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ABSTRACT: 

Vegetation monitoring and mapping are essential for a diverse range of environmental problems such as forest management, food 

resources, and climate change assessment. Several methods have been developed to classify different vegetation types based on 

remote sensing (RS) data. Land use classification has been revolutionized with the advent of neural networks. Various vegetation 

types were classified using multispectral Sentinel-2 satellite images due to their high spatial resolution and spectral information. 

Deep Convolutional Neural Network is considered a promising method for classifying remote sensing images with high spatial 

resolution due to its powerful feature extraction capabilities. However, large labeled datasets are required for better classification 

performance, so we have used pre-trained ResNet networks with 152 layers, 50 layers, and 101 layers trained on Big Earth Net 

(BEN). In order to obtain the best network performance and evaluate the sensitivity of the parameters in this study, we have 

performed two experiments: 1) the effect of different patch sizes and 2) increasing the number of images. The results demonstrate 

that ResNet 152 shows the highest accuracy with patches of 120 × 120 pixels, with an accuracy of 76.62%, and ResNet 50 is the best 

with an accuracy of 76.2% since the process of this network does not take much time.   

* Corresponding author

1. INTRODUCTION

Increasing population growth has significant implications for 

environmental problems and food shortages (Zhai et al. 2020). 

it is necessary to manage and monitor croplands and forests to 

preserve natural resources and food reserves for future 

generations. For this purpose, vegetation classification maps 

should be developed at local and global levels (Ahmed et al. 

2017). Achieving environmental goals such as addressing 

climate change requires information about land use. (Cui et al. 

2019), food security (Mutanga, Dube, and Galal 2017), 

ecosystem dynamics (Dubayah et al. 2020), etc. High-resolution 

satellite imagery plays a central role in studying land-use 

characteristics of the Earth's surface (Wulder et al. 2019). The 

launch of the Sentinel-2 satellite has promoted the development 

of a wide range of land studies and programs (Thanh Noi and 

Kappas 2017). Accurate classification of vegetation using Earth 

observation techniques is being used to assess stratification 

(Zhou et al. 2019), changes in cropping patterns (Weiss, Jacob, 

and Duveiller 2020), drought risk (Skakun et al. 2016), and 

levels of deforestation. Developing and improving satellite 

imagery requires advanced algorithms for processing and 

mapping.  

A machine learning technique known as Deep Learning (DL) 

has become increasingly popular in recent years. Image 

classification with Deep Learning is used to automatically learn 

an internal feature representation and extract complex features 

(Li et al. 2019). Deep learning models automatically extract 

features to perform classification tasks without requiring a 

specialist. Automatic land cover mapping solves tasks such as 

land cover change detection. The need for high-precision maps 

to detect changes on a weekly and daily time scale is essential 

for monitoring deforestation and illegal logging. Deep learning 

algorithms such as convolutional neural networks (CNN) are 

extremely successful. The best-known CNN architectures are 

(ResNet (He et al. 2016), VGG (Simonyan and Zisserman 

2015), and Inception (Längkvist, Karlsson, and Loutfi 2014)), 

which are used in computer vision, medicine, and remote 

sensing image processing. One of the advantages of DL 

networks is the flexibility in reducing and increasing the 

number of layers for different tasks (Lecun, Bengio, and Hinton 

2015). Evidence suggests that network depth plays a critical 

role in network performance; the more layers added, the more 

complex features the network can extract (Shrestha and 

Mahmood 2019). Deeper networks produce better results but 

require many labeled samples. Collecting labeled datasets is 

complex and requires a lot of manpower and resources to label 

remote sensing data. If the number of labeled samples is not 

large enough, the problem of overfitting will occur. There are 

two ways to overcome this problem: 1) data augmentation 

(Perez and Wang 2017) and 2) transfer learning (Hu et al. 

2022). 

As a deep learning technique, transfer learning overcomes the 

problem of limited labeling, where a model trained from a large 

dataset is transferred to a new, related task. The ImageNet 

dataset has caused a revolution in transfer learning due to the 

large number of images it contains. ImageNet is a computer 

vision dataset created with 3 RGB images (Russakovsky et al. 

2015) and is therefore insufficient for remote sensing tasks 

since images with multiple bandwidths and resolutions are 

commonly used in remote sensing to identify different features. 
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Besides, the semantic contents in the CV and RS datasets are 

different, so the class labels must be different. Although RS 

images have a variety of semantic contents, they represent 

various features on one image, so more than one label should be 

assigned to each image to solve feature complexity for image 

classification and retrieval tasks. Most remote sensing datasets 

consist of a single label. In the DFC15 dataset (Hua, Mou, and 

Zhu 2019, aerial images with a 5 cm spatial resolution and 

multiple labels were used, but not in large enough numbers for 

the development of DL models. Table 1 shows a list of remote 

sensing benchmarks. To address this issue, Sumbul et al. 

(Sumbul et al. 2019) provided a multi-label multi-resolution 

BigEarthNet dataset with 590,326 images 2019, which yielded 

significant results for image classification (Sumbul et al. 2020) 

and image retrieval (Sumbul et al. 2021) with DL networks. In 

this study, the BigEarthNet pre-training models' performance is 

presented in a classification map. 

 

Dataset Name Image Type Annotation 

Type 

Number of 

Images 

Number of 

Classes 

UC Merced Aerial RGB Single Label 2100 21 

WHU-RS19 Aerial RGB Single Label 1005 19 

RSSCN7 Aerial RGB Single Label 2800 7 

AID Aerial RGB Single Label 10000 30 

NWPU-

RESISC45 
Aerial RGB Single Label 31500 45 

RSI-CB Aerial RGB Single Label 36707 12 

PatternNet Aerial RGB Single Label 30400 38 

EuroSat 
Satellite 

Multispectral 
Single Label 27000 10 

DFC15 Aerial RGB Multi Label 3342 8 

BigEarthNet Sentinel-2 Multi Label 590326 43 

Table 1. The list of RS benchmarks 

 

 

2. STUDY AREA AND DATA 

 

2.1 Study area 

In this article, we used two study areas. The first region is 

Switzerland in Western Europe with (45 49 2 N, 5 57 22 E) 

geographical coordinates. This area has a completely similar 

land use pattern to BEN classes. On the other hand, this area 

has included images taken in BEN, so it has been chosen for 

investigation in this study. The first study area is shown in 

Figure 1. 

 

 
Figure 1. A study area's location 

The second study area is the Strasbourg, Saarbrucken, and 

Karlsruhe regions, located in southwestern Germany and part of 

France. More data was needed to implement the second 

strategy. Although not in the BigEarthNet archive images, the 

images taken from this area have similar vegetation classes and 

low cloud cover.  

 

2.1.1 BigEarthNet Dataset 

Sumbul et al. introduced the BigEarthNet(BEN) dataset in 2019 

(Sumbul et al. 2019). BEN is the first multi-label, and the multi-

resolution dataset has been created from remote sensing images. 

The 125 tiles used in this dataset were taken from June 2017 to 

May 2018 in ten European countries (Switzerland, Belgium, 

Austria, Ireland, Kosovo, Lithuania, Serbia, Portugal, 

Luxembourg, and Finland). In detail, the sentinel-2 images are 

in the UTM coordinate system. Atmospheric corrections were 

made using Sen2cor on these images. There are 590,326 

patches total, and they are divided into three groups: 120 by 120 

pixels for 10m bands; 60 by 60 pixels for 20m bands; and 20 by 

20 pixels for 60m bands. The dataset is available to download 

from http://bigearthnet.net/ 

 

2.1.2 Sentinel-2 

In this research, Sentinel 2 high-resolution images were used. 

Figure 2 shows the RGB of the Sentinel 2 image of Switzerland, 

a Level 1C product; on this date, cloud cover was 7%. The tile 

we used has an area of 110 × 110 km and It is georeferenced 

using the coordinate system UTM 31N based on WGS 84. The 

 band has been removed because it did not have 

information from the surface. 

 

 
Figure 2. RGB image from Sentinel-2 

 

The second data used, related to southwestern Germany and 

part of France, consists of 4 tiles, 2 of which are level 2A 

products, and the other two are level 1C products (Figure 3). 

The imaging system of all tiles is WGS, and the date of taking 

the images was the same as the Switzerland data. We are using 

the second data to study the performance of the network when 

more images are uploaded because the images in the 

neighborhood of first image had a cloud coverage of about 

70%, which was not suitable for automatic classification; we 

used secondary data. 

 

 
Figure 3. RGB image of Sentinel-2 from the second study area 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-569-2023 | © Author(s) 2023. CC BY 4.0 License.

 
570

http://bigearthnet.net/


 

3. METHOD 

 

3.1 pre-processing of ground truth and sentinel-2 images 

In order to quantitatively evaluate the classification results, we 

need a reference map. Since the study area is Switzerland, 

Germany, and France, we downloaded the land use map of 

Europe from https://land.copernicus.eu. The CLC map 

includes 43 classes with a spatial resolution of 100 meters and 

the coordinate system ETRS_1989_LAEA. We first reclassified 

the ground truth (GT) map according to the 19 classes in the 

BigEarthNet dataset with ArcGIS software. The map coordinate 

system and Sentinal-2 image must be the same to match 

geographically. Using the “Data management tool,” we 

converted the map coordinate system to 

WGS_1984_UTM_Zone_31N for Switzerland and 

WGS_1984_UTM_Zone_32N for the second data. We 

considered the spatial resolution of the map to match the image. 

After fitting the image and the map, we cut the image area with 

the “spatial analyst tools.” Figures 4 and 5 show GT for the first 

and second data, respectively. 

 

 
 

Figure 4. Ground truth for first data 

 

 
 

Figure 5. Ground truth for second data 

 

Atmospheric corrections on the 1C level product of Sentinel-2 

images using the Sen2cor plugin (the sen2cor algorithm 

designed in SNAP software provides the ability to eliminate the 

effect of the atmosphere with high accuracy on this data) SNAP 

software did it. To feed images to the network, we have to 

convert the images into patches and then into tensors. In this 

study, to achieve the best network performance and evaluate the 

sensitivity of the parameters, in sections 3.1.1 and 3.1.2, we 

explain two strategies we used. The difference between variant 

experiments is in the number and dimensions of the patches. 

 

3.1.1 The effect of different sizes of patches 

The first strategy is to survey the impact of patch dimensions on 

the efficiency of CNN for the image with a spatial resolution of 

20 meters, which we divided into 60 × 60 dimensions in the 

previous step; we create patches with 90 × 90 and 120 × 120 

pixels. We also turn these patches into tensors. Figure 6 shows 

patches with different dimensions.  

 

 
Figure 6. a, b, c patches with dimensions 60,90,120 pixels, 

respectively 

 

3.1.2 increasing the number of images 

In the second experiment, we used the second data, four images, 

to investigate the increase in the number of images on the 

network performance. After atmospheric correction, similar to 

the previous data processing, we converted all the bands to a 

spatial resolution of 20 meters using the nearest neighbourhood 

method. We create patches with dimensions of 60 × 60 pixels, 

then turn them into a tensor. Since the number of images has 

quadrupled; as a result, the number of patches also increases 

and is equal to 33124. 

 

3.2 Classification 

To model the classes, by transferring knowledge from 

BigEarthNet to Sentinel-2 images, using pre-trained ResNet50, 

ResNet101, and ResNet152 models. In these networks, in order 

to decrease the sigmoid cross entropy loss, the Adam approach 

(Kingma and Ba 2015) with a learning rate of  has been 

used, and all models were trained in 100 epochs. The batch size 

for the ResNet 50,101 was 500, and the ResNet 152 was 256. In 

the first step, we tested all three networks with images with a 

resolution of 10 m obtained from the P + XS fusion method. To 

increase the accuracy of the networks, we fine-tuned them to do 

this from 70% of the data (5799 patches) for training and the 

remaining 30% (2485 patches) for testing. We used. We trained 

all three networks with 20 epochs and batch size 128 for ResNet 

50 and ResNet 101 and 64 for ResNet 152. 

To compare the increase in the size of the patches, the networks 

with patches with dimensions of 90 × 90 pixels and 120 × 120 

pixels, which we explained in section 3.1.1, and the parameters 

that we set in the previous step, fine-tuned and then tested. The 

final step of the research is the effect of increasing training 

samples on network performance, so we used the second data, 

which includes four images belonging to regions of Germany 
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and France. First, we fine-tuned the networks with a quarter of 

the data, one of the images (5799 patches), and tested it with the 

rest of the patches (2485 patches). In the next step, we used all 

four images (23196 patches) for fine-tuning the networks with 

the new data and 9940 patches for testing. In this step, all the 

parameters for fine-tuning are the same as in the previous steps. 

The results of this section are displayed in the results chapter. 

We used Tensorflow 1.3 (Agarwal et al. 2015)) and the 

NVIDIA GeForce GTX 1080 Ti GPU to run these networks. 

 

4. RESULTS AND DISCUSSION 

The outcome of the first experiment, which increased the patch 

size on the precision of the classifier networks, are presented in 

the following chart (Figure 7). 

 

 
Figure 7. Network precision based on different patch 

dimensions 

 

According to the results of evaluating networks with different 

patch dimensions, it is observed that with increasing patch 

dimensions, the accuracy of ResNet50 and ResNet101 networks 

decreases, and with increasing patch dimensions, the variety of 

features (classes) per patch increases. It is observed that the 

deeper network (ResNet152) has better accuracy for large 

patches because deeper networks have a better ability to learn 

complex features. Still, the computations in these networks are 

high and require more time. 

In Table 2, the precision of the networks is shown as a function 

of increasing the number of images. Increasing the number of 

images will increase the average precision of the networks by 

7% and improve the precision of the classes more. 

 

Classes ResNet 50 ResNet 101 ResNet 152 

 
One 

image 

Four 

images 

One 

image 

Four 

images 

One 

image 

Four 

images 

Arable land 77.32 79.15 78.93 81.39 82.02 74.55 

Permanent crop 53.75 72.31 56.57 83.37 66.82 87.19 

Pastures 71.56 73.79 65.35 66.07 64.67 61.27 

Complex cultivation 

patterns 

24.32 29 50 20.17 0 14.31 

Land principally 

occupied by 

agriculture 

20.83 11.45 0 16.6 0 0 

Broad-leaved forest 68.41 69.53 68.99 67.54 71.23 71.97 

Coniferous forest 76 72.13 79.24 74.82 71.3 87.46 

Mixed forest 42.16 65.57 73.63 63.65 72.63 64.19 

Transitional 

woodland, shrub 

21.77 28.77 0 18.78 0 6.6 

Recall 60.59 65.52 54.59 68.76 70.16 62.75 

Precision 66.47 73.23 68.78 76.19 73.79 75.24 

Table 2. The precision of each class obtained from pre-trained 

ResNet 50,101,152 based on BEN dataset with fine-tuned 

networks on one and four sentinel-2 images 

 

By examining the precision of each class and the visual 

interpretation of the classes from the land cover, it can be 

concluded that the distribution of classes also affects their 

accuracy in addition to the number of training samples. 

According to Fig 8, it can be seen that although the Pastures 

class has more pixels (about six times) than the Permanent crop 

class and is scattered on the map, the Permanent class crop is 

integrated the accuracy of these two classes is relatively equal. 

Besides, it can be seen that the Land principally occupied by the 

agriculture class has decreased in accuracy with increasing the 

number of images; the same conclusion can be drawn for this 

class. 

 

         
                          Figure 8. Ground truth 

 

 

5. CONCLUSIONS 

Vegetation types classification maps are critical tools for 

managing and planning environmental problems. The goal of 

this study was to create accurate classification maps using pre-

trained networks trained on BigEarthNet datasets. In order to 

get the best efficiency, we do various tests on ResNet 50, 

ResNet 101, and ResNet 152 networks. According to the first 

experiment, which aimed to examine the effect of varying patch 

scales, increasing patch size has a direct effect on increasing 

feature complexity. The ResNet 152 network has a resolution of 

76.62 for a 120 × 120 pixel patch because the deeper network 

has a better ability to learn complex features but to ensure this 

conclusion, we need to look at more different dimensions of the 

patches. In the second experiment, which aimed to increase the 

ability to identify vegetation classes, we increased the number 

of training samples. The overall precision of the classes 

increased by an average of 7%; in addition to increasing 

training samples, cohesion also affected network performance. 

Based on the overall accuracy achieved for the networks, it can 

be concluded that the BigEarthNet dataset stands out from other 

machine vision databases as it allocates multiple labels to each 

patch and uses multiband satellite imagery. (In a dataset like 

ImageNet, only three RGB bands are used). For each class, this 

advantage can be observed; however, complexity and similarity 

of features may make some classes difficult to distinguish. The 

results of this study show that there is still space for progress in 

the classification performance for deep CNN. In future studies, 

sentinel-1 and sentinel-2 images should be merged. 
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