DECISION-BASED FUSION OF PANSHARPENED VHR SATELLITE IMAGES USING TWO-LEVEL ROLLING SELF-GUIDANCE FILTERING AND EDGE INFORMATION
Keywords: Image Fusion, Pansharpening, Very-high-resolution Imagery, Guided Filter, Canny Edge Detector
Abstract. Pan-sharpening (PS) fuses low-resolution multispectral (LR MS) images with high-resolution panchromatic (HR PAN) bands to produce HR MS data. Current PS methods either better maintain the spectral information of MS images, or better transfer the PAN spatial details to the MS bands. In this study, we propose a decision-based fusion method that integrates two basic pan-sharpened very-high-resolution (VHR) satellite imageries taking advantage of both images simultaneously. It uses two-level rolling self-guidance filtering (RSGF) and Canny edge detection. The method is tested on Worldview (WV)-2 and WV-4 VHR satellite images on the San Fransisco and New York areas, using four PS algorithms. Results indicate that the proposed method increased the overall spectral-spatial quality of the base pan-sharpened images by 7.2% and 9.8% for the San Fransisco and New York areas, respectively. Our method therefore effectively addresses decision-level fusion of different base pan-sharpened images.