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ABSTRACT: 

 

Today, three-dimensional reconstruction of objects has many applications in various fields, and therefore, choosing a suitable method 

for high resolution three-dimensional reconstruction is an important issue and displaying high-level details in three-dimensional models 

is a serious challenge in this field. Until now, active methods have been used for high-resolution three-dimensional reconstruction. But 

the problem of active three-dimensional reconstruction methods is that they require a light source close to the object. Shape from 

polarization (SfP) is one of the best solutions for high-resolution three-dimensional reconstruction of objects, which is a passive method 

and does not have the drawbacks of active methods. The changes in polarization of the reflected light from an object can be analyzed 

by using a polarization camera or locating polarizing filter in front of the digital camera and rotating the filter. Using this information, 

the surface normal can be reconstructed with high accuracy, which will lead to local reconstruction of the surface details. In this paper, 

an end-to-end deep learning approach has been presented to produce the surface normal of objects. In this method a benchmark dataset 

has been used to train the neural network and evaluate the results. The results have been evaluated quantitatively and qualitatively by 

other methods and under different lighting conditions. The MAE value (Mean-Angular-Error) has been used for results evaluation. 

The evaluations showed that the proposed method could accurately reconstruct the surface normal of objects with the lowest MAE 

value which is equal to 18.06 degree on the whole dataset, in comparison to previous physics-based methods which are between 41.44 

and 49.03 degree. 

 

 

 

1. INTRODUCTION 

Today, three-dimensional reconstruction of objects has many 

applications in various fields, and therefore, choosing a suitable 

method for high resolution three-dimensional reconstruction is an 

important issue. There are many ways to classify three-

dimensional reconstruction methods. Common ways to classify 

methods include classification based on whether the method is 

active or passive. Active three-dimensional reconstruction 

methods are methods that reconstruct a three-dimensional scene 

using approximate numerical methods according to the depth 

map. These methods use light radiation or irradiation and the 

object is reconstructed with the help of the reflection of these 

rays. Passive three-dimensional reconstruction methods do not 

interfere with the object being reconstructed and only use sensors 

that are sensitive to visible light to measure the radiation reflected 

or emitted from the surface of the object to infer its three-

dimensional structure through image analysis. The input of these 

methods is a series of digital images and the output of this method 

is a three-dimensional model. Passive methods are used in a wide 

range of situations compared to active methods (Moons et al., 

2010). 

Combined solutions have been proposed to achieve high 

resolution three-dimensional reconstruction, such as combining 

an initial three-dimensional model with details obtained from 

active methods such as shape from structured light (Nehab et al., 
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2005), photometric stereo (Esteban et al., 2008; Park et al., 2013; 

Zhou et al., 2013; Haque et al., 2014), or shape from shading (Wu 

et al., 2011; Oxholm and Nishino, 2014; Langguth et al., 2016). 

Recently, appropriate solutions have been proposed for high 

resolution three-dimensional reconstruction of objects without 

using active methods. Shape from polarization method is one of 

these solutions which is a passive method and does not have the 

drawbacks of active methods. This method is based on the 

concept that the shape of an object causes small changes in the 

polarization of the reflected light. The electric fields that build up 

light waves are randomly placed in any direction, but in light 

polarization, the electric field is only sent or received in a certain 

direction. These changes can be analyzed by locating a polarizing 

filter in front of the digital camera and rotating the filter (Wolff, 

1997; Atkinson and Ernst, 2018) or using a polarization camera 

(Polarization_camera, 2020; Yang et al., 2018). Through these 

polarization images, the surface normal can be reconstructed with 

high accuracy, which will lead to local reconstruction of the 

surface details. 

The shape from polarization method has made considerable 

progress in the field of computer vision. One of the most common 

solutions is to combine an initial three-dimensional model with 

the details obtained from shape from polarization method. In this 

integrated solution, a surface is first reconstructed using 

polarization information and Fresnel theory, which reveals the 

surface details well. By combining this surface with the surfaces 
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obtained from conventional photogrammetric methods, depth 

maps can be significantly enhanced using information obtained 

from the polarization of the emitted light. In this paper, a method 

is presented that reconstructs surface normal of objects using a 

convolutional neural network and only using polarized images, 

without using any additional information. 

2. RELATED WORKS 

 

Recently, many methods have been proposed for three-

dimensional reconstruction based on light polarization. Some of 

these researches have only used the physics of polarization 

without using other methods for three-dimensional 

reconstruction of objects. In general, in the polarization method, 

information such as phase angle, degree of polarization and 

zenith angle can be obtained from polarization images, and 

finally, using this information, the surface normal of the object 

can be estimated. The phase angle obtained from this method is 

ambiguous, so some researchers have proposed methods to solve 

this phase ambiguity (Miyazaki et al., 2003; Atkinson and 

Hancock, 2006). This method is a suitable solution for the 

reconstruction of transparent objects. For example, Miyazaki et 

al. (2002) has presented a method that shows the orientation of 

the surface in transparent objects by analyzing the degree of 

polarization in the surface reflection and its propagation in visible 

and infrared wavelengths. This method can also perform well in 

the reconstruction of specular metallic objects (Morel et al., 

2005).  

Overall, the polarization method cannot be used alone and still 

has ambiguities and drawbacks. For this reason, one of the 

appropriate solutions is to combine SfP method with 

conventional photogrammetric methods for three-dimensional 

reconstruction. In this case, the weaknesses of the polarization 

method can be covered with photogrammetric methods. 

Therefore, the researchers proposed combined methods, for 

example, one of these methods uses a combination of 

polarization, stereo, and shape from shading methods (Zhu and 

Smith, 2019). Tozza et al. (2017) presented a differential method 

combining polarization and shading to reconstruct depth maps. 

In another work, Atkinson and Hancock (2007b) proposed a 

combination of polarization, shadow, and stereo methods. 

Methods for resolving ambiguity and reconstructing the surface 

normal using a combination of polarization and photometric 

stereo are also presented (Atkinson and Hancock, 2007a; 

Atkinson 2017). Miyazaki et al. (2012 and 2016) used multi view 

space carving to achieve surface normal for improving results in 

black specular objects. Ngo Thanh et al. (2015) used two 

constraints of shading and polarization to solving phase 

ambiguity as well as estimating the refractive index, normal 

surface and light direction. Mahmoud et al. (2012) and Smith et 

al. (2016) have proposed direct methods that use polarization and 

shading methods that assumes constant orthographic projection 

and albedo. Next, Smith et al. (2018) improved their previous 

work (Smith et al., 2016) using albedo estimation and 

illumination using polarization information. The polarization 

method can work well in feature correspondence matching, so it 

can be useful for matching of featureless areas in multiview 

stereo methods (Atkinson and Hancock, 2005; Cui et al., 2017). 

This method can also be combined with coarse depth maps 

obtained from Kinect and the accuracy can be significantly 

improved (Kadambi et al., 2017).  

However, the polarization method is still immature and has some 

ambiguities. Therefore, one of the best solutions can be to use 

deep learning methods for three-dimensional reconstruction of 

objects using polarization images. The first research in this field 

has been conducted by Ba et al. (2020), that achieves a normal 

surface using CNN networks. The CNN networks have also been 

used to segment transparent objects (Kalra et al., 2020). Also, the 

deep learning network has been used to overcome the physics-

based drawbacks of the polarization method (Deschaintre et al., 

2021). In the latest research, for the first time, Lei et al., (2021) 

uses real-world dataset for reconstruction. 

3. PROPOSED METHOD 

3.1 Polarization Theory 

When unpolarized light passes through a polarization filter, the 

light passes linearly only in the direction of the filter transmission 

axis, and the light is removed in other directions (Figure.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Operation of a linear polarizer (Pedrotti et al., 2017) 

Polarized images can be taken at different angles using a 

polarizing filter located in the front of the digital camera and 

rotated. Using these polarization images, information such as 

azimuth and zenith angle can be obtained which leads to 

estimation of surface normal.  

At least 3 polarized images are required to obtain polarization 

information. In this series of images, the intensity of each pixel 

changes sinusoidally between 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 by changing the 

polarization angle. A polarized image is taken at the angle 𝜑𝑝𝑜𝑙. 

The intensity of each pixel in each polarized image can be 

obtained from Equation 1: 

𝐼(𝜑𝑃𝑂𝐿) =
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

2
+ 

𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛 

2
𝑐𝑜𝑠(2(𝜑𝑃𝑂𝐿 − 𝜑))            

(1) 

In this equation, the three parameters 𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 and 𝜑 are 

unknown. The phase angle obtained from this relationship is 

ambiguous and this ambiguity varies depending on the type of 

pixel reflection that is diffuse or specular. If the pixel reflection 

is diffuse, this ambiguity consists of two values 𝜑 and 𝜑 + 𝜋, and 

if its reflection is specular, it has the values 𝜑 ±
𝜋

2
. In fact, the 

azimuth angle, after solving the phase angle ambiguity, has one 

of the following values: 

(2)                       𝜙 = 𝜑  or  𝜑 + 𝜋   and                𝜙 = 𝜑 ±
𝜋

2
 

To obtain the zenith angle, the value of degree of polarization is 

required, which can be obtained from the minimum and 

maximum intensity: 

(3)                                                                     𝜌 =
𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
           

 

Different relations are used to obtain the zenith angle depending 

on whether the pixel is specular or diffuse. If the pixel is diffuse, 

the value of the zenith angle is obtained from Equation 4, and if 

it is specular, it is obtained from Equation 5.  

In these equations, 𝜂 represents the refractive index and 𝜃 is the 

zenith angle. 
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𝜌 =  
(𝜂− 

1

𝜂
)2  𝑠𝑖𝑛  2𝜃

2+2 𝜂2−(𝜂+ 
1

𝜂
)2  𝑠𝑖𝑛  2𝜃 + 4  𝑐𝑜𝑠 𝜃  √𝜂2−𝑠𝑖𝑛  2𝜃

       (4) 

 

𝜌𝑠𝑝𝑒𝑐    =   
2  𝑠𝑖𝑛2 𝜃  𝑐𝑜𝑠 𝜃 √ 𝜂2 − 𝑠𝑖𝑛2 𝜃

𝜂2 − 𝑠𝑖𝑛2 𝜃 −  𝜂2  𝑠𝑖𝑛2 𝜃  +  2  𝑠𝑖𝑛4 𝜃 
            (5) 

 

Since phase disambiguation has always been one of the main 

challenges of this method, in this paper we use a convolutional 

neural network that will not face these problems. 

3.2 Network architecture 

U-Net is one of the famous architectures that was first used in 

2015 for segmentation of biomedical images. The U-Net consists 

of two main parts: contracting path for feature extraction and 

expanding path for up-sampling and output generation 

(Ronneberger et al., 2015). Since in this work the outputs will be 

produced with the same size of the inputs, the U-Net is an 

appropriate choice. The well-known ResNet18 (He et al., 2015) 

is utilized as the backbone of this network to extract geometric 

and semantic features. 

3.2.1 U-Net: In the contracting path, which is actually the 

backbone network, feature extraction is performed, so that during 

this path, the dimensions of the image and feature maps are 

gradually reduced, and instead, the number of these feature maps 

increases. At the end of this path, it is expected to extract 

geometric and semantic high-level features. Now these extracted 

features are entered into the expanding path so that the desired 

output is obtained from these obtained features. Hence, several 

layers of convolution and up-sampling are used in such a way 

that first a 2 x 2 up-convolution layer is used to double the size 

of the image and halve the number of feature maps. Since the 

features produced in this step (due to up-sampling) have little 

spatial information, the lower-level feature maps that exist in the 

contracting path are used. After each up-sampling, these features 

are concatenated with the features generated from the previous 

layer and are used as input to the next layer. After the up-

sampling layer, two 3 x 3 convolution layers are applied to 

prepare the feature maps for entering the next up-sampling layer.  

This continues until the dimensions of the feature maps are equal 

to the dimensions of the expected output. In this step, the required 

output is obtained by using a 3 x 3 convolution and linear 

activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 ResNet18: ResNet became the talk of the town by 

achieving breathtaking results on ImageNet dataset (Deng et al., 

2009) in 2015 while having a large number of layers.  

Previously, vanishing and exploding gradient problem was a 

huge barrier to use a lot of layers (Glorot et al., 2010). ResNet 

solved this issue pretty well by introducing residual blocks. A 

residual block allows the network to pass the input feature 

alongside with the outputs to the next block and helps the 

network to learn an identity function easier when needed. 

𝐻(𝑥) = 𝑥 +  𝐹(𝑥)                                                                              (6) 

As shown in Equation 6, the input feature (x) is added to result 

of the convolution block F(x) to produce the output feature H(x) 

(He et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A residual block (He et al., 2015) 

In this paper, we use ResNet18 as the backbone of the U-Net, 

which consists of 18 layers. 

An overview of the proposed model has been shown in Figure 3. 

At each ResNet convolutional stage, the height and width of the 

input feature map are halved and the number of feature maps is 

doubled, except for the first and the second stages in which they 

both have 64 feature maps.  

In the decoder part, which is on the right side of the figure, up-

sampling layers double the size of the feature maps while it 

reduces the number of the feature maps to half. In the final part, 

a 3 x 3 convolution layer with linear activation is performed to 

produce the outputs. 

 

 

Figure 3. The overview of the network

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-537-2023 | © Author(s) 2023. CC BY 4.0 License.

 
539



 

Figure 4. Six samples of dataset which include polarized images in 4 different degrees (0, 45, 90 and 135) in second row, ground 

truth in third row and binary mask in fourth row.

4. DATA AND RESULTS 

4.1 Dataset  

In this section, the details of the used dataset along with software 

and hardware specifications are explained. Deep Shape from 

Polarization dataset (Ba et al., 2020) is used for both training and 

testing. For each object at most 12 different training samples are 

created in three different lightning conditions (i.e., indoor, sunny 

outdoor, and cloudy outdoor) and from four different views (i.e., 

front, back, left, and right). Each sample contains three items:  

1. a polarized image (1024x1224x4) in which each dimension 

represents the image in a specific polarization angle (0, 45, 

90, and 135 degrees respectively) 

2. a surface normal image (1024x1224x3) including x, y, and 

z components of the surface normal vector for each pixel  

3. a binary mask (1024x1224x1) that separates the foreground 

pixels from the background.  

Train and test split is performed in such a way that 25 objects 

(235 samples) in training set and 8 objects (27 samples) in test 

set. Then, 64x64 patches are extracted from 1024x1224 samples 

to get fed into the network. At the end, there are 27190 samples 

in the training set and 3254 samples in the test set. In the training 

phase, 20% of the training data are detached to be used as the 

validation data. 

 

4.2 Training 

Keras framework (Chollet et al., 2015) with NVIDIA GeForce 

RTX 2060 GPU with 6GB of VRAM is used for training the 

network. Adam optimizer (Kingma and Ba, 2014) with 0.0001 

learning rate is chosen to find the optimum weights within 100 

epochs, and training data are fed into the network in batch size 

32. In order to having a better generalization of model, an L2 

regularization with regularization factor of 1 has been used for all 

convolutional layers. The learning curves have been shown in 

Figure 5. 

 

 

Figure 5. Cosine similarity loss curve in the training process for 

train and validation data 

4.3 Assessments 

In this paper, the results are evaluated both quantitatively and 

qualitatively. 

4.3.1 Qualitative assessment: Figure 6 shows the surface 

normal of six objects (Father Christmas, Flamingo, Horse, 

Dragon, Box, and Vase) in three different lighting conditions 

(indoor, sunny outdoor, and cloudy outdoor). The MAE value of 

these objects has been written on the top left corner of surface 

normal images. 

Quantitative and qualitative results in these images show that the 

method can reconstruct the surface normal of objects with the 

lowest MAE value. In addition, by assessing the MAE values in 

different lighting conditions, it is clear that this method was able 

to reconstruct the object in different conditions with the less 

variations. 
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4.3.2 Quantitative assessment: MAE (Mean Angular Error) 

metric has been used for quantitative evaluation in this paper. 

MAE metric is the most common way for measurement of 

surface normal reconstruction and to evaluate the difference 

between estimated surface normal and its ground true value. 

Table 1 shows the results of the proposed method along with 

other recently developed methods. In this table, the MAE value 

is calculated for the 6 objects in three different lighting conditions 

(indoor, sunny outdoor, and cloudy outdoor) that were considered 

for testing. The results show that the proposed method performs 

quite better compared to the previously developed physics-based 

methods (Smith et al., 2018; Mahmoud et al., 2012; Miyazaki et 

al., 2003). The MAE value on the whole dataset in these methods 

is between 41.44 and 49.03 degree, while the MAE value in the 

proposed method is equal to 18.06 degree on the whole dataset, 

which is approximately about half of the MAE value in the 

previous methods. Although the proposed method does not use 

any polarization information to reconstruct surface normal and 

only uses polarized images, the MAE value of this method is 

better than the DeepSfP (Ba et al., 2020) method and the MAE 

value for whole dataset in our proposed method is less than the 

DeepSfP method. 

 

 

Figure 6. Reconstructed surface normal of objects in three different lighting conditions. 
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Table 1. MAE values of objects across the three different lighting conditions. Other results are collected from the official results in 

DeepSfP (Ba et al., 2020). 

 

5. CONCLUSION 

 

In this paper we present a solution for estimating surface normal 

of objects using a convolutional neural network (U-Net). For 

geometric and semantic feature extraction, the ResNet18 has 

been utilized as the backbone of this network. Qualitative 

evaluation of the results showed that this method can reconstruct 

the surface normal in different lighting conditions including 

(indoor, sunny outdoor, and cloudy outdoor). Quantitative 

evaluation also showed that this method has the lowest MAE 

value compared to other physics-based methods, and also this 

method has significantly increased the accuracy of surface 

normal reconstruction. 

The main benefit of this method is that it can estimate the surface 

normal of an object with just a series of polarized images taken 

by a polarization camera. This method is passive and does not 

have the active methods drawbacks. In addition, it also can 

reconstruct shiny objects and also objects in different lighting 

conditions such as indoor and outdoor lighting conditions. We 

plan to improve the network using polarization information in the 

future work. 
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