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ABSTRACT: 

 

Timely and accurate mapping of crops is crucial for agriculture management, policy-making, and food security. Due to the differences 

in the product calendars of various crops, it is possible to classify them by investigating the remote sensing Vegetation Indices (VIs) 

during crop growth season. This study developed a VI-based mapping approach to specifying crop types based on phenological and 

spectral metrics derived from the sentinel-2 images. We used six spectral VIs (ARVI, CVI, EVI, LAI, GLI, and NDVI) in three 

supervised machine learning methods, including Random Forest (RF), GBoost (GB), and K-Nearest Neighborhood (KNN) for crop 

mapping. Field data consisting of wheat, barley, canola, vegetables, and a bare land class, were collected as the testing and training 

data set. The classification results were evaluated through test samples showing high overall accuracy (OA) and satisfactory class 

accuracies for the most dominant crop types across different fields despite the variability of planting and harvesting dates. Among the 

VIs utilized to crop mapping, the Atmospherically Resistant Vegetation Index (ARVI) in all three classification methods achieved 

better results. The overall accuracy of RF, GB, and KNN models with the ARVI index was 95%, 88%, and 90%, respectively. 

 

 

1. INTRODUCTION 

According to a statistical report published by the Food and 

Agriculture Organization (FAO) of the United Nations, the cereal 

harvest in Asia in 2020 was 1448 million tons. Iran produces 1 

percent of harvested cereal in Asia (FAO, 2020). The most 

widespread crops in Iran, especially in the provinces with limited 

water resources such as Qazvin, are wheat, barley, and canola. In 

addition to these crops, vegetables such as green peas, cabbage, 

and carrots are also cultivated in small fields (Ahmadi et al., 

2020). Crop Types map is the crucial instrument for the yield 

production estimation. With the increasing freely-available 

satellite imagery, the material and temporal cost of crop 

monitoring, health assessment, yield estimation, and area under 

cultivation mapping has been comprehensively reduced. One of 

the challenges facing food-management organizations 

worldwide, especially in Iran, is estimating the area under 

cultivation of products to satisfy the annual needs of 

communities. Therefore, many studies have been done on these 

issues. For example, Amani et al. (2020)used the GEE cloud 

platform, due to the large volume of processing data, in part of 

Canada and implemented the neural network algorithm on the 

Sentinel 1 and 2 images and achieved 77% overall accuracy 

(OA). Moreover, Yan et al. (2021) proposed a method based on 

discrete grids with machine learning (ML) to integrate GaoFen-1 

and Sentinel-2 imagery. The proposed method obtained 86% and 

88% accuracy for crop type classification in Northeast China. A 

comprehensive study compared different ML and deep learning 

algorithms with a dual attention deep neural network for crop 

mapping in Iran. The outcomes demonstrated the best OA of 

98.54% for the Aq-Qala agricultural area (Seydi et al., 2022). 

Any data correlating with vegetable growth can be used as a 

proper source for monitoring the seasonal growth cycle of crops. 

Optical satellite sensors with spectral bands in the red edge, such 
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as the Landsat series, Sentinel-2, and MODIS, allow us to study 

crop growth cycle. The acquired images in the crop growth 

season have been used to generate various vegetation indices, 

enhancing the crop type mapping results. These spectral indices 

can be introduced as input to the ML algorithms (Rostami et al., 

2022a). For example, Liu et al.(2018)  used eight MODIS coarse 

resolution images to compute EVI in the growing season of 

Henan province of China and achieved the OA of 84% by the 

global threshold model. The ML and deep learning algorithm can 

develop a model that simulates the relation between output and 

different variables as inputs  (Aghdami-Nia et al., 2022; Rostami 

et al., 2022b). Nevertheless, ML algorithms have parameters that 

should be optimized with some methods (Ansari and 

Akhoondzadeh, 2020; Ranjbar et al., 2021). There are methods 

for optimizing ML parameters, such as genetic algorithms, some 

empirical formulas (Arabi et al., 2022), and grid search. Grid 

search can explore a wide search space and yield satisfactory 

results (Hosseini et al., 2012). 

As mentioned above, most studies on cropland mapping were 

conducted over traditional spectral index time series and used 

dispersed vegetation classes. This study classified essential crops 

in the study area and reduced different classes of vegetables to 

one class with similarities in the growing season and spectral 

reflection to achieve the most accurate results in crop types. The 

primary purpose of this study is to map crop type in the Qazvin 

plain region using different VIs obtained from the Sentinel-2 

images. The proposed method includes the following sections: 

(1) Finding the most efficient spectral indicators for crop 

mapping. (2) Investigating the 8-month spectral indices of each 

crop for early detection of products. (3) Comparing several ML 

methods (i.e., Random Forest, GBoost, and KNN) and 

optimizing the parameters of algorithms with Grid-search 

methods. (4) Providing an accurate multiclass map of crop types 

and evaluating by in situ data. 
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2. CASE STUDY AND DATASET 

2.1 Study area 

Qazvin plain includes fertile fields located 150 km west of 

Tehran, at the geographical distances between latitudes 36 ֯00' 

00"N to 36 00' 20"N and 49 40' 00"E to 50 '35 35"E longitude 

(Figure 1). The study area comprises arid and semi-arid climates 

with average annual precipitation of 234.1 mm. Hence, it 

includes most irrigated agricultural systems. In the irrigation 

network of Qazvin plain, which has an area of 43,000 acres, 

including wheat, barley, colza, alfalfa, and in smaller areas, 

tomatoes, cucumbers, watermelons, eggplants, and onions that 

named agricultural-vegetable in classification. This study 

compares different classification approaches for winter crop 

mapping along the Qazvin plain. 

 

 
 

Figure 1. location of Qazvin plain in Iran. 

 

2.2 Dataset 

2.2.1 Field Data 

We used a handheld global positioning system (GPS) with a 

positional accuracy of <5 m to record the locations of the 

samples. Crop type of 105 fields in the study area is acquired. 

The surveyed fields contain five classes: wheat, barley, rapeseed, 

agricultural-vegetable, and bare fields. Then, for the training 

phase, the collected data were divided into two parts: training 

(70%) and testing data (30%). We used only training data to learn 

algorithms and test data for accuracy assessments. The number 

of pixels per class for training ML algorithms is mentioned in 

Table 1. 

 

 

Table 1. The number of training and test pixels collected for 

each class using in situ data. 

2.2.2 Satellite Data  

This study employed Sentinel-2 optical satellite images to 

generate spectral indicators suitable for studying crop types. 

Sentinel-2 is a European multispectral satellite developed in 

collaboration with the European Space Agency and the European 

Commission initiative Copernicus. Launching B series satellites 

decreases this sensor's revisit time by 3-5 days, which is ideal for 

precise monitoring of agricultural lands. We considered the 

winter crop year from the beginning of October 2021 to the end 

of May 2022, which is the harvest time for winter crops. As a 

result, eight images were selected with cloud coverage of less 

than 5% as well as nearly one-month intervals. Furthermore, we 

computed six VIs for selected eight images, including 

Atmospherically Resistant Vegetation Index (ARVI), 

Chlorophyll Vegetation Index (CVI), Enhanced Vegetation 

Index (EVI), Leaf Area Index (LAI), Green Leaf Index (GLI), 

and Normalized Difference Vegetation Index (NDVI) which 

described in Table 2. 

 

 

Table 2. Vegetation indices derived from Sentinel-2 images. 

 

3. METHODOLOGY 

Crop-type mapping is possible by investigating the phenology of 

each parcel of agricultural land. For this purpose, we have 

compared five spectral indices related to vegetation and a 

biophysical variable called leaf area index (LAI). The 8-month 

images of these indicators were used for the whole study area and 

employed as an input dataset. Several ML classifiers, including 

RF, GBoost, and KNN, were utilized for the classification task. 

The grid search technique determined the optimum value for 

parameters of each ML algorithm. Selected parameters were used 

in all trained models. The crop type mapping framework is 

illustrated in Figure 2. Furthermore, the output maps of each 

model can be seen in the results section. 

Class 
Train 

(pixel) 
Test (pixel) Sum (pixel) 

Wheat 140855 60366 201221 

Barley 36142 15490 51632 

Colza 14691 6296 20987 

agricultural-

vegetable 
12555 5381 17936 

Bare 24083 10321 34404 

sum 228326 97854 326180 

Index Formula Reference 

ARVI −0.18 + 1.7 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Kaufman 

and Tanre, 

1992) 

CVI 
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
×

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛  
 

(Vincini et 

al., 2008) 

EVI 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 × 𝑅𝑒𝑑 − 7.5 × 𝐵𝑙𝑢𝑒 + 1
 

(Matsushita 

et al., 2007) 

LAI 
0.109 × 𝑊𝐷𝑉𝐼 − 0.3233 

𝑊𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑎 × 𝑅𝑒𝑑 

(Clevers et 

al., 2017) 

GLI 
(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑) +  (𝐺𝑟𝑒𝑒𝑛 − 𝐵𝑙𝑢𝑒)

2 × 𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

(Eng et al., 

2019) 

NDVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(RondeauxM, 

1996) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-79-2023 | © Author(s) 2023. CC BY 4.0 License.

 
80



 

MSI L1C TOA 

reflectance 

images

Oct-2021

May-2022

1) Atmospheric correction

2) Clip to Site 

3) Layer Stacking

In-Situ 

data

Train data Test data

70% 30%

ARVI

CVI

EVI

LAI

GLI

NDVI

ML Models:

RF

GBOOST

KNN

Optimized models

Crop map

Accuracy 

assessment

Grid search

Quality control

KC,OA

 
 

Figure 2. Flowchart of proposed method. 

 

3.1 Classification methods 

Mapping is one of the most important motivations for acquiring 

satellite imagery. Several methods can accomplish classification, 

which is the first step in producing a map. In recent years, various 

ML models have been developed to classify satellite images 

using massive data with high complexity. As discussed, three 

state-of-the-art ML methods for classifying agricultural fields 

were selected to compare this study's mapping results, which are 

explored in the following subsection. 

 

3.1.1 Random Forest 

RF is one bagging method that includes several subclasses to 

classify the subsets of data selected randomly from the input data 

(Scornet et al., 2015). The subclass classifiers in the RF algorithm 

are the decision tree. The voting process occurs between the 

predictions of all the trees, and the class with the most votes 

among the trees is introduced as the prediction output 

(Ghorbanian et al., 2020). 

 

3.1.1 GBoost 

The boosting algorithms use several learning methods to obtain 

sequential hypotheses, each focusing on complex or incorrectly 

predicted data in the previous step. The GBoost algorithm, based 

on boosting learning methods developed by Friedman, can also 

be used in multiple class problems (Friedman, n.d., 2001). A new 

weak learning model is added and fixed in each training stage to 

reduce the loss function. Generally, GBoost involves three 

elements: (1) A loss function to be optimized. (2) A weak learner: 

decision trees are used in gradient boosting. (3) Additive Model: 

trees are added one at a time, and existing trees in the model are 

not changed. A gradient descent procedure minimizes the loss 

when adding trees (Zarei et al., 2021). 

 

3.1.2 K-Nearest Neighbourhood 

KNN is a supervised ML method that can solve regression and 

classification problems. In classification, the number of classes 

in the data must be introduced into the algorithm (Peterson, 

2009). The algorithm then considers a representative for each 

class according to the training data. The algorithm calculates the 

Euclidean distance between the new data features and the class 

representative. The class number with the shortest distance from 

the data is taken out of the algorithm as a prediction. Different 

versions of this algorithm use different methods of calculating 

distance and similarity. 

 

3.2 Accuracy assessment 

We used the two most common statistical metrics, including OA 

and Kappa Coefficient (KC), to demonstrate the performance of 

the models and the impact of the input variables on crop type 

mapping (Habibollahi et al., 2022). These statistical criteria can 

be calculated using Equation (1-3): 

 

𝑂𝐴 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑅𝐸 =  
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 × 𝐹𝑁2
 (2) 

𝐾𝐶 =  
𝑂𝐴 − 𝑃𝑅𝐸

1 − 𝑃𝑅𝐸
 (3) 

 

 TN, TP = true negative, true positive, 

 FN, FP = false negative, false positive 

 PRE = prevalence 

 

4. EXPERIMENT AND RESULT 

Regarding the impact of in-season vegetation changes on spectral 

bands, using different VIs in crop growing season, which are 

obtained from various band ratio combinations, is a suitable 

method to classify in-season plants. The most critical point in this 

study is to select the best VI with the highest classification 

accuracy in all scenarios

 

Table 3. Accuracy assessment of different ML methods for crop mapping with various inputs. The bold values show the highest 

accuracies (OA: overall accuracy, KC: kappa coefficient). 

 

Index RF  KNN  GB 

 OA (%) KC OA (%) KC OA (%) KC 

CVI 90.63 0.86 85.52 0.81 85.91 0.78 

NDVI 93.06 0.915 89.07 0.87 89.64 0.85 

EVI 92.94 0.91 88.41 0.85 88.26 0.84 

ARVI 95.14 0.94 90.57 0.90 88.05 0.83 

LAI 93.03 0.91 88.73 0.86 89.72 0.850 

GLI 81.31 0.70 80.35 0.70 80.21 0.75 
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Figure 3. Comparison of the result of crop mapping using three algorithms (RF, GB, KNN) with CVI, NDVI, and EVI inputs. The 

red boxes indicate the same locations to further visual analysis. a) Collected in-situ data as ground truth, b) crop maps produced using 

ML methods and VIs. 

 

4.1 Crop mapping results 

The results of crop mapping based on selected VIs and ML 

algorithms are illustrated in Fig 3 and 4. In addition, in-situ 

collected data from the study area was also provided as a ground 

truth map for comparative analysis. The results showed that the 

map produced by RF extracted more precise land boundaries than 

other ML methods. Additionally, the KNN classifier could not  

delineate different classes with a high level of accuracy, and the 

produced map included salt and paper errors. Generally, ARVI 

provided the most outstanding results among the other VIs based 

on visual analysis. The leading cause of the superiority of ARVI2 

is an atmospheric correction used in this index, which resulted in 

better discrimination of various types of crops. 

. 
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Figure 4. Comparison of the result of crop mapping using three algorithms (RF, GB, KNN) with ARVI, LAI, and GLI inputs. The 

red boxes indicate the same locations to further visual analysis. a) Collected in-situ data as ground truth, b) crop maps produced using 

ML methods and VIs. 

 

 

4.2  Within class comparison 

As is clear from ground truth data and generated maps (Fig 3 and 

4), barley and wheat are the dominant crops cultivated in the 

region. Hence, distinguishing these two crops in the study area is 

crucial in generating crop-type maps. Red boxes in Fig 3 and 4 

indicate a specific area containing barley and wheat fields 

adjacent. The RF and KNN offer the most accurate results in 

terms of distinguishing barley and wheat, even with GLI that 

illustrate the lowest precision in mapping (Table3). All generated 

maps by GB have omitted the whole or a part of the barley fields, 

especially with GLI input 
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4.3 Assessment of the mapping accuracy 

The statistical accuracy assessment of the crop mapping using 

different accuracy measures is summarised in Table 3. The effect 

of different indices on crop classification was also investigated. 

As is clear from Table 3, the lowest accuracy was related to the 

GLI (GBoost-OA = 80%, RF-OA = 81%, and KNN-OA = 80%), 

and the highest accuracy in RF and KNN was associated with the 

case of using ARVI (RF-OA = 95% and KNN-OA = 90%). Three 

indices, NDVI, EVI, and LAI, used spectral band-4 and band-8 

of Sentinel-2 to show satisfactory results; however, there are still 

slight differences. Overall, all ML classifiers obtained more than 

80% OA in every VIs. In particular, the RF classifier 

outperformed other state-of-the-art methods in statistical 

assessment. Moreover, similar to visual interpretation, ARVI 

provided the most efficient performance compared to the other 

VIs.  

5. CONCLUSION 

Accurate crop mapping is essential for food security and land use 

management. However, it is still a challenging task in remote 

sensing due to the complicated phenological features of 

croplands. This study compared six spectral vegetation indices to 

map the crop type of Qazvin plain in Iran and evaluated results 

with in-situ data for accuracy assessment. Moreover, we 

investigated the efficiency of ML methods for mapping the four 

most common crop types in the study area. The visual and 

statistical analysis indicated that all VIs have satisfactory 

mapping results with more than 80% OA in every ML model. 

Furthermore, ARVI increases accuracy measures by more than 

90% in RF and KNN ML classifiers. Salt and paper noise is quite 

evident in the KNN-produced crop maps, although its 

classification accuracy is comparable with RF. Future studies can 

improve the performance of ML methods with spatial filters for 

noise reduction and more reliable boundary extraction in 

croplands using morphological post-processing. 
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