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ABSTRACT 

As a result of climate change, climatic catastrophes, such as wildfires, are likely to increase. Wildfires continue to occur frequently 

and spread with greater intensity due to extreme weather conditions. In recent years, explosive fire growths have been reported in the 

United States, Australia, and other parts of the world. A combination of climate change and human activity has caused the semi-arid 

forestry areas in Iran's northern provinces to become more desiccated, leading to an increase in wildfires. The accuracy of the 

resulting fire susceptibility maps (FSMs) will directly be related to the performance of the method classifier. In this study, we use an 

ensemble classifier to model the FSM for a selected forestry case study area in one of the northern provinces of this country. 

Therefore, FSM is generated based on established criteria using the ensemble model. With Decision Trees, K nearest neighbor, and 

Logistic Regression, the ensemble model was created using the soft-voting method. A forest fire inventory data is created based on 

data collected over five years using GPS and the MODIS thermal anomalies product for training and testing the applied approach. 

The K-fold method was used for validation, and the resulting FSM was validated using five accuracy assessment metrics. The best 

result from the area under the curve (AUC) yields 93% for fold 9, and the mean AUC for ten folds yields 88%. 

1. INTRODUCTION

The threat of wildfire disasters has increased due to global 

warming. Consequently, forest ecosystems are increasingly at 

risk (Papathoma-Köhle et al., 2022). However, a wildfire may 

have natural, accidental, or even criminal origins (Sayad et al., 

2019). As fire is one of the significant threats to forestry areas, 

this hazard, whether natural or manufactured, can negatively 

impact the environment and the economy of local communities. 

Forests are vital resources worldwide, and in Iran, they provide 

an essential source of income to local communities in the 

northern Provinces. Globally, fire is a significant contributor to 

the development and degradation of forests. The climate of Iran 

ranges from arid to semi-arid, and wildfires are increasingly 

occurring across a large portion of the country's forests in the 

northern provinces (Adab et al., 2015). Moreover, this region is 

becoming warmer and drier due to climate change. Hence, there 

is an urgent need for studies on the spatial prediction of 

wildfires through modeling fire susceptibility maps (FSMs) to 

mitigate wildfire's adverse impacts. The modeling FSMs 

depends on a conditional wildfire criterion including 

anthropological, vegetation, topographical, meteorological, and 

related hydrological criteria. Wildfire analysis and susceptibility 

mapping are significantly enhanced by remote sensing satellite 

imagery and GIS application (Karimi et al., 2021; Pourghasemi, 

2016; Pradhan et al., 2007). Moreover, machine learning (ML) 

classifiers have proven superior for spatial hazard predictions 

during the last two decades (Jaafari et al., 2019; Tien Bui et al., 

2019; Watson et al., 2019). Two factors have led to the wide 

use of ML classifiers; first, the higher availability of thermal 

anomaly products from satellites like the moderate resolution 

imaging spectrometer (MODIS) to generate wildfire inventory 

data sets for training and to test the classifiers, and second, the 

technology evolution in computing platforms. The use of ML 

classifiers for wildfire spatial prediction and susceptibility 

mapping is currently gaining much attention. Therefore, several 

studies have examined them for modeling the FSMs in forest 

areas worldwide. Iban et al. (Iban and Sekertekin, 2022) 

evaluated seven ML classifiers, including random forest (RF), 

AdaBoost (AB), and support vector machine (SVM), for 

modeling FSMs for two provinces of Adana and Mersin in 

Turkey. In their accuracy assessment process, the lowest and 

highest accuracy scores for the applied seven different ML 

classifiers were 0.734 and 0.812. Sharma et al. (Sharma et al., 

2022) used four ML classifiers of the Boosted Regression Tree, 

Extreme Gradient Boosting, Fuzzy Forest (FF), and the RF for 

wildfire severity prediction in different regions of Victoria, 

Australia, and the FF showed the highest accuracy. They used 

six wildfire severity criteria: soil temperature and moisture, air 

temperature and pressure, relative humidity, and vertical wind. 

For the Northern Beaches area of Sydney, Australia, thirty-six 

wildfire conditional factors were selected and used by 

Naderpour et al. (2021). Using an optimized deep neural 

network, they could create an FSM with an accuracy of more 

than 95% ROC. In another case study area in Australia, 

Hosseini and Lim et al. Hosseini and Lim (2022) applied eight 

classifiers like logistic regression and SVM for bushfire 

susceptibility mapping for New South Wales. They selected 

eight conditional factors according to a literature review of 

studies that have been done elsewhere, such as Huichang 

County, China; the Liguria region in Italy; the Zagros 

Mountains, Iran; and Wuyishan Scenery District, China. Their 

selected criteria included the elevation, aspect, slope, annual 

temperature and precipitation, normalized difference vegetation 
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index (NDVI), land cover, and distance to roads. The wildfire-

prone areas of Iran have also been subjected to studies using 

similar methodologies. The performance of three classifiers of 

the RF, artificial neural network (ANN), and SVM were 

evaluated by Ghorbanzadeh et al. (2019) for spatial prediction 

of wildfires in Mazandaran Province, Iran. Their accuracy 

assessment was based on four-fold cross-validation (CV), and 

RF resulted in the best prediction by 88% ROC. In another 

study, Tavakkoli et al. (2022) employed the Google Earth 

Engine (GEE) software to evaluate coarse and medium spatial 

resolution data that influenced the ML models for FSM 

modeling for the forests of the Guilan Province, Iran. The 

researchers also use the Dempster-Shafer theory (DST) and 14 

wildfire conditioning criteria to fuse predictions from different 

resolutions. Golestan Province, located in northeast Iran, was 

also selected as the case study area for FSM modeling by 

Eskandari et al. (2021). Several classifiers have been compared 

using a training data set that often included criteria of the 

elevation, slope, plan curvature, topographic wetness index 

(TWI), annual rainfall mean, annual temperature mean, wind 

effect, distance to urban areas, distance to streams, and distance 

to roads. The conditional criteria were selected based on a 

review of relevant research findings from other regions, such as 

the Hyrcanian ecoregion, Iran; Dayu County, China; the 

Western Mazandaran Province, Iran; and forest areas of 

Vietnam. Since forest areas have different topographies, climate 

zones, settlement densities, human activity, etc. In this study, 

using an ensemble model for generating FSM would be 

investigated. 

2. STUDY AREA AND DATA 

2.1 Study area 

The Alborz Mountains are part of the much larger Alpide belt 

and run from Ardabil Province to the western and southern 

coasts of the Caspian Sea until the northern parts of Khorasan 

Province in northeast Iran. In this study, we selected a forestry 

region that mostly covered the northern part of the mountainous 

regions of Amol County in the Mazandaran Province. The study 

area is located in the Central Alborz region on the southern 

coast of the Caspian Sea (see Figure 1). There are different 

agroecosystems in Amol County, including plains, forests, and 

rainforests, and forests in mountainous areas of this county are 

selected for further analyses and FSM modeling. 

 
Figure 1. Location map of the study area. 

 

2.2 Wildfire data 

A fire inventory is an important first step in generating FSMs 

using ML classifiers. For any ML classifier, accurate and 

adequate inventory data is crucial for training the classifier. In 

this study, the freely available MODIS moderate resolution 

imaging spectroradiometer (MODIS) thermal anomalies product 

is used to generate wildfire inventory data for 2012 to 2017. 

Over the study period, 34 fire polygons were detected covering 

17,420 pixels. Moreover, GPS data collected through field 

surveys were utilized to evaluate and manually correct the 

detected polygons. In this way, GPS data and MODIS data were 

combined to create the wildfire inventory data. The manual 

corrections were made using ArcGIS software. Except for the 

fire polygons, non-forest fire points were also randomly 

distributed within the entire study area for training our machine 

learning models. Conditioning criteria play a vital role in 

training machine learning models to generate FSMs. This study 

intently selects the conditional criteria applied in previous 

studies that have been done in the same study area or 

geographically similar regions. The applied criteria of distance 

to the settlements, recreational areas and roads, and land use are 

our anthropologically selected criteria in this study; the 

normalized difference vegetation index (NDVI) is considered 

the vegetation criterion derived from Landsat-8 

https://earthexplorer.usgs.gov/. This research uses the advanced 

space-borne thermal emission and reflection radiometer 

(ASTER) freely available from https://asterweb.jpl.nasa.gov/ to 

generate the elevation, slope, slope aspect, landforms, the 

topographic wetness index (TWI), and plan curvature (PC). 

Three criteria of the wind effect, annual temperature, and 

potential solar radiation were selected as the meteorological 

criteria. The wildfire conditional hydrological criteria are 

distance to streams and annual rainfall. All criteria are shown in 

Table 1. 

 
anthropological vegetation topographical meteorological Hydrological 

Distance to 

settlements (m) 

NDVI Elevation (m) Wind effect Distance to 

stream (m) 

Distance to 

road (m) 

 Slope (%) Annual 

temperature 

(C) 

Annual 

rainfall (mm) 

Recreation area 

(m) 

 Slope aspect Potential solar 

radiation 

 

Land use  Landforms   

  TWI   

  PC (100/m)   

Table1. Listed are the conditional wildfire criteria selected for 

Amol County. 

 

3. METHODS 

This study aimed to prepare a fire susceptibility map. According 

to our literature review and the fact that the famous SVM and 

Rf models have been used in this region (Ghorbanzadeh et al., 

2019a, 2019b), 3 classifiers were selected in this study, and in 

order to improve their accuracy, the soft voting method was 

used to achieve a proper evaluation of these models compared 

to the famous models. To achieve this goal, first, three machine 

learning methods, including DT, KNN, and LR were trained 

and tested on the dataset by the K-fold method. The grid search 

method extracts the most suitable hyperparameters of each 

model. These three models were combined with the soft-voting 

method to create an ensemble model. Then, using accuracy 

metrics, this model was analyzed. The flowchart of the research 

path is shown in Figure 2. 
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Figure 2. The flowchart signifies the introduced approach for 

forest fire susceptibility modelling and mapping. 
 

 

3.1 Logistic regression (LR) 

Logistic regression is one of the classification methods in 

supervised machine learning. Logistic regression is a famous 

two-class classification model. The LR is considered as one of 

the most widely used algorithms in FSM modeling (Adab, 

2017; Mohajane et al., 2021; Sachdeva et al., 2018). When a 

LR model is trained, there are many algorithms to optimize its 

weight parameters. Optimization algorithms in regression 

logistics struggle to find the best weight that minimizes the cost 

function. The algorithm used for optimization in regression 

logistics is the Limited memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) algorithm. The norm used for penalization is 

L2, which might limit the coefficients' size and push the 

estimated coefficients to zero. Regularizations are used to 

prevent overfitting in Machine Learning and Deep Learning 

models. ML models were built using the Scikit-Learn open-

source Python library. 

 

3.2 Decision tree (DT) 

The decision tree algorithm is a non-parametric machine 

learning method used in regression and classification problems. 

This algorithm predicts the target variable value by learning the 

decision-making rules that infer from the characteristics of the 

data. The DT is considered one of the most widely used 

algorithms in FSM modeling (Gholamnia et al., 2020; Pham et 

al., 2020). Unlike other methods, this method does not require 

the normalization of data. One of the advantages of the decision 

tree is that it is readily interpretable. The decision tree is 

unstable because small changes in the data lead to the 

production of a completely different tree. The tree is prone to 

overfitting, so it is practical to avoid mechanisms such as setting 

the minimum number of samples required per node. The 

minimum number of samples per node was two by the grid 

search method. Also, the maximum feature was considered 

equal to the root of the features. 

 

3.3 K nearest neighbour (KNN) 

The KNN classification algorithm was first proposed by Cover 

and Hart in 1967 (Cover and Hart, 1967). K nearest neighbor 

algorithm is one of the easiest and fastest machine learning 

algorithms. The idea behind this algorithm is to calculate the 

distance between the new sample, and other samples. The 

distance function in this study is the Manhattan type, which is 

obtained through the grid search method from three kinds of 

Euclidean, Manhattan, and Minkowski distances. Then, K 

selects the nearest points of the training sample, and this value 

K can be any integer, in which the value K is obtained through 

the grid search method. Finally, it assigns the data point to the 

class to which most K data points belong. Therefore, the 

algorithm does not work well in problems where each sample 

contains high-dimensional features, making it difficult to 

calculate the distance in each dimension. 

 

3.4 Ensemble model 

Using three models, DT, KNN, and LR and designed our soft- 

voting ensemble classifier based on these three basic models. 

The advantages of voting are that, since voting relies on several 

models, incorrect classification of a model is not an obstacle. 

Also, the poor performance of a model can be offset by the 

strong performance of other models. The soft-voting ensemble 

classifier covers the weakness of individual base classifiers and 

outperforms the overall results by aggregating the multiple 

prediction models (Sherazi et al., 2021). In contrast to hard-

voting, soft-voting gives better results and performance because 

it uses the averaging of probabilities (Saqlain et al., 2019). In 

soft-voting, the probability combination of each prediction in 

each model is considered, and the prediction is selected with the 

highest total probability. In soft-voting, the class labels are 

calculated based on the predicted probabilities  for classifiers 

(Sherazi et al., 2021): 

 

            arg max

1

m
y w p

j iji j

 


                  (1) 

where  is the weight that can be assigned to the jth classifier. 

One of the limitations of voting in creating an ensemble model 

is that it treats all models similarly, meaning that all models are 

equally involved in the final prediction. This is the weakness 

because some models perform well in some situations, and in 

others, they perform poorly. 

 

4. EXPERIMENTAL RESULTS 

This study used a K-fold method to train and test the model. 

Usually, the value K is 5 or 10, and there is no general rule for 

determining the k-value. To analyse the performance of each 

fold, 5 accuracy metrics have been analyzed. 4 metrics 

parameters for each fold are visible in Table 2. Accuracy, recall, 

precision, F1 criteria were calculated from Equations 2-5. 

 

 

     
TP TN

accuracy
TP TN FP FN




  
        (2) 

       
TP

recall
TP FN




                                       (3) 
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TP

precision
TP FP




                                (4) 

 

       
2* *

1
precision recall

F
precision recall




                      (5) 

 

where true positive (TP) is the number of forest fire points 

categorized correctly as forest fire and true negative (TN) 

denotes the number of non-forest fire points correctly classified 

as non-forest fire points. Meanwhile, false positive (FP) and 

false negative (FN) refer to the number of forest fire points 

incorrectly classified as a forest fire or non-forest fire points. 

The fifth parameter is the AUC criterion, which is the area 

under the ROC curve. The ROC curve is visible in Figure 3 

with the AUC value. As is evident from Table 2, the average 

accuracy is 80.5%, which is an acceptable value and indicates 

that the model has left a good performance. The highest and 

lowest accuracy occurred in folds nine and five, respectively. In 

the most papers, the AUC criteria has been considered. The 

AUC indicates how well a model can distinguish between 

classes. The AUC value for all folds is above 80%, an average 

AUC value was 88%, and the highest AUC value in fold 9 was 

93%, and the lowest AUC value in fold five was 80%. 

 

Fold Accuracy Precision Recall F1 

0 0.773 0.75 0.818 0.783 

1 0.788 0.743 0.879 0.805 

2 0.785 0.721 0.939 0.816 

3 0.785 0.743 0.879 0.805 

4 0.8 0.778 0.849 0.811 

5 0.692 0.71 0.666 0.687 

6 0.831 0.769 0.937 0.845 

7 0.861 0.812 0.937 0.869 

8 0.861 0.828 0.906 0.866 

9 0.877 0.833 0.937 0.882 

Mean 0.805 0.769 0.875 0.817 

Table2. Accuracy metrics of all folds for the ensemble model. 

 

 

 

 
Figure 3. ROC curve and AUC value of each fold. 

 

In this study, a fire susceptibility map has been produced with 

an ensemble model. This map is displayed in Figure 4. The 

model generates a number between 0 and 1 for each pixel 

according to its feature vector. Using a reclassification tool in 

the Spatial Analyst Tools ArcGIS 10.8 software, each final map 

cell is classified into five classes (very low, low, moderate, 

high, and very high) representing the forest fire hazard index, 

with the natural breaks method, all outcomes are divided into 

five classes. In Figure 6, the area of each class was calculated 

and displayed as a pie chart. As shown in Figure 5, the 

maximum area of the study area is 38% in the very low class. 

Only 10% of the area is located in very high class and according 

to the FSM most of the fires are located in areas that are in high 

and very high class, and this indicates that the model has well 

identified the fire-prone areas.   

According to Figure 5, nearly 63 percent of the area is located 

in the low class, very low, and nearly 21 percent of the 

calculated area is located in the high, very high class. By 

providing this map and considering that most fires occur in 21% 

of the area, more fire extinguishing equipment, and aerial 

surveillance can be restricted. 

 

 
Figure 4. Fire susceptibility map from the ensemble model. 

 

 
Figure 5. Percentages of the area in different susceptibility 

levels. 

 

5. DISCUSSION 

In this study, three models of KNN, DT, LR which are lighter 

and faster than the famous RF and SVM models, were selected 

to construct an ensemble model. This ensemble model was 

designed based on soft-voting on these three models. On the 

one hand, according to previous studies, 17 critical factors 

involved in the fire were identified (see Table 1). In the first 

step, all three models, i.e. KNN, DT, and LR, were optimized 

on the train data. Then, an ensemble model was generated using 
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soft-voting method. In the last step, the model was investigated 

using 5 different accuracy metrics. As can be seen from Table 2, 

each 4-accuracy metrics evaluation has an average score above 

75%. On the other hand, in fold 9, the highest Accuracy and 

AUC with 93% and 87% values were obtained. Using the final 

model, the map of fire-prone areas in 5 categories was prepared. 

Nearly 38% of the study area was classified in very low-risk 

areas and only 10% of the area of study area was classified as a 

high-risk area. Ghorbanzadeh et al. (2019) created a fire 

susceptibility map with the ANN, RF, and SVM models, with 

an AUC of 0.88 for the ANN model. According to the 

comparative study, it can be said that acceptable results have 

been achieved using this ensemble model. 

 

 

6. CONCLUSION 

This study proposed a soft-voting ensemble model used to 

identify fire-prone areas in the Amol study area. A total of five 

accuracy metrics were used to analyse this ensemble model, 

with all five metrics showing remarkable performance. The fire 

susceptibility map was created for the Amol region and 

classified into five categories. The susceptibility map created in 

this study could potentially pave the way for predicting the 

necessary measures and equipment to reduce the risk of fire in 

this area for makers and policymakers in this area. Considering 

that the model has been evaluated in a small area, to investigate 

the applicability of this model, it can be explored by localizing 

the factors of other regions according to the model and 

answering the question of whether the model can be generalized 

to larger scales and other different areas. 
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