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ABSTRACT: 

Limitations in imaging systems and the effects of changes in sensing have caused limitation in acquiring high resolution images 

such as satellite images and magnetic resonance imaging (MRI). Sparsity can reduce the noises and improve the resolution. Super 

resolution in medical and satellite imagery is essential because low resolution image analysis is very difficult. Sparsity techniques 

have significant influence on computer vision specially when the main objective is extracting the meaningful information. The 

success of sparsity is related to the nature of signals such as image and sound which are naturally sparse because they were 

founded based on Wavelet and Fourier equations. In this research, we proposed a method for restoring a clear image from the 

related low-resolution parts of both MRI and satellite images. First, we proposed a widespread structure for learning the couple 

low rank and sparse main characteristic representation. Combined optimization of the nuclear and L1 norms extracts the total low 

rank formation and the local patterns lodged in the image. In that case the reconstructed image will be more informative and 

matrix decomposition problem can recover a noisy observation matrix into an approximation of low rank matrix and a second 

matrix which contains some low dimensional structure. We assumed that by removing the blur and noise from these images, they 

would be reconstructed in the highest quality. The proposed method was compared with a variety dictionary learning approaches 

which addressed super resolution problem, such as tensor sparsity, Generative Bayesian and TV based methods. We 

demonstrated the results of applied method on MRI and satellite images, showing both visual and psnr improvements. Dealing 

with complex data in best manner shows the robustness of the proposed method. 

1. INTRODUCTION

In the remote sensing, medical, military surveillance and 

reconnaissance and many other domains gaining high 

resolution (HR) images leads to huge consequence. 

However higher quality in imaging leads us to large and 

time-consuming problems. To address this problem, we 

proposed a super resolution approach using coupled 

dictionary learning incorporating dimension reduction 

strategy based on sparse and low rank structure. The key 

contribution of this work includes: 

1.a new super resolution approach for low resolution (LR)

satellite image and low resolution magnetic resonance

imaging (MRI) are able to enhance various pairs of low- 

and high-resolution images

2. designing an effective coupled sparse dictionary, relying

on alternative direction method due to the matrix-vector

multipliers for preserving more spectral details

The rest of the article follows: section 2 provides an 

overview of the related articles. In section 3 the 

prepossessing and the SR based image on DL Scheme for 

the proposed method presents. Section 4 reports the 

experimental results, and conclusion of this work is 

presented in section5. 

2. RELATED WORK

In super resolution (SR), problem sparsity plays an 

important role. Each signal is estimated by a linear 

combination of examples described as dictionary 

components, resulting in simple and compressed 

representation (Donoho,2006). Image patches can represent 

sparsely over a particular dictionary then some extra 

information are gained to enhance the visual quality of the 

recreated image. Sparsity techniques and dictionary 

learning (DL) have significant influence on computer 

vision specially when the main objective is extracting 

meaningful information. 
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Dictionary learning has been successful in solving inverse 

problems such as medical imaging, single pixel detector 

and background subtraction (Cevher et al.,2008; Egiazarian 

et al.,2007, Gong et al.,2015) predicting missing values in 

image inpainting and demosaicking. Dictionary learning 

break up the data matrix 𝑥 into a dictionary matrix 𝐷 and a 

presentation of matrix 𝛼, so that it’s noted as matrix 

factorization.𝑥 ≈ 𝐷𝛼 

In other words, signal 𝑥 in ℝ𝑚 is estimated with a sparse

linear combination of a few columns of a matrix 𝐷 in 

ℝ𝑚×𝑝. Various dictionary learning methods exist.

Structured dictionary learning considers a particular 

structure among dictionary elements to overcome l1-norm 

deficiency in modeling interactions among dictionary 

elements. Hierarchical dictionary learning considers a 

predefined hierarchical structure exist among dictionary 

elements. Zhou et al (2009) considered 𝜓 as Group-Lasso 

penalty. A tree is described by the user and one dictionary 

component is dedicated to every node of the tree. Each 

group structure 𝒢 of subsets of {1, … , 𝑃}including one node 

and all its descendants in the tree. The penalty function 𝜓 is 

designated as 𝜓(𝐴) = ∑ ∑ ‖𝛼𝑖[𝑔]‖𝑞𝑔∈𝒢
𝑛
𝑖=1 .

In this tree structure dictionary components with low 

frequency gather near the root and high frequencies near 

the leaves. Inspired by topographic independent component 

analysis, Hyvarinen et al (2001) introduced a two-

dimensional grid structure for dictionary learning. The 

main assumption is that dictionary elements can represent 

on a grid and neighbor relations between them are 

definable (Marial et al.,2011). Inspired by this method 

Szlam et al (2011) modeled inhibition impacts between 

dictionary components. Sahebi et al (2018) proposed a 

sliding window-based joint sparse representation model for 

hyperspectral anomaly detection.  

Huang et al (2018) proposed an image super resolution 

algorithm based on an advanced sparse autoencoder. Ayas 

et al (2020) proposed a single image super resolution 

dictionary learning and sparse coding with multi directional 

Gabor feature representation. They used Gabor filter to 

extract image features at various scales and orientations. 

Therefore, the difficulty of capturing the complex local 

structures in all scales and variations is resolved. The 

effective mapping between low resolution and HR images 

achieves a high-quality reconstruction result. The learning-

based dictionary has a comparatively powerful adaptive 

skill.  

Therefore, Barman et al (2021) proposed a GPU 

accelerated adaptive dictionary learning and sparse 

representation for multispectral (MS) image super 

resolution. For edge preserving, they extracted high 

frequency characteristics presented in the input low 

resolution of MS image using Butter which worth low pass. 

Then various parallel algorithms are created for adaptive 

Dictionary learning. 

In all of these applications choosing the proper dictionary is 

essential  

3. PROPOSED METHOD

3.1. Data 

Magnetic resonance imaging (MRI) of brain downloaded 

from the health section of https://www.data.gov/ in 

double complex format. IKONOS satellite image 

downloaded from ZENDOO dataset. This data contains 

20% sampling of RGB, NIR and panchromatic bands. 

3.2 Preprocessing of magnetic resonance imaging 

(pMRI) 

The data acquiring level in conventional MRI is a relatively 

slow sampling process. To improve the scanning speed of 

MRI an efficient and feasible way is needed to acquire the 

data in parallel with multi-channel coils (Chen et al.,2013). 

The scanning time relies upon the number of measurements 

in the furrier domain and it will be considerably reduced 

when each coil only acquires a small fraction of the total 

measurements. In literature this issue called pMRI.  

For furrier pulse sequences parallel imaging approaches 

invariably reduce the number of phase encoding steps 

needed to sample k-space and thereby decrease the imaging 

time. (Sahebkheir et al.,2019) In order to reduce the 

imaging time, MRI was reconstructed with pMRI based on 

the following formula: 𝑓𝑜𝑟 𝑗 = 1, … , 𝐽   
𝑅𝑓𝑆𝑗𝑢 = 𝑏𝑗 + 𝜂 where 𝑢 is the unknown image, 𝑏𝑗  is the

vector of computed partial Fourier coefficients at the jth 

receiver, 𝑅 is a diagonal sub-sampling operator, 𝑓 is the 

Fourier transform, 𝜂 is the Gaussian noise, and 𝐽 is the total 

number of coils. The operator 𝑆𝑗 is a diagonal matrix

sensitivity mapping for the jth receiver, as it is used to 

refund for the crumble of signal intensity with distance 

from each pixel (Chen et al.,2013). 

3.3. Image SR algorithm using dictionary learning 

The super resolution problem can be defined as 𝑌 = 𝐿𝑆 +
𝑛 . 𝑆 ∈ 𝑅𝑁 is the HR image, 𝑌 ∈ 𝑅𝑀 is the LR image, 𝐿 is

the down sampling operator, 𝑛 is as the additive noise. 

Expecting that there is an overcomplete HR dictionary 

𝐷ℎ ∈ 𝑅𝑀×𝑁 and a LR dictionary 𝐷𝑙 ∈ 𝑅𝑃×𝑁 sharing the

same sparse coding. Then, the HR image 𝑆 can be stated as 

a sparse linear combination of ∈ 𝑅𝑛  ,  𝑆ℎ = 𝐷ℎ𝑤. The

model of recovery solution for sparse coding is as follows: 

𝑚𝑖𝑛𝑤‖𝑤‖0     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ‖𝑆𝑙 − 𝐷𝑙𝑤‖2
2 < 휀  (1) 

where 휀 notes as approximation error and ‖𝑤‖0 denotes as

l0-psedu norm which computes the non-zero elements in a 

vector. l0-psedu norm replaced with the l1- norm because 

𝑙1 = ∑ |𝑤𝑖|𝑖  sparsify the solution and efficient optimization.

Therefore, the optimization problem using Lagrange 

multiplier formulated as: 

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑆𝑙 − 𝐷𝑙𝑤‖2
2 + 𝑝‖𝑤‖1  (2) 

where the parameter 𝑝 controls the sparsity of the solution. 

By solving the equation (2) the sparse coefficient 𝑤 can be 

obtained and the HR image is reconstructed by mapping 

onto the high-resolution dictionary 𝑆ℎ = 𝐷ℎ𝑤∗.
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3.4. Training set of preprocessing method 

The training set containing 91 HR image derived from 

literature of (Huang et al.,2017).  𝑆ℎ ∈ 𝑅𝑃×𝑘 represents the

HR images and the corresponding 𝑆𝑙 ∈
𝑅𝑀×𝑘  𝑤𝑎𝑠 constructed using scale down operator. Bicubic

interpolation used to create related middle images 𝑆𝑚 of the

equal size as the HR images. 

3.4.1. Create the HR training set 

The HR images are deducted from middle images to 

eliminate their low frequencies. The difference images 𝑒ℎ

can be obtained via 𝑒ℎ = 𝑆ℎ − 𝑆𝑚 (Zeyde et al.,2011).

Then the HR training set can be gained by accomplishing 

feature extraction on different images 𝑒ℎ.

3.4.2. Create the LR training set 

In order to pull out local features related to the high 

frequency contents 𝑟 high pass filters conducted on 𝑆𝑚

{𝑅𝑖 ∗ 𝑆𝑚}𝑖      , 𝑖 = 1,2, … , 𝑟   (∗ denotes as convolution

operator). Two kinds of high pass filters are preferred: 

gradient filters or Laplacian filters. 

 After this preprocessing step feature extraction is carried 

out on these filtered images. Then the LR training set 𝑧𝑙
′can

be achieved. Dimension of 𝑧𝑙
′ increased after operating an

interpolation and linear filter. In that case, the last step 

before dictionary learning is dimensionality reduction. 

Sparse principal component analysis (SPCA) was 

conducted to reduce the dimension of 𝑧𝑙
′ and computation

complexity. SPCA is based on PCA but it can provide more 

interpretable results. SPCA uses lasso constraint on the 

regression coefficient. This leads to representative and 

more accurate sparse principal components Merola (2014). 

Finally, the joint training set 𝑧 = [𝑧ℎ  , 𝑧𝑙] obtained by

joining together the HR training set 𝑧ℎ with the LR training

set 𝑧𝑙.

3.5. Coupled sparse dictionary learning 

The image background generally has a low rank structure 

so the dictionary should have a low rank formation. 

Different objects can be distinguished with their specific 

characteristics. So, they should have sparse structure 

i.e.,   𝑟𝑎𝑛𝑘(𝐷𝑙) ≤ 𝑘     , ‖𝐷ℎ‖0 ≤ 𝑠1 .   𝑠 and 𝑘 are two

integers representing the prior information on the upper 

bounds of the sparsity and the rank, respectively. The 

identity information of the same objects under different 

cameras is the same and should be as comparable as 

possible.  

Therefore, the same objects should have the same 

coefficients even under different cameras because of that 

𝑤ℎ = 𝑤𝑙. These methods rely on generating coupled sparse

dictionary while jointly encoding two coupled feature 

spaces considering low rank information. Our aim is to 

discover a coupled dictionary pair 𝐷𝑙 and 𝐷ℎ for the HR

𝑆ℎ ∈ 𝑅𝑀×𝐾 and LR 𝑆𝑙 ∈ 𝑅𝑃×𝐾 images. The proper coupled

dictionaries 𝐷𝑙 and 𝐷ℎ can be approximated by solving the

following sparse decompositions: 

𝑎𝑟𝑔𝑚𝑖𝑛𝐷ℎ,𝐷𝑙,𝑊ℎ,𝑊𝑙
‖𝑆ℎ − 𝐷ℎ𝑊ℎ‖𝐹

2 + ‖𝑆𝑙 − 𝐷𝑙𝑊𝑙‖𝐹
2  (3) 

+𝜆ℎ‖𝑊ℎ‖1 + 𝜆𝑙‖𝑊𝑙‖1 , 
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑊ℎ = 𝑊𝑙      ‖𝐷ℎ(: , 𝑖)‖2 ≤ 1     ,
  ‖𝐷𝑙  (: , 𝑖)‖2 ≤ 1    𝑟𝑎𝑛𝑘(𝐷𝑙) ≤ 𝑘       

Where 𝑊𝑙 is the sparse coefficient matrix related to LR

image. 𝑊ℎ represents the sparse coefficients of HR image

𝜆ℎ  and 𝜆𝑙 controls the sparsity penalty. Alternative

direction method of multipliers (ADMM) (Jiao et al.,2016) 

can convert the constrained dictionary learning problem 

represented in (3) into an unconstraint form. This can be 

formulated as bellow: 

(𝐷ℎ, 𝑊ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝐷ℎ𝑊ℎ − 𝑆ℎ‖𝐹 +  𝜆ℎ‖𝑊ℎ‖1  (4) 

(𝐷𝐿, 𝑊𝐿) = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝐷𝐿𝑊𝐿 − 𝑆𝐿‖𝐹 +  𝜆𝐿‖𝑊𝐿‖1  ,
‖𝐷ℎ(: , 𝑗)‖2

2 ≤ 1  , ‖𝐷𝑙(: , 𝑗)‖2
2 ≤ 1     𝑎𝑛𝑑 

  𝑊ℎ = 𝑊𝑙       , 𝑟𝑎𝑛𝑘(𝐷𝑙) ≤ 𝑘 

For easier calculation the equations in (4) formulated as l1-

minimization problem: 

 𝑚𝑖𝑛𝐷ℎ,𝐷𝑙,𝑊ℎ,𝑊𝑙
‖𝑆ℎ − 𝐷ℎ𝑊ℎ‖𝐹

2 + ‖𝑆𝑙 − 𝐷𝑙𝑊𝑙‖𝐹
2  (5) 

+𝜆ℎ‖𝑃‖1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑃 − 𝑊ℎ = 0 ,    𝑄 − 𝑊𝑙 = 0 
  𝑊ℎ − 𝑊𝑙 = 0  ‖𝐷ℎ(: , 𝑖)‖2 ≤ 1     ,  

‖𝐷𝑙  (: , 𝑖)‖2 ≤ 1    ‖𝐷ℎ‖2,0 ≤ 𝑠1  

ADMM is a dominant algorithm for solving structural 

convex optimization problems (Boyd et al.,2011). ADMM 

uses augmented Lagrange so that the objective function of 

the original problem splits into several sub problems. The 

DL step for sparse representation of signals considering 

low rank information formulates as: 𝑚𝑖𝑛𝐷,𝑋{‖𝑌 − 𝐷𝑋‖𝐹
2 }  ,

𝑠. 𝑡.   ‖𝑥𝑖‖ ≤ 𝑘   ,   𝑖 = 1,2, … , 𝑙  where 𝑌 is the training

matrix, 𝐷 is the dictionary and 𝑋 denotes the projection of 

the signals onto the dictionary 𝐷, 𝑘 is the upper bound of 

the sparsity coefficients.  

For solving this optimization equation ADMM and a given 

initial dictionary 𝐷 and training matrix 𝑌 are used. Then 

OMP algorithm performed for the sparse coding stage. 

Therefore, coefficients 𝑋 can be solved. By considering 𝑋 

is fixed, we updated dictionary 𝐷. Iteration continues till 

the convergence satisfies error of the signal representation. 

Indeed, DL based on ADMM algorithm changes the 

problem to this format using the Lagrange function: 𝑙 =

‖𝑌 − 𝑍‖𝐹
2 + ∑ < Λ𝑖  , (𝑍 − 𝐷𝑋)𝐼 >𝑙

𝑖=1 +
𝛽

2
‖𝑍 − 𝐷𝑋‖𝐹

2

where Λ𝑖  is the 𝑖th column of Lagrange multiplier matrix.

 The ADMM algorithm is applied to solve this equation and 

OMP algorithm is used to solve the coefficients of the 

equation and the updated dictionary obtained: 𝐷(𝑛+1) =

𝐷(𝑛)(: , 𝑖) +
𝐻(𝑛)𝑋(𝑛)(:,𝑖)𝑇

𝑤(𝑛)+𝛿

By setting ∇𝐷ℎ=∇𝐷𝑙=0 the high- and low-resolution

dictionaries are updated column by column ensuing this 

repetitive procedure: 
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𝜙ℎ = 𝑊ℎ(: , 𝑗). 𝑊ℎ(: , 𝑗)𝑇  (6) 

𝜙𝑙 = 𝑊𝑙(: , 𝑗). 𝑊𝑙(: , 𝑗)𝑇

𝐷ℎ
(𝑘+1)

(: , 𝑗) = 𝐷ℎ(: , 𝑗)(𝑘)(: , 𝑗) +
𝑆ℎ. 𝑊ℎ(: , 𝑗)

𝜙ℎ + 𝛿

𝐷𝑙
(𝑘+1)

(: , 𝑗) = 𝐷𝑙(: , 𝑗)(𝑘)(: , 𝑗) +
𝑆𝑙 . 𝑊𝑙(: , 𝑗)

𝜙𝑙 + 𝛿

𝑘 indicate the number of iterations, 𝛿 is a small 

regularization factor, 𝐷ℎ(: , 𝑗) and 𝐷𝑙(: , 𝑗) represents the jth

column of 𝐷ℎ and 𝐷𝑙. Eventually, the Lagrange multiplier

matrixes updates as: 

𝑌1
(𝑘+1)

= 𝑌1
(𝑘)

+ 𝑐1(𝑃 − 𝑊ℎ)  (7) 

𝑌2
(𝑘+1)

= 𝑌2
(𝑘)

+ 𝑐2(𝑄 − 𝑊𝑙)

𝑌3
(𝑘+1)

= 𝑌3
(𝑘)

+ 𝑐3(𝑊ℎ − 𝑊𝑙) 

The same as (Fotiadou et al., 2019) we set 𝑐1 = 𝑐3 = 0.8
and 𝑐2 = 0.6

4. EXPERIMENTAL RESULT

In this section, we represent the results of the proposed 

method and its comparison obtained from ASDS Dong 

 et al., (2011), Generative Bayesian SR of Zhang et al., 

(2012), Low Rank Tensor Completion by Liu et al., (2013), 

FISTA by Beck et al., (2009) and Sparse representation 

based iterative incremental image deblurring from Zhang et 

al., (2009) implemented on both satellite and MRI images.    

First, we used pMRI technique for reconstructing magnetic 

resonance imagery in complex double type which was 

downloaded from https://www.data.gov/. (Sahebkheir et 

al.,2019) The reconstruction procedure took about 3 

minutes implemented in Matlab 2016b on a desktop Intel 

corei7 8550U CPU. The result of pMRI is shown in Figure 

1(a). After the reconstruction, some blurs appeared; this 

time we assumed that by performing super resolution 

algorithms and removing the blurs, the image should be 

reconstructed in the best of its quality. The result of pMRI 

is the test image for the deblurring and image super 

resolution step.  

We studied several deblurring and SR methods based on 

sparse representation modelling and dictionary learning to 

find the best dictionary. Then the proposed method for 

image SR implemented in the same environment for both 

pMRI result and satellite image. The proposed methos uses 

coupled DL incorporating low rank information. The 

ADMM algorithm used for DL which was faster than the 

state-of-the-art DL methods used in validation algorithms 

such as K-SVD or BCD. The average running time of 

proposed method and its validations for MRI imaging and 

satellite image listed in table 1.  

 As it’s shown, the proposed method is the fastest. The 

sparse coding stage in the proposed method performed by 

OMP. For fair comparison, the proposed method and the 

validation algorithms used the same training set extended 

by 90° rotation considering the visual importance of edges. 

Degradation factor set 𝑠 = 3  and white Gaussian noise 

with standard deviation of 2 were adopted for all 

algorithms. Feature extraction employed by Laplacian 

filters and gradient. Nearly 130,000 training patch pairs 

were gathered. In the proposed method, SPCA applied for 

dimensional reduction. For the proposed method, the HR 

dictionary𝐷ℎ and the LR dictionary 𝐷𝑙 utilizing coupled

sparse dictionary learning. Sparse representation 

coefficients calculated by OMP algorithm and the 

reconstructed HR image calculated via 𝑆 = 𝐷ℎ𝑤. The psnr

(peak of snr) calculated by Eq (8): 

𝑝𝑠𝑛𝑟 = 10𝑙𝑜𝑔10 (
2552𝑁

∑ (�́�𝑖−𝑆𝑖)2
𝑖

)  (8) 

Figure 1 illustrates the result of pMRI reconstruction and 

employment of proposed and validation methods on it. 

Figure b illustrates the result of SR algorithms on satellite 

image. Figure1(b) shows that ASDS suppresses the noise 

but some details are lost. Figure1(c) shows fine 

reconstruction result but it took 338.37minutes. In BCD 

method incorporating tensor sparsity leads to cause ghost 

artifacts enclosing the edges in figure1 (d) and figure 2 (e). 

TV based methods like FISTA are efficient in 

overpowering the noise, however, they produce 

oversmoothed results and exterminate much details 

represented in figure1 (e) and figure2. (f). The l0-norm 

sparsity-based methods are effective in rebuilding smooth 

parts but it fails to rebuild sharp edges in figure1. (f). The 

proposed approach has the best visual quality and the 

distances between white matter and gray matter which are 

constructed accurately in figure1(h). Figure2. (c) shows 

that ASDS suppress the noise but produces piecewise 

constant block artifact. Figure2. (d) (f) (g) color distortion 

is obvious.  

In Figure2 (e), the reconstructed image is jaggy and 

contains ringing effects. Figure2. (l) shows that the 

proposed approach has the finest observable quality and 

edges are preserved. Table2 represent the PSNR and SSIM 

related to MRI and satellite image reconstruction under 

different methods. The experimental results on both MRI 

and satellite image clarified that the proposed approach 

outperforms various state-of-the-art methods in both PSNR, 

SSIM and visual quality. 

 (a)  (b) 
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 (c)  (d) 

 (e)  (f) 

 (g)   (h) 

Figure1. (a) The result of pMRI reconstruction, (b)ASDS, 

(c) Generative Bayesian, (d) Tensor Sparsity, (e) FISTA,

(f) Incremental DL, (g) Bicubic, (h) Proposed Method

 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

  (g)  (h) 

 (k)  (l) 

Figure2. (a) original image, (b) 3times zoomed in, 

(c)ASDS, (d) Generative Bayesian, (e) Tensor Sparsity, (f)

FISTA, (g) Incremental DL, (h) Bicubic, (k) Proposed

Method, (l) 3times zoomed in proposed method’s result
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Method Running time of 

MRI imaging 

SR 

(minutes) 

Running time of 

satellite image SR 

(minutes) 

pMRI   3  ---------- 

ASDS  12 17.2 

Generative 

Bayesian 

338.37 1065.1 

Tensor Sparsity 45 51 

FISTA 22 29 

Incremental DL 48 53 

Bicubic 0.75 1.1 

Proposed Method 0.5 0.83 

 Table1. Represents running time of SR algorithms 

Method Psnr 

(satellite 

image) 

Psnr 

(MRI 

imaging) 

SSIM 

(satellite 

image) 

SSIM 

(MRI 

imaging) 

ASDS 36.07 32.3022 0.8117 0.8852 

Generative 

Bayesian 

33.36 32.12 0.8546 0.9051 

Tensor 

Sparsity 

19.62 24.36 0.659 0.8771 

FISTA 22.24 27.26 0.671 0.8166 

Incremental 

DL 

22.41 29.04 0.678 0.9173 

Bicubic 29.15 30.02 0.8554 0.8634 

Proposed 

Method 

42.63 34.15 0.9124 0.9393 

Table 2. Represents the Psnr and SSIM for both images 

5. CONCLUSION

In this paper various methods used for single image SR 

based on sparse representation and dictionary learning. For 

enhancing the scanning time of MRI images one effective 

way is to gain data from parallel multi-channel coils. 

Considering pMRI as a preprocessing step of MRI imaging 

helped us to perform DL on complex double data. 

Therefore, the scanning process is less painful for patients. 

The algorithm employed a mathematical framework of 

sparse representation and learning a coupled sparse DL on 

low resolution MRI and satellite images. To achieve this 

goal low rank sparse constraints and incorporating ADMM 

algorithm performed. Experimental results present that the 

proposed method is capable of SR for both satellite image 

and MRI imaging and it has a high accuracy in 

reconstruction process. Wide ranging experiments on 

image super-resolution confirm that by using Coupled 

dictionary learning and low rank constraints the proposed 

method obtains much better results than many state-of-the-

art algorithms in terms of both PSNR, SSIM and visual 

understanding. 
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