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ABSTRACT: 

 

In transportation planning, forecasts have commonly followed the sequential four-step model in which, trip generation (production 

and attraction) plays a critical role. Among the methods applied to model trip generation, regression with Gaussian distribution of 

errors are recognized as the most prevailing techniques to describe the relationships between production/attraction and explanatory 

variables by estimating the global, fixed coefficients. Considering that, trip generation is almost impressed by spatial factors which 

vary over the study area; the main objective of this research is to apply Mixed Geographically Weighted Regression (MGWR) on 

253 traffic analysis zones (TAZs) in Mashhad, Iran, by applying travel demand data and relating factors in 2018 to investigate the 

spatial non-stationarity which are not revealed when global specifications are applied. The influence of certain explanatory variables 

on response variables may be global, whereas others are local, accordingly, MGWR performs better compared with geographically 

weighted regression. The results of Moran’s I as spatial autocorrelation index performing on residuals of global, mixed models 

proved the reliability of the proposed model over the traditional one. The spatial model indicated an improvement in model 

performance using goodness-of-fit criteria with the coefficient of determination varying from 0.84-0.95 compared with 0.76 and 0.6 

in the conventional model. The results of such analysis can provide descriptive and predictive tools at the planning-level for 

decision-makers. 
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1. INTRODUCTION 

Travel demand modelling is one of the most important steps of 

transportation planning applied to forecast travel characteristics 

and application of transportation under different socioeconomic 

states alternative transport service and land-use configurations. 

Traditional four-step models consist of four main stages, 

composing trip generation, trip distribution, modal split and 

assignment. The model starts by defining a study area, dividing 

it into multiple Traffic Analysis Zones (TAZ), and considering 

the entire transport network in the system. Then, the trip 

generation model is evolved in which, land use, socio-economic 

and demographic data are used to estimate the total number of 

trips generated by each zone. 

 

Considering the fact that land use often are divided into two 

broad categories including residential and non-residential, trips 

can be home-based (HB) or non-home-based (NHB). Home-

based trips are those in which one end of the trip is the 

traveller’s home while in non-home-based trips neither ends of 

the trip are the traveller’s home. Trip ends are modelled as 

productions or attractions. The home-end of a trip is always the 

production and the non-home-end is the attraction (for NHB 

trips, the origin is the production and the destination is the 

attraction). Trips can also be categorized by trip purpose, for 

example trips for work, education, shopping, etc. Among these, 

home-based work trips usually contribute a major portion of 

total trips in a metropolitan area. Work trips are regular in terms 

of frequency and time of departure/destination, highly tied to 

morning and evening peaks. Such concentration extensively 

affects the design of transportation infrastructures. Additionally, 

a large number of non-work trips such as shopping, personal 

business and childcare are planned according to work trips. The 

critical role of work trips in daily activities and the related 

issues have widely been investigated by many researchers from 

different points of view (Hendrickson and Plank, 1984, Palma 

and Rochat, 2000, Sohn, 2005, Nurul Habib et al., 2009). 

 

In terms of spatial units, trip generation models are constructed 

either as aggregate (based on TAZs), or disaggregate. Among 

techniques suggested to predict trip generation, regressions are 

most attracted because of simplicity and easy implementation. 

In current ordinary least square (OLS) regression techniques 

applied in trip generation (with assuming Gaussian distribution 

for errors), fixed coefficients are estimated to describe the 

relationships between number of trips with a specific purpose 

and every one of explanatory variables. In other words, we 

assume that the same relationships are held throughout the 

entire study area (2014). Such assumption in conventional OLS 

models hides some substantial spatial aspects influencing trip 

making; therefore, the accuracy of such models might be 

doubted. Indeed, some explanatory factors might have strong 

predictive power to estimate number of trips in one location, but 

might act weaker elsewhere (spatial non-stationarity). 

Furthermore, when dealing with spatial data, it is expected that 

the measurements made at nearby locations maybe closer in 

value than measurements made at locations further apart. This 

phenomenon which is regarded as spatial autocorrelation 

(Anselin, 1995) indicates the correlation of one variable with 

itself in space. In global OLS, the error terms of the model are 

assumed to be independent, so in case of any spatial 

autocorrelation, applying common OLS models might to be not 

true. To handle such restrictions, some advanced statistical 
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methods have been introduced in last decades. Geographically 

Weighted Regression (GWR), a local regression technique, is 

one of these methods that provides calibration of multiple 

regression models. (Brunsdon et al., 2002). A major highlight of 

GWR is that regression coefficients can be estimated at 

arbitrary spatial locations. Additionally, residuals of GWR have 

more spatial randomness than the errors resulting from OLS. 

GWR coefficients are estimated using a spatial weight matrix in 

which the data around the sample points are weighted using a 

distance decay function, i.e. the closer observations have a 

stronger effect on local regression coefficients. The main output 

from GWR is a set of location-based parameters that can be 

indicated on a map and are analysed to derive information on 

spatial non-stationarity. It is also recognized as a useful tool for 

regional analysis and policymaking. Over the past years, GWR 

technique has been applied to many scientific fields such as 

social sciences (Powers et al., 2021) ,health (Wang and Wu, 

2020) urban development and planning (Yu et al., 2021), 

climatology (Xu and Zhang, 2021) and transportation (Pagliara 

and Mauriello, 2020, Yu and Peng, 2019) . Although many 

researchers agree that spatial characteristics often influence 

travel behaviour (Stead, 2001, Lloyd and Shuttleworth, 2005, 

Cardozo et al., 2012), very few studies consider the relative 

importance and significance of spatial circumstances 

specifically on travel demand steps. 

 

Although GWR appears to be suitable method to investigate 

spatial non-stationarity, in practical cases, the effect of certain 

independent variables upon response variable may be global, 

whereas others are local. Therefore, in 1999 Brunsdon et al. 

proposed a new version of the model called Mixed 

Geographically Weighted Regression (MGWR). Some 

coefficients in this model are assumed to be constant, while 

others are allowed to vary spatially across the study area. 

Among studies which employed MGWR (Zeng et al., 2016), no 

research is found in travel demand studies particularly in work 

trip analysis. Taking into account the importance  role of spatial 

properties of data related to work trips and its explanatory 

variables, and filling the gap in the literature, the main purpose 

of this study is to reveal some aspects of spatial patterns which 

are hidden when employing global OLS in travel demand 

analysis and to explore the relationship between work trips and 

its related factors through presenting a mixed model (MGWR). 

 

In this research, Mashhad is studied as one of the most 

populated city in Iran. As in other metropolitan areas, the socio-

economic growth over the past three decades and the land-use 

diversity affecting the generation of travel through the TAZ 

have contributed to a comprehensive study and robust study of 

travel demand in this city. It emphasizes the need to develop 

predictive models. To this end, primarily, results of 

conventional OLS for work trip production and attraction will 

be presented. Next, GWR will be developed and variables are 

tested for the spatial non-stationarity state and examining 

whether MGWR could represent a clear enhancement over pure 

GWR. Models will also be compared in terms of goodness-of-

fit criteria such as AICc, MSE, ANOVA, and adjusted 

coefficient of determination. In following, we discuss the 

descriptive power of mixed models for investigating local 

variations in candidate variables and spatial non-stationarity in 

the study area. To explore spatial dependencies among residuals 

of OLS and mixed models, Univariate Moran is I as one of the 

most common methods of detecting spatial dependencies will be 

employed. The method presented in this paper not only has 

never been adopted in the literature on the topic, but allows for 

a more precise comprehension of spatial relationship between 

trip making and related factors at the local scale. Such 

descriptive analysis provides useful information for decision-

makers along with predictive models. 

 

2. DATA PREPRATION 

In this paper, several types of databases are applied; the first 

includes total number of work trips generated by 253 TAZs in 

Mashhad collected based on household interview in year 2018 

at the residential-end of trips to update the comprehensive 

transportation studies and to construct and validate the travel 

demand models. Table 1 indicates the portion of trips based on 

different purposes in study area in 2018. As evident, work trips 

constitute major portion of trips in the region. 

 

Portion Trip Purpose 

26% Work 
10% Non-Home Based (NHB) 
6% Pilgrimage 

13% Shopping 
10% Personal 

14% Recreation 

21% Education 

Table 1. Portion of trips based on purposes in Mashhad in 2018 

Category Variable Description Min Max 

General 

TAZ 

Traffic 

analysis 

zone 

1 253 

Area m2 
TAZ area in 

km2 
1.65 19.04 

Trip 

generation 

Production/At

traction 

Pw 
Work trip 

production 
0 23206 

Aw 
Work trip 

Attraction 
0 

13358

98 

Independent 

variables 

ELi 

Number of 

employees 

living in ith 

TAZ 

0 14120 

CARi 

Average car 

ownership 

in ith TAZ 

0 0.31 

Pi 
Population 

per TAZ 
0 42564 

EWi 

Number of 

employees 

working in 

ith TAZ 

0 3850 

Sei 

Number of 

salesmen 

and 

businessme

n 

6 8758 

BUi 

Number of 

business 

units 

(commonly 

shopping 

centers and 

retail stores) 

in th TAZ 

1 1829 

Table 2. Descriptive analysis of data 

Other types of data including a broad range of socio-economic 

characteristics were obtained from Statistical Census of Iran for 

the corresponding year. Table 2 also indicates a descriptive 

analysis of data available for this study. 
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3. METHOGOLOGY 

3.1 Mixed Geographically Weighted Regression (MGWR) 

It is assumed that the coefficients of spatially stationary models 

such as general linear models (GLMs) are constant across the 

study region. When spatial non-stationary exist, the estimated 

coefficients will be the function of (ui,vi), which denoted the 

spatial coordinate of ith point. GWR is described by the 

following equation: 

 

 )(),( , i
t
iik

k
iiki Uxxvu  ==                    (1) 

 

where  xi,k = kth independent variable 

 βk = the corresponding local coefficients 

 (ui,vi) = coordination of the ith location 

 βk(ui,vi)= varying coefficients based on the location 

 

The expected value of response of the ith observation, E(yi) is 

related to the linear predictor through a link function, such as f: 
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In order to define the log-likelihood of the observation, a 

distributional function of the exponential family is applied: 
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where  ηi = canonical 

 φi = dispersion parameter 

 a, b and c = functional components of the exponential   

                family 

 

Such formulation covers many commonly applied regression 

models such as Gaussian, Poisson and logistic variants of GWR, 

where in GWR (Gaussian): yi~[ηi, σ2]. In geographically 
weighted generalized linear models (GWGLM), a vector of 

local coefficients is estimated by concentrating on the ith 

regression point through solving the following maximization 

problem of the geographically weighted log-likelihood of the 

model:  
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where  hat symbol = estimated value 
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These two working variables are fitted canonical and dispersion 

parameters for estimating the response at the jth location with 

coefficients at the ith regression point. The spatial weight of the 

jth observation at the ith regression point, wij is recognized as a 

non-negative and monotonously decreasing function of the 

distance between the regression point i and the jth observation 

location, such as a Gaussian kernel function: 
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where  G = kernel bandwidth 

 

Bandwidth controls the distance decay and amount of locality of 

the weighting function. Increasing the bandwidth softens the 

local fluctuations and brings the coefficients closer to the global 

value. If the kernel is considered fixed, the bandwidth is 

assumed to be constant at each regression point in the study 

area. Alternatively, adaptive spatial cores adapt to data densities 

at different locations (TAZ). When the adaptive kernel is 

applied, the optimal number of neighbouring TAZs is chosen in 

order to find the given number of closest TAZs and ensure that 

they contain a given number of local samples. The next step is 

to estimate the weights using the given kernel and set the value 

of each TAZ according to Bi-square function. In practical cases, 

the results of GWR are not seriously sensitive to the weighting 

function type, but very sensitive to bandwidth. If the bandwidth 

is  adaptive, AICc is applied to optimize the bandwidth: 
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where  G = bandwidth 

 D= deviance of parameters 

 K = effective number of parameters 

                n = number of samples (TAZs) 

 

In situations where some independent variables are global in 

nature, and some others are local, a MGWR is suggested in 

which some coefficients in the equation are assumed to be 

constant and the others are allowed to vary across the studied 

area. MGWR includes linear terms of explanatory effects on the 

response in canonical parameter: 
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where  zli = independent variable 

 γli = fixed coefficient 

  

Combines geographically local scoring and backfitting 

algorithms to compute coefficient and index estimates for model 

diagnostics, including information criteria such as coefficient 

standard errors, degrees of freedom, and AICc (corrected AIC) 

can be used to determine the optimal bandwidth size and model 

comparison. AICc estimation has the advantage of being 

generally applied, meanwhile it can be employed to compare 

whether or not the results from MGWR better fits compared 

with global model by considering model’s degree of freedom. 

 

3.2 Model Calibration and Assessment 

A correlation matrix was constructed to investigate if the 

selected variables for both trip production and attraction models 

were highly correlated or not. If two explanatory variables are 

highly correlated, applying them simultaneously into the same 

model must be avoided to minimize the effects of collinearity. 

In addition, to test the correlation of explanatory variables, the 

variance inflation factor (VIF) is calculated. VIF is defined as 

VIF=1/(1- 2
kR ), in which, 2

kR is the coefficient of determination 

of a regression of kth variable on all the other variables and its 

range from 5 to 10 or higher indicates a serious collinearity. to 

decide whether or not to keep one variable in the model is based 

on logical and statistical significance. Eventually, the model 

with the minimum correlated variables and the best goodness-

of-fit criteria are selected. The goodness-of-fit in this study is 

evaluated in several ways. First, t-statistics significance at the 

5% level to decide on whether or not to keep a variable in the 

model or not. Akaike Information Criterion (AIC) generated for 
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OLS and corrected Akaike Information Criterion (AICc) 

calculated for MGWR are also employed for model comparison. 

Three other goodness-of-fit measures are defined to examine the 

local and mixed model, improvement over a global model: 1) 

The adjusted coefficient of determination (Adjusted R2) in the 

range of +1 and −1, (2) the mean square error (MSE), and 3) 

ANOVA (Analysis of Variance). The higher adjusted 

correlation coefficient and lower MSE and AICc, the better 

model fits the data. These criteria are used to determine which 

model could interpret data better. 

 

3.3 Exploring the Spatial Autocorrelation 

Spatial autocorrelation analyses the amount of correlation of 

observations in space. When the level of dependency is more 

than expected degree, the nearby observations show positive 

autocorrelation. If the dependency is negative, high 

observations are surrounded by low values and the spatial 

autocorrelation is negative. There is no spatial autocorrelation if 

the data are distributed such that relationships between nearby 

samples cannot be explored. As mentioned earlier, it is assumed 

that errors in one observation in a regression model cannot be 

related to errors in other observations (Fotheringham et al., 

2002). When the significant spatial autocorrelation exists in 

residuals, employing conventional OLS might be questionable. 

The most common technique for evaluating the spatial 

dependencies is global Moran's I ranging from -1 to 1 

introduced by (Anselin, 1995) and is defined as: 
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where  n = number of TAZs 

 y  = global mean value for residuals of a regression 

                yi and yj = residuals of regression models at ith and jth  

                TAZ 

                wij = spatial weight matrix 

 

The larger the absolute value of Moran’s I, the more significant 

the spatial autocorrelation and a value of zero implies the 

perfect spatial randomness (Anselin, 1995). 

 

4. RESULTS AND DISCUSSIONS 

Two separate models were built for trip production and 

attractions. In the first step, a correlation matrix is constructed 

to see if the variables of interest are highly correlated. An initial 

model is then built based on the selected explanatory variables 

and a stepwise approach with 5% confidence intervals. A global 

OLS regression model is constructed to examine the 

relationship between dependent and independent variables. 

Next, GWR in which all explanatory variables are local-

dependent is developed to investigate whether variables are 

spatially non-stationary or not. In case, the models include both 

global and local variables, the MGWR model is built. The 

results of models, corresponding statistics, and some discussion 

around the results are presented in following. 

 

4.1 Results of OLS for Trip Production and Trip 

Attraction 

The results of constructing the global model to identify the 

relationship between work trips and related factors resulting 

from correlation matrix for both trip production and trip 

attraction have been summarized in Table 3 and Table 4 

respectively. Based on tables, the magnitude of term "constant" 

for trip production and attraction models are rather high. This 

represents a perturbation in the model formulation. Therefore, it 

should be read as the collective effect of independent variables 

not included in the specification. Since models were constructed 

through stepwise procedure, the effects of other variables and 

their significance had already been evaluated and suggested 

models were the most appropriate based on available variables. 

The estimated coefficients relating to trip production indicates 

the direct relationship between the number of work trip 

produced and ELi (Table 3). It is common knowledge that the 

more commuters, the more commutes. According to the t-

statistic, the null hypothesis that the true value is zero can be 

rejected at the 5% significance level. 

 

The direct and positive relationship between number of business 

units (BUi) and employees working in a TAZ (EWi) with trip 

attraction has been tabulated in Table 4. The corresponding t-

statistics reject the null hypothesis stating that the values are 

zero. The results show that collinearity is not a matter of 

concern in the global model, as indicated by the low VIF index 

for the variables of trip attraction. As evident, the estimated 

coefficients for all variables appeared in trip production and 

attraction models are the global values which are fixed 

throughout the study area. It is likely that the effects of each 

independent variable on dependent variable might be spatially 

varying. In case, where significant spatial dependencies prevail, 

one solution is that such effect can be developing local and 

semi-parametric models.  

 

Variable Coeff Std err t-stat Sig. 

Constant 457.25 217.13 2.11 0.036 

ELi 1.40 0.50 28.01 0.000 

Goodness of fit 

AICc: 4593.58 

BIC= 4604.09  

R square: 0.76 

Adjusted R square: 0.75 

Table 3. Results of Global OLS for trip production 

Variable Coeff Std err t-stat Sig. VIF 

Constant 1288.30 286.68 4.49 0.926  

BUi 4.04 0.46 8.873 0.000 1.11 

EWi 4.79 0.30 16.14 0.000 1.20 

Goodness of fit 

AICc: 4726.99 

BIC: 4740.96 

R square: 0.60 

Adjusted R square: 0.59 

Table 4. Results of Global OLS for trip attraction 

4.2 Results of MGWR 

Two models are compared to examine the geographic variability 

of the kth variance coefficient. A fitted GWR model and a 

model where only the kth coefficient is fixed and the other 

coefficients are left in the fitted GWR model. Assume that these 
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two models are the original model and the switched model 

respectively. It is concluded that if the original GWR performs 

better than the compared switched model based on the defined 

criterion (as was used for selecting the optimum kernel 

bandwidth), the non-stationary state of the kth coefficient is 

confirmed. In another approach, and by applying the Gaussian 

model, the difference of deviance (Diff of deviance) between 

the two models should follow the F-statistic under the null 

hypothesis that there is no difference in the performance of the 

two models(Nakaya.T, 2014). If the null hypothesis is rejected, 

it can be inferred that the term shows significant spatial 

variation at the significance level employed for the test. 

 

Table 5 indicates the results of non-stationarity test for the 

variables appeared in trip production and trip attraction primary 

models. It includes rows of local terms with a “Diff of 

Criterion” column, which shows the difference in the model 

comparison indicator between the original and switched GWR 

models. A positive “Diff of Criterion”, especially greater than 

or equal to two, suggests that spatial variability does not exists 

(Nakaya.T, 2014). Accordingly, the “Diff of Criterion” for term 

"constant" in trip production model is positive (9.65) which 

suggests that the variables would better be considered as fixed. 

The negative values of "Diff of Criterion" relating to all 

variables of trip attraction model, except the "constant" term are 

indicators for spatially varying state and therefore, it is 

suggested that the model is better to be reconstructed by 

considering "constant" as global fixed variable and the rest as 

local in the process of modelling. The five factors representing 

the local estimated coefficients resulting from MGWR in 

addition to the global estimated coefficient of "constant" for trip 

production have been summarized in Table 6. 

 

Accordingly, it is evident that although the spatially varying F 

test resulting from previous step suggested that the constant is 

better to be considered as global, the variable is not statistically 

significant when a mixed model is developed. Although the 

estimated global coefficient of ELi which is the average over the 

study area and the mean values resulting from MGWR are 

almost the same (1.40 vs. 1.63), the local coefficients of ELi 

vary in the range of (1.23-2.09). Comparing the AICc of global 

OLS (4726.99) and the corresponding value obtained from 

MGWR (4556.14) indicates the improvement of the mixed 

model over the full global one. 

 

Similar analyses for variables of trip attraction model reveals 

interesting points. As mentioned earlier, according to the results 

of spatial non-stationary test in Table 5, the "constant" has been 

considered as fixed in MGWR model for trip attraction. 

Comparing the estimated coefficients of mentioned variables in 

global OLS and MGWR indicates that both models yield 

approximately the same values for explanatory variables (4.79 

vs. 4.89 for EWi and 4.04 vs. 4.82 for BUi). However, as can be 

seen in Table 7, the values of local coefficients of EWi and BUi 

vary in a broad range of (2.11-12.57) and (0.40-15.01) 

respectively indicating that considering these variables as fixed 

might be controversial. Additionally, the AICc values of  
MGWR is lower as compared with the corresponding values for 

global model, another indication for the model improvement.  

 

Category Variable F 

Degree 

of 

Freedom 

for F test 

DIff of 

Criterion* 

Trip 

production 

Constant 1.01 7.84 9.65 

ELi 4.13 8.70 -16.26 

variables 

Trip 

attraction 

variables 

Constant 0.74 11.52 20.28 

BUi 6.77 10.87 -45.28 

EWi 4.56 8.05 -18.17 

*Difference in model comparison indicator between the 

original and switched GWR models 

Table 5. Results of testing spatial non-stationarity for 

explanatory variables of both models  

Local 

Variables 
Min 

Lower 

Quartile 
Mean 

Upper 

Quartile 
Max 

ELi 1.23 1.49 1.63 1.80 2.09 

Global 

Variable 

Coeff Str err t-stat Sig.  

Constant -142.65 238.25 -0.60 <0.05  

Goodness-of-fit 

AICc: 4556.14 

BIC: 4620.32 

R square: 0.81 

Adjusted R square: 0.79 

Table 6. Results of MGWR for trip production 

Local 

Variables 
Min 

Lower 

Quartile 
Mean 

Upper 

Quartile 
Max 

EWi 2.11 3.77 4.89 5.95 12.57 

BUi 0.40 3.00 4.82 5.79 15.01 

Global 

Variable 
Coeff Str err t-stat Sig.  

Constant 1093.16 265.34 4.12 <0.05  

Goodness-of-fit 

AICc: 4647.51 

BIC: 4733.51 

R square: 0.76 

Adjusted R square: 0.72 

Table 7. Results of MGWR for trip attraction 

The results are local coefficients, which can be mapped for 

visual inspection. It's true that local map generation is one of the 

main advantages of GWR, but it's worth noting that finding the 

best way to do it is not easy. (Shoff et al., 2012) because of 

coherency nature of variations and therefore the results must be 

interpreted with due caution. 

 

As mentioned, Number of employees living in ith TAZ (ELi) is 

positively significant in the global trip production OLS (Table 

3), but the local coefficients represent a varying range from 1.23 

to 2.09. The relationship between ELi with trip production is 

consistent with the expectations, exhibiting a positive 

correlation. Results of local coefficients of ELi have been 

mapped in (Figure 1). Accordingly, the most intense effects of 

number of employees living in TAZs upon work trip production 

can be found in the southern parts, and a portion located in 

centre and southwest of study area. The positive but weaker 

effects are indicated in northwest, north, northeast, east, and 

southeast.  

 

These maps allow us to visually identify TAZs where specific 

explanatory factors have a strong statistical impact on the 

model, as well as important local variations not captured by the 

global OLS model. The local coefficients related to the EWi 

have the same sign as in the global OLS but with different 

intensities delineating specific spatial patterns; this indicates the 

importance of the spatial dimension and, therefore, the necessity 
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of dealing with it (Figure 2). The strong and positive effects are 

explored in the east, northeast and western parts of the study 

area. In such areas, the effect of number of employees working 

in ith TAZs is relatively higher than other TAZs.  The positive 

but weaker influences are found in the broad extend located in 

the central part of Mashhad.  

 

Local maps can be regarded as a useful tool in policy making 

process. For instance, special consideration can be given to the 

areas where EWi and ELi have strong influence on work trip 

generation during certain time of the day particularly morning 

and evening peak hours. It is not surprising if such regions 

experience higher traffic congestion rather than other areas 

during this time. Due to the strong influence of employees in 

such regions, different types of travel demand strategies with 

the focus of managing the demand of this group of community 

could be helpful. 

 

This cannot be claimed but interventions such as flexible work 

times, teleworking, and compressed workweeks can be applied 

in areas with highly positive significant ELi and EWi 

coefficients. Flexible scheduling allows employees to shift the 

work trips to non-peak hours of the day and telecommuting 

allows them to work from home or non-office locations can help 

to reduce the number of work trips as well. Vanoutrive et al. 

state that employers can encourage a more sustainable 

commuting by promotion of alternative modes (Vanoutrive et 

al., 2010). Providing facilities and services to make non-SOV 

commute options more appealing and viable, for example, 

securing work place parking for bikes as well as shower and 

locker facilities, provision of free vanpool vehicles, shuttle 

services, and car sharing programs for the employees could be 

considered. Financial incentives such as instituting parking 

charges, unbundling free or subsidized parking from employee 

benefits, proving a few days of free parking each month for 

employees using non-SOV modes could be other helpful 

policies. These strategies are in line with the findings of (Curtis, 

1981). Additionally, solutions relating to urban structure and 

development management which affect employees travel 

behaviour have been studied by previous researchers. According 

to (Lee, 2016) for example, many workers combine commuting 

and commuting, and local work-life balance is expected to 

encourage people to commute by public transport to some 

extent. going to and from work.  

 

In spite of positively estimated coefficient of BUi, resulting 

from both global OLS and the MGWR, the local coefficients of 

MGWR show markedly regional differentiation in terms of 

magnitude (Figure 3). The local coefficients of business units 

vary in the range of 0.40 to 15.01 indicating how the effects of 

this variable spatially vary upon work trip attraction. The strong 

influences are explored in the distinct area located in the central 

part of the city, which is known as Mashhad CBD. This could 

be explained trough locating non-residential units and 

concentrating shopping centers, malls, and retail stores. 

a 

Figure 1. Local coefficients of ELi resulting from trip 

production models  

a 

Figure 2. Local coefficients of EWi resulting from trip 

attraction models  

a 

Figure 3. Local coefficients of BUi resulting from trip attraction 

models  

 

4.3 Results Testing Spatial Autocorrelation 

Moran's I results for all model residuals are shown in Table 8 to 

compare the reliability of the conventional OLS and MGWR 

spatial autocorrelation treatments. As can be seen, significant 

positive spatial autocorrelation is found for OLS in trip 

production model (Moran’s I=0.030, z-score=2.04, p-

value=0.010); while no spatial dependency is explored for the 
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MGWR of corresponding model specified by Moran’s I and z-

score equal to -0.038, -2.05 and p-value equals to 0.040. Similar 

analysis for trip attraction model indicates the positive and 

significant spatial dependency among the residuals of global 

OLS (Moran’s I=0.056, z-score = 3.56, p-value= 0.000); while 

the local model has successfully removed spatial dependencies 

of residuals (Moran’s I=-0.037, z-score = -1.95, p-value= 

0.050). It reflects that with the same dependent and independent 

variables, the OLSs violate the assumption of residual 

independence. In return, MGWR has improved the reliability of 

the relationships by eliminating the spatial autocorrelations of 

residuals.  

 

Unlike the global OLS, the spatial patterns of local ( 2
ir ) in 

MGWR represent a marked regional differentiation. In trip 

production model, local ( 2
ir ) is characterized by higher values 

(0.84 –0.95) in the southeast and some central parts of the study 

area (Figure 4a). Accordingly, it can be seen that the model did 

not fit very well to data for TAZs located in northeast part of 

Mashhad. The similar analysis of ( 2
ir ) resulting from rip 

attraction model indicates that how well the model has fit to 

data in the west part of the study area (Figure 4b). In areas 

located in a major northern part, trip attraction is not adequately 

explained by the selected explanatory variables with the local 

( 2
ir ) falling below the OLS threshold and this could imply 

additional covariates were needed to explain the work trip 

attraction. Figure 4 helps to realize additional explanatory 

factors were required and where could those factors be applied. 

It is worth to note that we indicated that MGWR is potentially 

non-stationary; therefore, A model calibrated at one location 

cannot be expected to replicate data particularly well elsewhere 

unless the process being modelled is relatively stable. So local 

( 2
ir ) reflects mixture of two issues: how well the model 

replicates the data and how stationary are the processes being 

modelled. 

 

5. CONCLUSION 

OLS is the most widely known method for calibrating trip 

generation models and assumes that the relationship between 

the dependent and independent variables is stationary. The key 

question in this study is whether explicit spatial non-stationary 

relationships between the trip  generation and potential 

explanatory variables exist or not. This can efficiently be done 

through employing GWR, which brings about location-specific 

parameter estimates that can be mapped to explore the 

variations. The MGWR model is suitable for situations where 

certain explanatory variables affect the dependent variable 

globally and others locally. Local estimation coefficients 

obtained from MGWR show significant differences across the 

study area in terms of magnitude, indicating that the descriptive 

power of such models is stronger than that of OLS. Moreover, 

our results show that MGWR represents a significant 

improvement in model performance over the global model, as 

indicated by lower AICc, higher values of the coefficient of 

determination, and reduced spatial autocorrelation of the 

residuals. 

Although strategic policies for the areas which are affected 

more by a particular predictor have been suggested, the detailed 

analyses of such areas still need further research. Such analyses 

are beneficial to urban planners, transport engineers and other  

 

 

Category Model Moran’s I z-score p-value 

Trip 

production 

OLS 0.030 2.04 0.010 

S-GWR -0.038 -2.05 0.040 

Trip 

attraction 

OLS 0.056 3.56 0.000 

S-GWR -0.037 -1.95 0.050 

Table 8. Results of Moran's I for residuals of global OLS and 

MGWR 

analysts who deal with issues related to zoning and 

development of neighbourhoods. 

The advantage of local models is highlighting the areas 

demanding more attention in terms of factors generating trips 

and consequently request more travel demand managements, 

once they are included in detailed engineering study sites. 

Detecting such areas could be beneficial in allocating the 

limited budget and resources in future urban development plans.  

 

a 

b 

Figure 4. Local coefficients of determination for a) trip 

production and b) trip attraction models 
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