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ABSTRACT: 

Flooding in urban areas poses serious risks to citizens, infrastructures, and transportation. Precise and real-time delineation of the 

inundated areas is crucial for a better understanding of the extent of damage and high-risk areas and people evacuation actions. It also 

increases citizens' awareness that living in areas with high flood risk. Yazd city is characterized by low rainfall (<70 mm/yr) and the 

desert climate is considered the study area of this research. This city encountered a flash flood event that was generated by severe 

rainfall with a depth of 75 mm in 3hr (i.e., the intensity of 25 mm/hr) on July 29, 2022. Many strategic infrastructures of this city 

especially the railway station were flooded, which caused heavy casualties and financial losses. This study aims to monitor the flood 

inundated areas of Yazd city due to this flood event using remote sensing. In this research, the Sentinel-1 polarimetric radar images 

and the 3D model of the Yazd city surf ace were used to delineate the flooded areas. The field information of the flooded areas and 

the available Sentinel-1 images during or near the occurrence time of maximum flood extension were adopted. The Convolutional 

Neural Network (CNN) model in combination with the 3D model of the studied area was used to identify the flooded pixels in the 

city of Yazd. The results showed that the adopted 3D model and CNN algorithm indicated a good ability to identify flooded areas 

with an accuracy of 88% and a kappa coefficient of 0.83. 

* Corresponding author 

1. Introduction

Flood is a main natural disaster that possess a serious risk to the 

urban environment. (Peng et al., 2019). Real-time monitoring of 

urban inundated areas is crucial for mitigation of flood risk and 

damage and planning of people evacuation strategy, especially 

in developing countries which are characterized by low 

investment in hydraulic and conveyance structures (Bayik et al., 

2018). However, the increasing development of advanced 

technologies such as satellite images, the development of 

algorithms, and environmental risk monitoring software can 

overcome these challenges to some degree (Li et al., 2018). 

While, the remotely-sensed derivative of flood inundation area 

by Synthetic Aperture Radar (SAR) has been widely used, but, 

this issue in urban areas is ongoing challenging (Li et al., 2019). 

 In particular, radar satellite images have the potential to 

monitor flood-inundated areas compared to optical images (Li et 

al., 2018; Surampudi & Yarrakula, 2020; Tanim et al., 2022). 

Polarimetric radar images from Sentinel-1, an active remote 

sensing satellite that produces intensities of backscattered 

signals from the Earth's surface (DeVries et al., 2020). This data 

is freely available to public users. The possibility of inverse 

scattering intensity identification is of individual characteristics 

of Sentinel-1 images (Carreño Conde & De Mata Muñoz, 

2019). However, the scattering of radar pulses from land surface 

phenomena in distinguishing between pixels in flooded areas 

and other phenomena such as vegetation that is hidden under 

water during flooding (Mason et al., 2021), or sandy areas 

where the intensity of scattering of radar pulses is similar to 

water bodies is of challenges associated with this process 

(Martinis et al., 2018). As a result, it increases the error in 

detecting inundated areas. Using 3D models can overcome these 

challenges to some extent. 

In several studies, using the integration of remote sensing 

images, including radar, optical and LiDAR images, to increase 

the accuracy of the detection of earth surface phenomena, such 

as urban surfaces, vegetation, or other effects on the earth's 

surface, has been done (Al-Najjar et al., 2019; DeVries et al., 

2020; Jahan et al., 2018). These extra topographies can 
improve the classification accuracy for specific features 
(Al-Najjar et al., 2019). For instance, datasets 
synthesized from RGB (Red, Green and Blue) images 
obtained from UAVs or other sources together with 
digital surface models (DSM) provided a more holistic 
representation for the production of accurate maps 
(Jahan et al., 2018). Considering DSMs as additional 
features were proven to increase the classification for 
image segmentation (Marcos et al., 2018). 
The application of deep learning techniques (e.g., convolutional 

neural network, CNN) in satellite image classification has led to 
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a significant increase in accuracy compared to machine learning 

techniques (Al-Najjar et al., 2019; Sameen et al., 2018; Wang & 

Wang, 2019). This study presents a method of combining the 

CNN model and DSM images to extract flooded areas. 

Therefore, in this study, an attempt was made using the DSM of 

the studied area to reduce this error. The polarimetric radar 

images during or near the occurrence of a flood on July 29, 

2022, in Yazd city was processed. Then, by adding the three-

dimensional layer of the area and the difference in the digital 

model of the area, it was introduced to the CNN algorithm using 

eCognition Developer software. Finally, the accuracy of the 

flood inundated map was assessed with field surveys of the 

inundated points. 

 

2. METHODOLOGY 

2.2 Case study 

The area studied in this research is Yazd city. This city, with an 

area of about 2397 square kilometers, is located in 54°19' to 

54°24' east longitude and 31°49' to 31°55' north latitude (Figure 

1a). Figure 1-b shows the image of the false color combination 

of polarizations of the Sentinel-1 sensor for Yazd city. Yazd 

city is located between the two mountain ranges of Shirkoh and 

Kharanagh at an altitude of about 1200 meters above sea level 

(Figure 1c). The average annual rainfall in this province is about 

69.5 mm, the minimum average temperature is -20 and the 

maximum is +47 degrees Celsius. Also, the maximum relative 

humidity of 23% in January shows that this province has had 

relatively high relative humidity in recent years. Yazd has a hot, 

dry, and desert climate. The fluctuation of temperature in 

summer and winter and even at night and day are high and 

variable. Therefore, it has two long hot seasons (from March to 

October) and a short cold one (from November to February) 

(https://data.irimo.ir(. 
 

 
Figure 1. Location and geographic context of the Yazd city in 

central Iran (a), Sentinel1 image RGB: VH, VV, VH (b),   

SRTM 1sec of Yazd city (c), and (d) land use land cover 

(LULC) map of Yazd city. 

 

2.3 Dataset 

In this study, three polarimetric radar images, Sentinel-1 images 

before, after, and during a flood event in the city of Yazd, were 

pre-processed by removing thermal and border noise of the 

images, radiometric calibration, and correction from the ground 

surface with the help of the digital model of the area, and 

conversion to decibel units. Sentinel-1 C band images (Table 1) 

are accessed from the Alaska archive. Sentinel-1, C band 

Interferometric Wide (IW) swath Ground Range Detected 

(GRD) datasets (Table 1) are chosen for mapping flooding in 

Yazd city. The image preprocessing is done in a SNAP 

workflow that consists of seven major steps. 

The test area is covered by 25 Interferometric Wide Swath 

Sentinel-1 data sets (IW, with a spatial resolution of 5×20 m) 

during the period 20 July 2022 to 08 august 2022 (as shown in 

Figure 1b), which are used for generating the Sand Exclusion 

Layer (SEL). The considered site covers an area of ~2397 km² 

(2612×2203 pixels). Because the data have been acquired in 

single polarization VH and VV, with two VH and VV, polarized 

data are used to have a longer and more consistent time series. 

These images were prepared between 2022/07/20-2022/07/28 

before the flood, 2022/07/29 during the flood, and 2022/07/29-

2022/08/09 after the flood in Yazd city. Sentinel-1A satellite 

was launched on April 2014 and Sentinel-1B on April 25, 2016 

(Sharif et al., 2022). These images have a temporal resolution of 

once every six days for each area of the earth's surface. This 

temporal capability is very useful for monitoring natural 

disasters with a spatial resolution of about 10 meters. 

 

Image 

Acquisition 

Parameters 

Before 

image 

During 

image 
After image 

Product type  
Sentinel-1A 

GRD 

Sentinel-1B 

GRD 
Sentinel-1B 

GRD 

Time  
2022/07/24-

02:22 

2022/07/29-

14:26 

2022/08/09-

14:27 

Acquisition 

mode 

IW IW 
IW 

Pass Descending Ascending Ascending 

Relative orbit 488 130 130 

Absolute orbit 44236 44302 44477 

Table 1. Sentinel-1 datasets used in the present study. 

 

2.4 Methodology   

Figure 2 presents the step-by-step methodology adopted in this 

study. First, the raw images of the Sentinel-1 sensor were 

collected for the study area in the period before and after the 

flood, as well as the nearest days to the occurrence of the flood 

(July 29, 2022, to July 30, 2022).   Then the steps required for 

pre-processing include removing thermal noise, removing 

image noise to reduce the amount of noise, audiometric 

corrections, correction using a digital model of the earth's 

surface (SRTM 1sec), applying a median filter to reduce image 

speckle, and finally converting into decibel (dB) units. The pre-

processing has been done using the ESA SNAP application 

platform software of the European Space Agency (Figure 2). 
The goal of image processing using SNAP software is to 

preserve consistent image features of model datasets from 

multiple images.  Figure 3 shows the steps of image 

preprocessing and Sentinel-1 image processing from the raw 

data set to the generation of the scattering intensity value.   
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Figure 2. Schematic flowchart of the methodology adopted in 

this study to process the Digital Surface Model (DSM) and 

Sentinel-1 image in Convolutional Neural Network (CNN) 

algorithm. 

 
2.5 AFTER THE PROCESSING STEPS, IT WAS 

ANALYZED ACCORDING TO THE FLOODED AREAS 

FOR THE PIXELS BELONGING TO WATER AND 

OTHER NON-WATER FEATURES IN BOTH 

POLARIZATIONS FOR THE PERIODS BEFORE, 

AFTER, AND DURING THE FLOOD TO IDENTIFY THE 

THRESHOLD OF PIXELS RELATED TO WATER. IN 

THE NEXT STEP, BY ADDING A THREE-

DIMENSIONAL LAYER Evaluation Metrics 

In this study, the criteria of overall accuracy (OA), and the 

Kappa index (K) were used to evaluate the flood inundation area 

detected by the developed approach in this study. The OA 

measures the percentage of total classified pixels that are truly 

labeled into the specific land cover classes. The OA was 

computed by dividing the total correctly classified pixels by the 

total number of pixels (N) in the error matrix, as is shown in 

Equation (1). 

 (DSM) of the ground surface with polarization images for three 

periods before, during, and after the flood, the flooded areas 

were classified using the CNN algorithm. As a result, the final 

flood map in Yazd city was prepared by removing the 

overlapping areas of flooded areas from each period. To 

evaluate the results, according to the available images of the 

flood that were prepared from the website of the Yazd 

municipality, training points were prepared for validation. This 

effort was visually captured and converted into training points 

in vector format. 

 
2.6 Fusion in-decoder CNN Model 

In this study, a Fusion in-Decoder networks using VV, VH, and 

DSM images was assumed and applied to detect the flood 

inundation classes. The proposed method is used from image 

patches with the size of N×N×3 pixels or N×N×3 pixels as input 

for each Encoder. The size of the dilation filter was defined as 

5×5, which was the same as the kernel size in CNN model 

(Figure 3). Two following techniques were used to improve the 

network performance (Fathi & Shah-Hosseini, 2021; Garbin et 

al., 2020): 

1) Batch Normalization, is applied to keep the distribution of 

the input values of each layer and increase the speed of learning. 

and 

2) Dropout, is applied to reduce over-fitting and create different 

architectures by using removing neurons randomly in the last 

layer of each. 

The patch-level analysis is usually used with deep-learning 

methods (e.g., CNN) in order to overcome challenges posed by 

speckle noise and segmentation optimization. These problems 

arise from pixel-level and object-level feature extraction 

(Garbin et al., 2020; Sameen et al., 2018). In a patch-level 

analysis, images are divided into a grid of N×N and then each 

patch is separately analyzed. The size of the image patch used to 

train the CNN was determined based on the spatial resolution of 

the Sentinel-1 image and the expected size of the objects in the 

scene. 

Parameters input into the CNN model and architectures of 

Fusion in-Decoder are shown in Table 2 and Figure 3. 

 

Parameters Value 

Image 

 
2 image VV&VH and DSM model 

Filter Size 5*5 

Pooling Size 5*5 

Convolution kernel 

Size 
5 

Batch Size 32 

Steps per epoch 12 

Optimizer 
RMSprob (lr=0.001, rho=0.8, 

decay=0.8) 

Activation function ReLU/sigmoid (last layer) 

Table 2. Parameters input into the CNN models. 

 

 
Figure 3. Architectures and parameter of the convolution CNN 

model in this study. 

 

 

     
,                                   (1) 

The K statistics is a discrete multivariate criterion used 
to assess the accuracy (Congalton, 1991; Elijah & Jensen, 
1996). A Kappa analysis yields a K statistic, which is a 
quantitative metric of the level of agreement in correctly 
classified pixels (2): 

 

,   (2) 

 

Where     Dij= the total number of correctly classified pixels,  

              i, j= row and column, 

              Ri= the total number of pixels in a row, 

               m= is the number of classes, and 

               Dij= the number of correctly classified pixels in a row 

and column 

               Ri = the total number of pixels in a row, 

               Cj= the total number of pixels in a column, and 
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               N= the total number of pixels. 

 

3. RESULTS AND DISCUSSION 

The open water surfaces lead to low backscattering coefficients 

due to the specular reflection of the SAR signal on such features 

and the high permittivity of water (Martinis et al., 2018). This 

can also be seen in Figure 4, which shows the spatial 

distribution of water backscattering in both VV and VH 

polarization within the validation areas. In both polarizations, 

the classes have a great overlapping, which leads to 

misclassifications of the water areas. However, the distributions 

show a small shift between VV and VH polarization. While in 

VV polarization, in all three time periods before, after, and 

during the considered flood event, the mean backscattering is 

almost the same (water surfaces in VH= -30.34 dB for 29 to 30 

July) and the standard deviation is similar (water surfaces in 

VH= 1.6). 

Pixel counts appear to be slightly better distinguishable in VH 

polarized data (water surfaces in VV= -20.22 to -25 dB VV) 

(Figure 4). The difference in VH polarization redistribution 

during the flood compared to after and before the flood 

occurrence time is about 3.4 dB. However, this difference in 

polarization VV has a lot of overlap. 

The optimal threshold value used to differentiate the flooded 

and non-flooded area was found as -30 dB when applying the 

Histogram thresholding method to the VH polarization dataset. 

The flood extent was increased (non-flood affected area was 

detected as a flood) when the threshold value was less than -30 

dB. Whereas the actual flood-affected area was missed when 

applying the threshold value on the histogram of signal 

backscatter intensity greater than -24 dB. Hence, determining an 

optimal threshold value is crucial to overcome both over and 

under estimation in flood inundation mapping. Due to the low 

viewing angle of the VV polarization, the optimal threshold was 

found at -23dB. However, increased false flood alarms were 

obtained when applying threshold values less than the optimal (-

23 dB). 
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Figure 4. Histograms for water backscattering for VV and VH 

polarized Sentinel-1 data sets within the validation area in Yazd 

city (during 29 to 30 July 2022). 

 

Figure 5 visually shows the results of Sentinel-1 image 

processing techniques for the identification of flood inundated 

areas after applying the CNN algorithm. According to the 

results shown in Figure 5, the proposed method showed good 

reliability in the classification of flooded areas in Yazd city, 

which is representative of a dry and desert area. The results 

showed user accuracy (UA) for the water class at 85%, overall 

accuracy (OA) at 88%, and a kappa coefficient of 0.83. In this 

algorithm, it was identified according to the redistribution range 

of five classes, which is considered to be about 5 cm for every 1 

dB. This was achieved by experimental processing after trial 

and error. The weaker the power of the radar pulses, the 

smoother the water surface and the deeper the water layer. 

Moreover, the adopted methodology in this study makes it 

possible to estimate the depth of water in the flooded areas as 

shown in Figure 5. However, more studies are needed to attain 

robust and precise results, but the systematic methodology 

adopted in this study indicated that the use of the three-

dimensional earth layer (DSM) has great potential as a 

promising tool in real-time monitoring of flood inundation 

areas, especially in urban cities with a dry and desert climate. 

 

 
Figure 5. Flood inundation map and depth of water in Yazd city 

due to event storm July 28-30, 2022 produced by image 

processing and CNN Classifier (a), images of two flooded 

places in Yazd city:  main street (b) , and railway station (c). 

 

The Sentinel-1 data are acquired at 6 days intervals in Yazd 

city. Hence, not all flood events can be captured by satellite 

image. However, the flood maps generated from the satellite 

image proved to be useful information when long-time series 

multi- temporal images were analyzed as applied in this 

research. 

Future studies could monitor flooding in Yazd city per 6 days 

interval using the Sentinel-1 images to provide useful 

information for flood risk assessment and management. The 

flood extent detected from the Sentinel-1 image can be useful 

for validating hydrodynamic flood models of the study area. 

Detailed characteristics and areas exposed and vulnerable to 

flooding by combining remote sensing satellite images and field 

surveys are very valuable for flood risk assessment (Risi et al., 

2020; Bekele et al., 2022). This information can reduce costs 

incurred by cities due to free access to remote sensing images. 

Therefore, it is suggested to investigate the combination of 

optical and radar images in future studies. 

These results suggest that the combined model of CNN and 

DSM is a promising tool to classify approximately all of the 

classes with relatively high accuracy. However, more studies 

are needed to achieve better results. Also, using different remote 

sensing images can improve these results. Remotely-sensed 

images can provide real-time information on flood extension 

areas which is vital in flood risk mitigation. It also caused 

flooding on the city roads and damage to the city's historical 

buildings, blocking of traffic routes, and damage to the city's 

infrastructure facilities. The developed systematic approach is a 
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promising tool for real-time detection of urban flood extended 

areas, which can be repeatable for other cities. 

 

4. CONCLUSION 

In this study, the data of polarizations (VH, VV) Sentinel-1 

were evaluated for mapping a recent flood event that occurred 

in Yazd city. In general, the method used in this study can help 

rapidly monitor flood-prone areas using the Sentinel-1 dataset. 

The following key results have been obtained based on the 

analysis of the research results: 

The accuracy of generated flood maps using Sentinel-1 images 

is significantly affected by image polarization, the method of 

flood detection. Wet soil and low depths of flood show more 

errors in flood inundation detection. The final accuracy of the 

flood map was significantly higher using VH polarization data 

instead of VV one. However, these results can be different in 

areas with characteristics of surface phenomena as well as the 

type of soil in the area (for example, sandy and clay soils that 

have similar redistribution of radar pulses to flooded areas). 

To observe the flooded areas of the city, the histogram threshold 

method was used in each polarization. The results of 

classification in each polarization alone do not show good 

results in some parts. Therefore, to reduce the final 

classification error, according to the threshold of the pixels 

representing water cover, the classification obtained from both 

polarizations was combined. Therefore, the use of both S-1 

polarization to monitor the flood at the Yazd city level will lead 

to better results. 

Overall, the multi-temporal analysis of Sentinel-1 images 

provides useful information about the extent of flooding. The 

surrounding area, due to being a desert, is mainly sandy and 

clay soil, which causes errors in the final results for areas 

outside the city. However, Sentinel-1 images showed acceptable 

results for flood-affected areas in the city. 

In this study, the single threshold limit of Sentinel-1 radar 

sensor polarizations was evaluated to distinguish between 

flooded and non-flooded areas. But in future studies, this 

threshold can be defined more precisely according to the type of 

phenomena on the ground surface and the time conditions. 

Because checking the histogram of each polarization according 

to local conditions, soil characteristics and topographic 

conditions improve the results. 

The processing of remote sensing images is very important in 

the mapping urban flooded areas. To achieve more accurate 

results in future studies, it is suggested to use high spatial 

resolution images of Sentinel-2 as optical images along with 

radar images. Optical images can improve the results according 

to the spectral characteristics. 
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