to points inside each voxel of the source point cloud and 

utilized in the fine registration step. Given that, the voxel 

dimensions at each level are small and the number of points 

inside these voxels is low. As a result, the normal vectors are not 

subject to much variation, so a planar model can be used to model 

the environment. By constructing planar models in the source 

point clouds at each voxel and transferring the target points 

present in the same voxel to this plane, registration parameters 

can be calculated. For plane fitting, the RANSAC method is 

used. To avoid fitting the plane to all voxels and to increase 

algorithm accuracy, a threshold should be set for the minimum 

number of points in each voxel to fit the model. This threshold 

value is derived from equation (3), which 𝑠𝑖  represents the 

number of points in each voxel and n is the number of voxels. 

 

𝑇 =
1

𝑛
(∑ 𝑠𝑖)
𝑛
𝑖=1      & 𝑠𝑖 > 3   (3) 

 

It is also necessary to identify incorrectly fitted planes for 

improving registration accuracy. The RANSAC algorithm 

calculates the plane fitting error, and the sigma test identifies and 

removes inaccurate planes. In figure 3, an example of histogram 

of the plane fitting errors is shown for each voxel. 

 

 

Figure 3. Histogram of plane fitting error. 
Error 
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3.3 Coarse Registration 

Since the average distance between the source and target scans 

increases with increasing data acquisition time, the 

corresponding points will not be placed in the same voxel; 

therefore, a coarse registration step is necessary before fine 

registration to reduce this distance. In this case, a linear model 

based on the aggregation of the fine and coarse registration 

parameters of all previous scans is used for coarse registration. 

Finally, the computed coarse registration is applied to the new 

scan. 

 

𝑅𝑐𝑜𝑎𝑟𝑠𝑒
𝑖 =  𝑅𝑐𝑜𝑎𝑟𝑠𝑒

𝑖−1 + 𝑅𝑓𝑖𝑛𝑒
𝑖−1    (4) 

 

  
Figure 4. Situation of two sequential scans before (1) and 

after (2) coarse registration. 

3.4 Create the pyramid and voxelization of the target point 
cloud 

Once the target scan has been located in its approximate position, 

it will spontaneously be placed in the same voxel. Then it is 

necessary to build a pyramid of the target scan for fine 

registration. This step is the same as the first one, which was 

performed for the source scan. 

 

3.5 Fine Registration 

For fine registration, a pyramid-based method is used, where 

each level of target point clouds is registered with the same level 

of source point clouds. Thus, at the first level of the pyramid in 

each voxel, the target point clouds are transferred to the plane of 

the source points. Afterwards, the parameters obtained from this 

level are applied to the target point clouds. This cycle continues 

until the last level of the point cloud pyramid is registered. The 

following diagram shows the general flow of this step. 

 

 

Figure 5. The process of pyramid registration. 

Fine registration is accomplished by transferring target point 

clouds to the source point clouds model created in each voxel. 

Each voxel has a plane as its base model, so the goal is to transfer 

the target points to these planes. To determining the transfer 

parameters, the least-squares adjustment is used. For example, if 

the equation of the plane were as follows: 

 

𝑃 ∶  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0   (5) 

 

Which a, b, c, and d are the parameters of the plane. Now, to be 

able to calculate the registration parameters, the above equation 

is rewritten as follows:  

 

𝐺 ∶ [𝑎 𝑏 𝑐 𝑑] ∗ (𝑅𝑋 + 𝑇) = 0     (6) 

 

R and T are three rotation and transition parameters, and X are 

target points transferred to the planes. After implicit derivation, 

the following equation is obtained:  

 

𝐺 ∶ 𝐺0 +
𝜕𝐺

𝜕𝑋
(𝑑𝑥) + ⋯ = 0    (7) 

 

A matrix corresponding to all expressions in equation (7) is 

formed, which is as follows: 

 

𝜕𝐺

𝜕𝑋
=

[
 
 
 
𝜕𝐺1

𝜕𝜔

𝜕𝐺1

𝜕𝜑

𝜕𝐺1

𝜕𝜅

𝜕𝐺1

𝜕𝑇𝑥

𝜕𝐺1

𝜕𝑇𝑦

𝜕𝐺1

𝜕𝑇𝑧

⋮
𝜕𝐺𝑛

𝜕𝜔

𝜕𝐺𝑛

𝜕𝜑

𝜕𝐺𝑛

𝜕𝜅

⋮
𝜕𝐺𝑛

𝜕𝑇𝑥

𝜕𝐺𝑛

𝜕𝑇𝑦

𝜕𝐺𝑛

𝜕𝑇𝑧]
 
 
 

  (8) 

 

𝑑𝑥 =  

[
 
 
 
 
 
𝑑𝜔
𝑑𝜑
𝑑𝜅
𝑑𝑇𝑥
𝑑𝑇𝑦
𝑑𝑇𝑧]

 
 
 
 
 

     (9) 

 

Now, according to the above matrices, we come to the following 

equation: 

 

𝐴𝑥 = 𝐹             (10) 

 

Where x is the unknown parameters matrix, A is the design 

matrix, and F is the residual vector; therefore, using the least-

squares method, the unknown parameters are calculated in an 

iterative process and updated at each stage. 

 

𝑥 =  (𝐴𝑇 ∗ 𝐴)−1 ∗ (𝐴𝑇 ∗ 𝐹)        (11) 
 

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 − 𝑑𝜔
⋮

𝑇𝑧𝑛𝑒𝑤 = 𝑇𝑧𝑜𝑙𝑑 − 𝑑𝑇𝑧

       (12) 

 

 

Figure 6. Output map based on proposed method. 

 

Moreover, additional parameters, which are sensor position, are 

simultaneously computed with the registration process. Figure 7 

shows the sensor position during the scanning. 

 

(2) (1) 
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Figure 7. Sensor’s location during scanning time. 

 

Besides the pyramid registration method, another approach that 

we used is simple registration. In the simple method, all steps are 

similar to those in the pyramid method, but there is no pyramid, 

and only the original point cloud is used for registration. In 

comparison to pyramid registration, the main advantage of 

simple is low computation and less complexity.  

 

3.6 Update differential model 

The differential model of the environment is composed of voxels 

with plane model. It is thus necessary to update and expand the 

model after each registration step. 

 

It is evident that some points in the source point cloud are not 

included in building the model and registration, which must be 

maintained to update the model. Using the remaining points from 

source point cloud and registered target point cloud, if the model 

building conditions (minimum number of points) are met, the 

plane model is fitted in new voxel. Once again, several points in 

the voxels do not meet the plane fitting conditions, so these 

points are retained and aggregated with the remaining points 

from the subsequent scan. This approach has the advantage that 

no primary source of points cloud needs to be stored, resulting 

in less storage space required. 

 

 

Figure 8. Environment differential model from to different 

view. 

 

The drift error is one of the main problems with sequential scan 

registration and SLAM algorithms. This error is mainly caused 

by using only one previous registered scan in registration. Thus, 

the information of all previous scans is recorded in the 

differential model of the environment. Consequently, all 

previous scan information is used for registration of a new scan, 

minimizing drift error. An example of a differential model of the 

environment can be seen in Figure 8. 

 

4. EVALUATION OF THE PROPOSED ALGORITHM 

 

4.1 Experimental data 

The proposed algorithm is evaluated using two sets of mobile 

sensor datasets. In both cases, Velodyne sensors were used to 

capture the data. A Velodyne HDL-32e sensor was used to take 

the first data inside a room. Second data, a Velodyne VLP-16 

sensor captured the data of a building. 

 

 

Figure 9. An example of the Velodyne HDL-32e data. 

  

The main differences between the two data sets are the density of 

points and the environment where the data were collected. Since 

Velodyne HDL-32e has more lasers than VLP 16 and the 

environment is smaller, so the density of points in the first data 

is higher than in the second one. 

 

4.2 Experiments and results 

Two experiments are arranged for evaluation and comparison of 

the proposed algorithm. The first experiment examines the 

effects of noise on registration results. In the second experiment, 

the validity of the algorithm is checked using two different 

methods. 

 

4.2.1 The effect of noise on registration results: Since the 

data is never noise-free, it is necessary to investigate the effect of 

noise in the data on the proposed algorithm. Therefore, the 

simple registration method (not pyramid) is used with optimal 

parameters calculated for the algorithm. Two scans are registered 

in the presence and absence of noise. Noise can be related to the 

data and model, therefore two methods are used to identify and 

delete noisy planes and data. In the first method, the planes that 

do not have the appropriate accuracy are removed using the 

sigma test, and second one, the RANSAC removes the noisy and 

outlier points. Point-to-point histogram, obtained from 

cloudCompare software (CloudCompare, n.d.), in figure 10 

shows that there is no distinct difference between the two 

registered data. One reason could be the high degree of freedom 

of the equations, which automatically eliminates noise in the 

model and the target point cloud. With the results obtained in this 

experiment, it can be concluded that the algorithm will 

automatically eliminate the effect of normal noise in the point 

cloud. 

 

 

Figure 10. Point-to-Point distance histogram for data: (1) before 

registration (2) after registration (noisy data) (3) after 

registration (clear data). 

 

Y (m) 

X (m) 

2 1 3 
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4.2.2 Algorithm validation: We performed two experiments 

to evaluate the results of the algorithm. In the first experiment, 

we evaluate the overall accuracy of the algorithm using 

simulation data. In the second experiment, the algorithm was 

evaluated with another SLAM algorithm and the ICP. The details 

of these experiments will be explained below. 

 

4.2.2.1  Evaluate the accuracy of the algorithm using 

simulated data: One way to evaluate the results of an algorithm 

has always been to use simulated data. First, three rotation and 

translation parameters are applied manually to the source point 

cloud, and then a random noise, which is higher than the sensor 

noise, is added to data and considered as the target point cloud. 

The aim is to register the simulated target point cloud with the 

source point cloud using two simple and pyramid registration 

algorithms to recover the applied parameters and compare them 

with the actual value. In addition, to evaluate the algorithm's 

accuracy, two point clouds will be registered in ten repetitions, 

and the results will be reviewed. First, the following rotation 

parameters (ω,φ, 𝜅) in radian and translation parameters 

(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) in meter are applied to the source point cloud: 

 

ω = 0.03 , φ =  −0.03 , 𝜅 = 0.02 𝑟𝑎𝑑, 𝑇𝑥 = 0.03 , 𝑇𝑦
= 0.04 , 𝑇𝑧 =  −0.02 𝑚 

 

After registration, the relative accuracy formula is used to 

evaluate the results in both algorithms as follows: 

 

Relative Accu.= 1 − |
𝑇𝑟𝑢𝑒−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑇𝑟𝑢𝑒
|   (13) 

 

In the first experiment, the pyramid registration algorithm is 

used. First, the data is resampled in five different resolutions, and 

the pyramid of points cloud is constructed. Then, the points 

cloud pyramid is voxelized with 0.05, 0.08, 0.15, 0.26, and 0.45 

meters and registration is done. Figure 11 shows the relative 

accuracy of calculating each parameter separately in ten 

repetitions. The relative accuracy of all parameters is over 93%. 

 

 

Figure 11. Relative accuracy for each registration parameter 

(percent). 

 

To evaluate the overall accuracy of the algorithm, we calculated 

the average accuracy of all six parameters and the average 

accuracy of registration. According to the figure 12, in each 

iteration, registration is done with an accuracy of 96%. In 

addition, since the standard deviation of accuracy in all iterations 

is very low, it is a reason for the high precision of the algorithm. 

Therefore, the final average accuracy of this algorithm is 

96.96%. 

 

 
Figure 12. Overall accuracy of calculated registration 

parameters (percent). 

 

In another assessment, the histogram of the point-to-point 

distance between two point clouds and the mean distance is 

examined. Figures 13 and 14 show the histogram before and after 

the registration. As seen from the histogram, the mean distance 

between two point clouds before registration is 34 mm, which 

decrease to 2mm after registration. This 2mm distance could also 

be due to the random noise applied to the simulated data. 

 

 
Figure 13. Point-to-point distance histogram before pyramid 

registration. 

 

 
Figure 14. Point-to-Point distance histogram after pyramid 

registration. 

 

The first experiment is also repeated to evaluate the simple 

registration algorithm (without building a pyramid). In this 

algorithm, the point clouds is voxelized one time with constant 

dimension, and registration is done. Since the distance between 

two point clouds is small, the voxel dimensions of 10 cm is 

considered. Figure 15 shows the relative accuracy of each 

parameter separately in each iteration. 

 

 
Figure 15. Relative accuracy for each registration parameter 

(percent). 
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As shown in figure 15, the relative accuracy of all parameters is 

above 93%. In addition, the standard deviation of the calculated 

values is low and shows the high precision of the algorithm. 

Figure 16 shows the visual results of matching two point clouds 

before and after registration, respectively. 

 

 
Figure 16. Situation of two sequential scans before (1) and after 

(2) registration. 

 

In another evaluation of this algorithm, the histogram of the 

distance between two points cloud is used. Figure 17 is the 

histogram of the distance between the points after registration. 

According to these histograms, the mean distance between the 

points before and after registration is 34 and 2 mm, respectively. 

 

 
Figure 17. Point-to-point distance histogram after simple 

registration. 

4.2.2.2 Algorithm evaluation using a SLAM and ICP 

algorithm: The final evaluation is performed using the 

perpendicular distance between several specific planes. Finally, 

the proposed algorithm results are compared with an ICP and a 

SLAM method (Shokrzadeh, 2019). 

 

 
Figure 118. Output map of (1) the ICP (2) proposed method (3) 

Shokrzadeh method. 

 

At first, based on the visual comparison shown in Figure 18, the 

output of the performance of proposed method has state of art 

result with the compare ones. In the second evaluation, the 

thickness test, 16 flat pieces in all three directions were selected 

from registered data, and the thickness test was performed. The 

results of which are as shown in figure 19.  

 

In this experiment, several cross-sectional flat pieces were 

manually selected from the output of all three methods, and a 

plane is fitted to each of them. Then by using normal vector of 

each point, the perpendicular distance between two-fronted 

planes is calculated and compared with ICP result as the 

benchmark.  

 

𝑑(𝑃, 𝐹) =  
|
𝑃𝑄
→ .

𝑛
→|

|
𝑛
→|

    (14) 

 

As shown in figure 19, in most cases, the thickness of the ICP 

method and the proposed method are very close to each other and 

have performed better than the Shokrzadeh registration method. 

 

 

Figure 19. Plane thickness parameter for evaluation. 

 

5. CONCLUSION 

In this research, an algorithm for preparing a three-dimensional 

map of the environment based on MLS data is presented. Our 

goal was to provide an algorithm based on pyramid voxelization 

to avoid feature matching methods or search for corresponding 

points. Another prominent feature of this algorithm is using a 

differential environment model created from the beginning of the 

registration process and updated. This model will significantly 

reduce drift in the final map because of using the information of 

all previous scans in registration process. 
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