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ABSTRACT: 

 

Highly urbanized regions such as the Metro Manila area in the Philippines contribute to the deterioration of air quality through 

overpopulation, excessive vehicle emissions, and industrialization. However, the limited number of ground monitoring stations 

hinders the detailed estimation of the region’s overall air quality. Satellite-derived air pollutant concentrations have been used in 

several research studies as a substitute or supplementary to ground-based data due to their extensive spatial and temporal coverage. 

Using the aerosol optical depth (AOD) from the MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

algorithm and ground measurements of coarse particulate matter (PM10), this study explores the comparison between satellite-

derived and ground-based air pollutant concentrations measured from 2017 to 2020 through trend analysis of monthly average values 

per city. With 16 stations located in different cities, the monthly average values of AOD vs PM10 showed inconsistent results due to 

significant gaps in the ground data. Through optimized hotspot analysis, it was found that 7.24% of the Metro Manila region are 

considered hotspots using the MAIAC AOD values from 2017 to 2019 (pre-pandemic). From 2018 to 2020 (pandemic), 23.86% of 

Metro Manila are counted as hotspots. The AOD derived from satellite imagery and hotspot analysis can be used for future studies 

that focus on the development of models to predict ground pollutant values and the designation of non-attainment areas.  

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Pollution in the atmosphere is one of the biggest threats to 

public health in highly urbanized areas. The exponential growth 

of population, commercial and industrial endeavors, and traffic 

and vehicle emissions play significant roles in the increase of air 

pollutants such as carbon monoxide (CO), nitrogen dioxide 

(NO2), sulfur dioxide (SO2), ozone (O3), and fine particulate 

matter (PM) (Habibi, et al., 2017). 

 

Air quality is typically measured using ground-based methods 

such as the use of air filters in established air quality monitoring 

stations at specific areas in the city that are made to keep track 

of some air pollutants such as PM, total suspended particles 

(TSP), NO2, and SO2 concentrations. However, these 

procedures have limited area of observation and do not capture 

the accurate condition of air quality within a city or a region. 

Earth-observing satellite systems and imaging sensors have 

been continuously improved and developed in recent years. This 

technology, together with image processing techniques, allows a 

new method of monitoring urban air quality in larger areas 

(Tulloch & Li, 2004). Another advantage of using satellite 

imagery in air quality monitoring is its capability to monitor 

several pollutants more consistently (Wald & Baleynaud, 1999). 

 

PM is a measurement of air pollution created by natural means 

and human causes. It is described by atmospheric particles with 

a diameter equal to or less than 100 µm. More specifically, 

PM10 refers to particles with a diameter of less than 10 µm 

while PM2.5 are particles with less than 2.5 µm in diameter 

(Kim et al., 2014). Moreover, these fine particles can be a 

possible cause of health problems as it travels in the 

atmosphere.  

 

Aerosol Optical Depth (AOD) is one of the parameters relevant 

in monitoring air quality that can be extracted using remote 

sensing techniques. Li et al. (2019) defined AOD as the amount 

of incoming solar radiation that is scattered and absorbed by 

aerosols at a given wavelength. It is also the integrated 

extinction coefficient over a vertical column of unit cross 

section (Thi Van et al., 2018). AOD indicates how much 

sunlight reaches the surface of the planet; with its measurement 

relating to the amount of aerosol found in the vertical column of 

the atmosphere. Aerosols are then defined as fine particles 

found in the atmosphere that are heavily affected by 

meteorological variables and environmental factors (Li et al., 

2017). According to the study of Goldberg et al. (2019), AOD 

measurements present the total atmospheric column content but 

not necessarily the equivalent concentration on the earth’s 

surface. A book written by Tomasi et al. (2017) has also stated 

that aerosols affect the earth’s climate through their radiative 

effect and interactions with the atmosphere.  

 

The Moderate Resolution Imaging Spectroradiometer (MODIS) 

is an instrument attached in NASA’s Terra and Aqua satellites 

which uses the sun as a natural source of illumination. This 

detects atmospheric aerosol thickness and other parameters over 

land and ocean (Remer et al., 2005). Using atmospheric aerosols 
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and bidirectional reflectance, the Multi-Angle Implementation 

of Atmospheric Correction (MAIAC) algorithm is implemented 

to provide more accurate data. Goldberg, et al. (2019) used 

MAIAC AOD to estimate the daily PM2.5 concentrations in the 

Eastern United States. The study, which includes the use of 

regression modeling, Weather Research and Forecasting Model 

(WRF)-Chem simulation output, and validation using the US 

Environmental Protection Agency (EPA) Air Quality System 

(APS) monitors, resulted in a highly accurate estimate (r2 = 0.75 

using 10-fold random cross-validation) of the daily PM2.5 

concentration across the study area. The R-squared statistic (r2) 

measures how close the set of data is to a fitted regression line. 

Its value ranges from 0 to 1, wherein a value of 1 means that the 

regression predictions perfectly fit the data. MAIAC AOD was 

also used by Hu et al. (2013) for estimating PM2.5 

concentrations in the Southeastern region of the United States. 

A two-stage spatial statistical model utilizing meteorological 

variables and land use parameters was used to estimate PM2.5. A 

coefficient of determination r2 of 0.83 in model fitting and r2 of 

0.67 in cross-validation was calculated using the said 

methodology, which indicates a good correlation between 

satellite-derived AOD and PM2.5. It was concluded by Hu et al. 

(2014) that MAIAC AOD can be used to estimate PM2.5 

concentrations. In a study conducted by Kloog et al. in 2015, 

MAIAC AOD data were used to estimate both PM2.5 and PM10 

daily concentrations in Israel. The three-stage model used in this 

research resulted in r2 values of 0.79 and 0.72 for PM10 and 

PM2.5, respectively, which are deemed as good fits. Dey et al. 

(2020) utilized the AOD measurements from the MODIS 

MAIAC algorithm as PM2.5 ground measurements in India are 

scarce. The daily and annual satellite-derived AOD values were 

compared against the surface measurements available and 

resulted in an r2 value of 0.8 and 0.97, respectively. Moreover, 

this study found that the annual PM2.5 concentration and annual 

satellite-derived AOD were presenting similar spatial patterns 

(Dey et al., 2020). The seasonal anomaly and trends in PM2.5 

concentration were also observed, which can be a consideration 

for the future of this research as well. 

 

Hot Spot analysis is often applied to location-dependent 

measurements to describe the spatial characteristics of the data. 

It is commonly used to detect clusters of data or measurements, 

in this case, pollutant concentrations, that are surrounded by 

high or low values of the same measurement and also 

determines whether these are statistically significant, or the 

clusters only follow a random distribution pattern. Related 

studies utilized the spatial statistics approach, one of which is 

hotspot analysis, to determine spatiotemporal patterns of 

particulate matter (Wei-Feng et al., 2018) and carbon monoxide 

and fine particulate matter (Habibi et al., 2017). The patterns are 

determined based on general and local indices of Moran’s I and 

Getis-Ord Gi* statistics. Moran’s I index enables the detection 

of spatial outliers while Getis-Ord Gi* identifies statistically 

significant clusters of high values called hotspots or low 

valuescoldspots. The calculation of the Moran’s I and Getis-Ord 

Gi* values can be executed through GIS tools. 

 

Optimized Hot Spot Analysis (OHSA) makes use of the Hot 

Spot Analysis Getis-Ord Gi* to determine the settings that will 

yield the most accurate results depending on the data input. 

OHSA aggregates the data points and turns them into weighted 

features. The distribution of these weighted features will be 

used to identify the most appropriate scale for analysis. (ESRI, 

2017). The use of OHSA for different applications can be found 

on published articles and research. Lu et al. (2019) used OHSA 

on persistent scatterers and distributed scatterers for the 

detection of landslides, Zhuang et al. (2018) utilized OHSA for 

studying the species distribution of Manglietia insignis in 

China, and the use of OHSA in mapping land subsidence in 

Indonesia using Sentinel-1 SAR data was studied by Hakim et 

al. in 2021. 

2. MATERIALS AND METHODS 

2.1 Study Area 

Metro Manila, also known as the National Capital Region 

(NCR) is the Philippines’ political and economic center. This 

megacity is composed of four (4) districts divided into sixteen 

(16) cities and one (1) municipality with a total land area of 

around 619.57 km2 (Chua, et al., 2021). According to the study 

by Bagtasa (2019), the region experiences two (2) seasons based 

on temperature and rainfall throughout the year: the wet season, 

lasting from May to October, and the dry season from 

November to April.  

 

A study by Oliveros et al. (2018) showed that the urbanization 

of the region for 11 years from 2000 to 2010, affected the 

sensible heat flux, temperature, and rainfall in the region. 

Results from the study showed the occurrence of the urban heat 

island effect causing a significant minimum and maximum 

temperature difference in the region. The region’s continuous 

urbanization, poor community planning, and an exponential 

increase in population over the years make it much more 

vulnerable to various environmental problems.   

 

  
Figure 1. Study area showing NCR boundary along with the 

available ground monitoring stations provided by the DENR. 

 

2.2 Methodological Framework 

2.2.1 Data Acquisition 

 

Google Earth Engine (GEE) is a cloud-based geospatial analysis 

platform for the analysis of satellite imagery. It provides 

students and researchers an efficient way of analyzing a large 

variety of data from its catalog. The platform uses either Python 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-639-2023 | © Author(s) 2023. CC BY 4.0 License.

 
640



or Javascript to make requests to its servers. A JavaScript-based 

script was developed to download satellite data from GEE.  

 

The MAIAC Land Aerosol Optical Depth (MCD19) provides 

users with the AOD values in a 1-km spatial resolution and a 

daily temporal resolution. There are two bands available for 

analysis namely: Optical_Depth_47 (Blue Band) and 

Optical_Depth_55 (Green Band). Related studies have used the 

green band over the blue band in processing methods due to its 

better consistency (Ranjan et al., 2020; Lyapustin and Wang, 

2018). The satellite images are clipped to the NCR boundary 

and the period is set from 2017 to 2020. The monthly average of 

each green band pixel is calculated to generate the image 

showing the monthly AOD of NCR. Overall, a total of 48 

images were acquired. 

 

Available PM data from all sixteen (16) monitoring stations in 

NCR, together with the station’s exact coordinates, were 

requested from the Department of Environment and Natural 

Resources Environmental Management Bureau (DENR-EMB). 

 

2.2.2 Comparison between Satellite-Derived AOD and 

Ground-Based PM Measurements  

 

Monthly average AOD maps from 2017 to 2020 were generated 

using QGIS, an open-source software that allows the user to 

visualize geospatial information. According to the MCD19 user 

guide provided by GEE, MAIAC AOD contains bands that 

represent the AOD computed from the blue and green bands 

based on the spectral properties of the regional aerosol model 

used in retrievals. A total of 48 images were compiled for visual 

inspection and comparison.  

 

Given the coordinates of the Continuous Air Monitoring 

Stations (CAMS) in Metro Manila, the monthly spatial average 

values of PM10 in every station calculated, excluding all 

measurement entries with no data. This is compared to the 

satellite-derived monthly average AOD in each city. A similar 

trend between the two datasets would indicate that the satellite-

derived measurements have a possible relationship with the 

ground-based data. 

 

2.2.3 Hot Spot Analysis 

 

Optimized hotspot analysis was performed in NCR, using the 

AOD derived from MODIS MAIAC. This process can 

determine which areas contain a relatively high AOD 

concentration value and which regions can be classified as 

significant clusters of interest. The analysis was done at the 

barangay level, which is the smallest administrative division in 

the country, as this would allow for a more accurate comparison 

with the stations given by DENR-EMB. 

 

3. RESULTS AND DISCUSSION 

3.1 Satellite-Derived AOD vs Ground-Based PM Data 

Figure 2 presents the summary of monthly average maps of 

NCR from 2017 to 2020 using MODIS MAIAC AOD 

measurements with values ranging from 0 to 0.6. Greener areas 

show minimal AOD values while areas in red show higher 

AOD. For four years, it can be visually observed that the AOD 

in the whole region is relatively low from January to April, with 

values ranging from 0 to 0.2. There is an increase in value 

starting from May to October in the northern portions of NCR, 

particularly Quezon City, Valenzuela, Manila, Makati, 

Mandaluyong, Taguig, and Pasay, with the highest values 

occurring in August and September of 2018 and 2019. The 

AOD concentrations in these areas decrease again during 

December. However, cities from the southern part of NCR 

particularly Paranaque, Las Pinas and Muntinlupa show the 

same increasing and decreasing trend as mentioned for the other 

cities, with values remaining in a constantly low range of 0 to 

0.4 throughout the year. 

 

The trend of satellite-derived monthly average AOD values was 

compared to the acquired PM ground data measurements using 

the graph as shown in Figure 3. This figure shows that some of 

the graphs present a similar trend between the two compared 

datasets. Pasay City in 2017 had no PM data for the first months 

of the year; however, most of the remaining months show a 

similar trend to the AOD data. Ground-based and satellite-based 

data also have the same pattern for most of the months in 

Paranaque (2018) and Las Pinas City (2020).  

 

Figure 4 exhibits the graphs which show different or opposing 

trends in some or most months in a city. Pasig City in 2017 

experienced two (2) spikes in AOD concentrations during May 

and July although this does not occur in the PM data. The trend 

of increasing or decreasing values from one month to another 

can also be observed to be opposite from February onwards. 

The same observation is seen in Malabon and Paranaque in the 

years 2019 and 2020, respectively.  

 

Figure 5 below shows the graphs wherein an observation cannot 

be made due to the lacking data from ground monitoring 

stations or the lack of monthly average data for a particular city 

due to excessive cloud cover. San Juan City, being the smallest 

city in the Philippines with an area of 5.95 km2, is very likely to 

be enveloped by clouds or other disturbances in satellite 

imagery. In 2018, this city only had six (6) months of recorded 

AOD data with only three (3) consecutive months to analyze the  

trend: thus, comparison cannot be evaluated. The same goes for 

the cities of Manila and Muntinlupa in the same year, however, 

the ground-based PM data for the whole year is not existent 

instead. Failure to capture data might be caused by a 

malfunction in the agency’s monitoring stations. 

 

3.2  Optimized Hotspot Analysis 

3.2.1 Pre-Pandemic Analysis (2017 to 2019) 

 

Using barangay-level analysis, areas are considered AOD 

hotspots once they are marked as a hotspot for three (3) 

consecutive years. This was executed by calculating the annual 

mean of the GI Z-Score and P-value with a requirement of 

greater than 90 percent confidence level (ESRI, 2017).  

 

There are only 3 out of 16 cities where hotspot areas occurred. 

Most areas of interest are located in Quezon City and Manila, 

with a small part in Malabon. 65 barangays out of 897 in the 

whole NCR, 7.24 percent, are deemed to be hotspots before the 

pandemic started to spread in the Philippines. 

 

3.2.2 Pandemic Analysis (2018 to 2020) 

 

The COVID-19 pandemic has been a worldwide public health 

emergency and the use of satellite imagery has provided 

pictures of the air quality condition in cities since this event 

occurred. The AOD levels in Southeast Asia, Europe, and the 

USA amidst the COVID-19 pandemic have been observed by 

Acharya et al., (2020). It has been found that AOD was 

significantly reduced by 20% in most areas in the indicated 

regions while NO2 concentration was reduced by 20 to 40%.  
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Figure 2. Study area showing NCR boundary along with the available ground monitoring stations provided by the DENR.

 

 

 

 
Figure 3. DENR PM10 Ground Data vs Barangay Spatial Average from MODIS AOD (Similar Trends) 

 

 
Figure 4. DENR PM10 Ground Data vs Barangay Spatial Average from MODIS AOD (Opposite Trends) 

 

 
Figure 5. DENR PM10 Ground Data vs Barangay Spatial Average from MODIS AOD (Inconclusive Trends due to Data Gaps) 
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Figure 6. Map of the areas in NCR classified as hotspots over 3 years (2017 to 2019) 

 

 
Figure 7. Map of the areas in NCR classified as hotspots over 3 years (2018 to 2020) 
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AOD values derived from the green band of the MODIS Terra 

and Aqua satellite and NO2 concentration from Sentinel-5P 

TROPOMI were also used in the study by Li et al. (2020) for 

the investigation of aerosol significance in determining the 

COVID-19 fatality rate in Germany, Italy, and Spain. By the 

start of 2020, this infectious disease has already made its way 

into the Philippines, affecting several Filipinos. Establishments 

and outdoor recreational activities were closed and going out for 

leisure is prohibited. Due to this, air quality is expected to show 

more improvement.  

 

As seen in Figure 7, there are more areas considered hotspots 

compared to the map in Figure 6. Since this was derived from a 

3-year period, several factors could have contributed to this 

result such as the unencoded data due to cloud covers or errors 

in the satellite images. In this period, 214 out of 897 barangays 

in NCR, equivalent to 23.86 percent, are considered hotspots in 

the years including 2020, the year COVID-19 occurred. 

 

4. CONCLUSIONS 

This study focused on the comparison between the satellite-

derived AOD and the PM values measured from local 

monitoring stations. Graphs were created for each of the 

existing sixteen (16) stations in NCR for every year (2017 to 

2020). Some graphs showed similar patterns, yet there are also 

graphs which presented opposite trends, specifically in the 

increase or decrease in pollutant values from one month to 

another. Due to the lack of ground measurement data, it was 

inevitable to have inconsistent results, thus, proper analysis 

cannot be given.  

 

Moreover, optimized hotspot analysis was performed at the 

barangay level to determine the areas which have relatively high 

AOD values during a 3-year period. Two sets were analyzed: 

pre-pandemic (2017 to 2019) and pandemic (2018 to 2020). For 

the pre-pandemic years, 7.24 percent or 65 out of 897 barangays 

were labelled as hotspots while the analysis which included year 

2020 resulted to 23.86 percent or 214 out of 897 barangays as 

hotspots. Since the satellite-derived AOD measurements does 

not entirely represent the situation on the earth’s surface, thus 

may have caused the theoretically inaccurate and unexpected 

increase in number of hostpots between the two study periods. 

 

Future works can consider filling the gaps in the data from air 

monitoring ground stations which can be accomplished using 

appropriate mathematical models. This procedure can 

significantly help the validation of the satellite-derived 

measurements. The relationship between AOD and PM can also 

be evaluated better using models. Linear and multiple 

regression methods are commonly used in studies for estimating 

PM10 concentrations from AOD values (Liu et al., 2005; Gupta 

& Christopher, 2009; Gupta et al., 2006). Other publications 

have also explored the use of more complex mathematical 

models such as artificial neural networks to achieve better and 

more accurate results (Zhang et al., 2019). The process of 

determining the PM concentration on the ground through the 

use of satellite imagery is a great way to accurately picture the 

air quality in a specific location. With this. proper community 

planning and awareness follow.  
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