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ABSTRACT: 

Easy access to valid climatic data has always played a fundamental role in progressing hydrological studies. That is why numerous 

satellite-based precipitation products (SPPs) have been generated in the contemporary era. Precipitation Estimation from Remotely 

Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) is considered one of the most popular 

climatic databases which started to produce daily rainfall data with 0.25˚ × 0.25˚ temporal and spatial resolutions in 1983. The aim of 

this research is to evaluate how well PERSIANN-CDR has performed in a rainfall-runoff modeling application over the period of 1994 

to 2015. In this regard, using Soil & Water Assessment Tool (SWAT), two rainfall-runoff models based on Ground-based Rain Gauge 

stations (GRGs) and PERSIANN-CDR precipitation records were developed for the Chelgerd sub-basin, which is the main branch of 

the Zayandeh-Roud Basin in central Iran, in order to analyze how accurate the simulated runoff by PERSIANN-CDR database is. 

Comparing the developed SWAT model calibration results using the satellite database precipitation (NS = 0.78, P-Factor = 0.52, and 

R-Factor = 0.41) to calibration results of the developed model based on GRGs (NS = 0.81, P-Factor = 0.54, and R-Factor = 0.42) 

showed that although PERSIANN-CDR precipitation magnitudes were typically less than GRGs records, accuracy indicators of 

simulated runoffs to Ghale-Shahrokh were almost the same. 

1. INTRODUCTION 

The hydrologic cycle depends critically on precipitation. 
Accurate precipitation data are essential for decision-making and 
planning for many technical experts, including meteorologists, 
hydrologists, ecologists, agriculturists, disaster management 
personnel, and energy planners  (Chaudhary et al., 2021; Emami 
and Zarei, 2021; Kamali and Asghari, 2022). Due to the fact that 
precipitation is considered a high small-scale variability in place 

and time, it is one of the most challenging meteorological 
variables to detect. Ground-based Rain Gauge stations (GRGs) 
have traditionally been used to access in situ precipitation data 
(Messmer and Simmonds, 2021). Rain gauge and meteorological 
radar networks, however, are insufficient to capture the 
geographical and temporal variability of precipitation systems 
(Borga et al., 2022). Considering the radar-derived data 
limitations, such as coverage area restrictions, expensive 
infrastructures, and inadequate accuracy under complicated 

atmospheric circumstances, hydrological models perform 
inadequately (Lammers et al., 2021).  
To overcome these challenges, at the moment, more detailed 
precipitation records at a greater measurement frequency are 
offered by visible and thermal infrared sensors on geostationary 
Earth-orbiting satellites, as well as passive microwave sensors on 
low-Earth-orbiting satellites. Several satellite-based precipitation 
products with global high-resolution (up to 0.25), such as those 

derived from the MORPHing technique (CMORPH), Naval 
Research Laboratory developed blended-satellite precipitation 
technique (NRL-blend), Integrated Multi-satellite Retrievals for 
Global Precipitation Measurements (IMERG), Climate Hazards 
Group Infrared Precipitation with Station data (CHIRPS), 
Tropical Rainfall Measuring Mission Multi-Satellite 
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Precipitation Analysis (TMPA) products, Global Satellite 
Mapping of Precipitation (GSMap), Climate Prediction Center 
(CPC), and Multisource Weighted-Ensemble Precipitation 
(MSWEP), are now easily accessible in most parts of the world 

thanks to advancements in these techniques (Xue et al., 2021). 
Moreover, satellite-based precipitation products (SPPs) have 
contributed to the detection of rainfall distributions and have 
been used in conjunction with traditional rain gauges and 
meteorological radar observations (Moazami and Najafi, 2021). 
On the other side of the coin, Rainfall estimation is sensitive to 
not only low-intensity, rainfall but also systematic biases, and 
performs poorly over mountainous regions covered by snow 

(Moges et al., 2022). Reanalysis products can better characterize 
large-scale weather systems, but their poor spatio-temporal 
resolution makes it difficult to detect spatial variability. 
However, these products may be used to observe precipitation in 
data-scarce areas, filling data gaps, and assisting in the evaluation 
of water-related challenges. Generally, because of orographic 
impacts, complex topography regions have more spatial 
variability in precipitation over short horizontal distances than 
plain areas, which must be resolved for better water resource 

planning and management (Baez-Villanueva et al., 2020). 
SPPs and GRGs databases have been widely used not only in 
hydrologic modeling (Guo et al., 2022) but also in a variety of 
other fields such as flood modeling (Yoshimoto and Amarnath, 
2017), drought monitoring (Hatmoko et al., 2016), soil erosion 
forecasts. As far as hydrological modeling is concerned, water 
resource management and hydrological research have both 
benefited from distributed hydrological models (Setegn and 

Donoso, 2015). The Hydrologic Simulation Program-Fortran 
(HSPF) (Bicknell et al., 1996), MIKE SHE (Refsgaard, 1995), 
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the Hydrologic Modeling System (HEC-HMS) (Chiang et al., 

2022), and the Soil and Water Assessment Tool (SWAT) (Arnold 
et al., 2012) are only a few examples. These models employ SPPs 
data to decrease reliance on particular precipitation inputs 
(Sivapalan et al., 2003). The SWAT model has been widely used 
since various studies have demonstrated that it can accurately 
estimate stream-flow in areas with limited data (Arnold and 
Allen, 1999; Saedi et al., 2021). From a selection of 73 
hydrological models, the SWAT model was chosen as the most 

favored (Ougahi and Mahmood, 2022). The SWAT model was 
selected due to its extensive application capabilities, user-
friendliness, and the fact that it is widely pushed and supported 
in hydrological processes. The SWAT model can simulate 
stream-flow in areas with insufficient data (Horton et al., 2022). 
Among many other hydrological models, the SWAT model has 
been widely used in river basins across the world for hydrological 
simulations (Abbaspour et al., 2007; Farokhnia et al., 2019; Jalali 
et al., 2021). The SWAT repository has a number of articles on 

the use of SWAT for diverse objectives namely, simulating 
hydrological processes, water management methods, climate 
change impact studies, land-use change, soil erosion, and 
pollutant transport (Yeo et al., 2021). 
The Zayandeh-Roud Basin, located in a semi-arid region of Iran, 
is one of the most vital basins. Water availability and supply have 
been seriously affected across the river basin due to erratic 
precipitation patterns, unequal distribution of water resources, 

frequent lengthy droughts, and human causes. Providing rainfall-
runoff models for this watershed seems to be challenging due to 
the fact that historical GRGs data are insufficient and their spatial 
locations are inappropriate. In this circumstance, hydrologists 
tend to investigate whether using SPPs data the basin’s runoff can 
be simulated properly compared to produced models based on 
GRGs or not. Despite the fact that numerous studies have been 
carried out in many regions of the world to examine the 

hydrologic utility of SPPs and GRGs (Al-Areeq et al., 2021; 
Talchabhadel et al., 2021; Zhou et al., 2022), no studies have yet 
assessed the hydrologic utility of these in the Zayandeh-Roud 
Basin. The main objectives of this study are summarized: (i) 
compare SPPs (PERSIANN-CDR) and GRGs time series, (ii) 
compare observed and simulated stream-flow in the SWAT 
model driven by SPPs and GRGs data, and (iii) Analyze how well 
each precipitation product performs in terms of providing 

information to the hydrological model. The findings of this 
research will help the researchers to choose a more accurate 
precipitation product for stream-flow simulation in the 
Zayandeh-Roud Basin. 
 
 

2. CASE STUDY AND DATASET 

2.1. Study area 

The case study is Chelgerd sub-basin (50°–50.75°E and 32.25°–
33°N), which is the main branch of the Zayandeh-Roud Basin in 
central Iran located in the Zayandeh-Roud River Basin in central 
Iran. It has a total drainage area of about 1500 km2 (Figure 1). 
Because of its high elevation, the case study has a distinct climate 
and hydrology than the rest of the Basin. It receives around 1,400 
mm of yearly precipitation. The Chelgerd sub-basin provides 
most of the basin from which water supply to Isfahan, 
Chaharmahale Bakhtiari provinces in central Iran for 

agricultural, industrial, domestic purposes, and other home 
functions is provided. The presence of high-flow rivers in nearby 
basins, like Chaharmahale Bakhtiari, has prompted construction 
of water transfer tunnels to help mitigate the Zayandeh-Roud 
River Basin's water crisis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Iran, (b) Zayandeh-Roud Basin, (c) Satellite-based 

Precipitation station (SPPs) locations in Chelgerd sub-basin, 

and (d) Ground-based Rain Gauge station (GRGs) locations 

Chelgerd sub-basin. 
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2.2. Datasets 

The SWAT model is a continuous-time, process-based, semi-
distributed software with an efficient computational simulator 
(Veettil et al., 2021). Based on a digital elevation model, the river 
basin is split into smaller sub-basins (DEM). These sub-basins 
are further subdivided into hydrologic response units (HRUs), 
which are homogenous land use, soil type, and slope units. Data 
in this study includes several parts; firstly, SPPs data in resolution 
of 0.25˚ × 0.25˚was obtained from PERSIANN-CDR database. 

Secondly, in order to collect ground-based climatic data, the 
information of three rain gauging stations, two climatological 
stations, two synoptic stations, and one evapotranspiration station 
were obtained from the Iranian Meteorological Organization 
(IMO), and Isfahan Regional Water Authority (IRWA). Thirdly, 
the US National Aeronautics and Space Agency (NASA) 
provided a DEM map with a cell size of 30 meters. We used a 
digital vegetation map created by IRWA for the year 2011, which 

has 10 land-use classes and a spatial resolution of 30×30 m. The 
produced soil map of the Zayandehrud basin with a spatial 
resolution of 30×30 m by the IRWA in 2009, which was based 
on soil investigations and profiles, was used in this study. Finally, 
the Chelgerd sub-basin contains a tunnel that transports water 
from nearby basins to the research area. The tunnel’s monthly 
discharge was added to the runoff in the SWAT model. Table 1 
summarizes the data used to develop the SWAT model and their 
sources. According to the mentioned collected data, two SWAT 

model were developed in order to simulate runoff based on SPPs 
and GRGs data between 1994 and 2015 for this project. 
 

* PERSIANN-CDR: Precipitation Estimation from Remotely 

Sensed Information Using Artificial Neural Networks–Climate Data 

Record; DEM: Digital Elevation Model; NASA: National Aeronautics 

and Space Agency; IMO: Iranian Meteorological Organization; IRWA: 

Isfahan Regional Water Authority. 

 

Table 1. Data description and sources. 

 

 
3. METHODS 

The methodology in this study includes two main parts: first, 
PERSIANN algorithm and the process of preparing satellite-
based precipitation time series for modeling is discussed. The 
PERSIANN-CDR precipitation product was developed to fill the 

gap of existing a long-term, high-resolution, and consistent, 
precipitation at a scale relevant to climate studies. The 
PERSIANN-CDR data collection is a multi-satellite high-
resolution precipitation product that is publicly available online 
(ftp:/data.ncdc.noaa.gov/cdr/persiann/files/). It is created using 
Gridded Satellite (GridSat-B1) Infrared (IR) Data and the 

PERSIANN algorithm (Sadeghi et al., 2021). Next, the equations 

by which runoff is simulated using the SWAT model is explained 
in detail. The flowchart of the proposed method was illustrated in 
Figure (2).  
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Figure 2. Flowchart of the proposed method for comparing 

simulated runoff based on SPPs and GRGs data. 

 

 

 

 

 

 

3.1. PERSIANN-CDR precipitation estimation algorithm 

Data type Period 
Resolution/

Detail 
Source 

satellite-based 

precipitation 
1994-2015 0.25˚ × 0.25˚ 

PERSIANN-

CDR 

Land-use map 2011 30×30 m IRWA 

Soil map 2009 30×30 m IRWA 

DEM 2018 30×30 m NASA 

Precipitation & 

Temperature 
1994-2015 

Evapotranspi

ration IMO 

Precipitation & 
Temperature 

1994-2015 Climatology IRWA 

Precipitation 1994-2015 Rain gauge IRWA 

Runoff 1994-2015 
Ghale-

Shahrokh 
IRWA 

Tunnel 
Discharge 

1994-2015 Koohrang IRWA 
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Using integrated IR and PMW data from different GEO and LEO 

satellites, the current PERSIANN algorithm predicts worldwide 
precipitation. The approach uses an artificial neural network 
(ANN) model to extract cold-cloud pixels and nearby features 
from GEO long-wave infrared pictures (10.2–11.2 μm), and it 
links changes in each pixel's brightness temperature with the rate 
of surface precipitation for that pixel. (Ashouri Talouki, 2014; 
Sorooshian et al., 2000). For the purpose of estimating rainfall in 
resolution of 0.25˚ × 0.25˚, the PERSIANN model combines the 

PMW data from LEO satellites with the CPC globally integrated, 
full-resolution (4 km, 1/2 hourly) IR data from GEO satellites 
(Joyce et al., 2010).  
 
In order to circumvent the necessity for PMW observations, the 
nonlinear regression parameters of the ANN model are trained 
and maintained unchanged when PERSIANN is applied to 
estimate rainfall rates retroactively using the 3-hourly GridSat-
B1 IRWIN data in CDR product. The reconstruction 

methodology also includes a bias-adjustment stage based on 
monthly precipitation data from the GPCP 2.5°. Utilizing GPCP 
monthly rainfall data, the data creation framework modifies 3-
hourly PERSIANN-B1 rainfall predictions to ensure consistency 
and quality of the data. 

3.2. Using monthly GPCP data to adjust daily PERSIANN 

data 

Provided monthly GPCP rainfall at 2.5° resolution is utilized to 
update the high-resolution PERSIANNB1 estimates to remove 
any biases in the 3-hourly PERSIANN-B1 estimates while 
keeping geographical and temporal trends in the high resolution 
precipitation estimates. For each month of the year, a different 
adjustment is applied to each 2.5° grid box of PERSIANN-B1 
data by which precipitation time series in daily scale are 
provided. 

3.3. Hydrological simulation using the SWAT model 

The Agriculture Research Services Division of the United States 
Department of Agriculture generated the Soil and Water 
Assessment Tool (SWAT) model. The SWAT model's appealing 
qualities include robust algorithms for simulating hydrologic 
processes, a Geographical Information System interface, user-
friendly, and public access. To simulate runoff, the SWAT model 
employs the Soil Conservation Service (SCS) curve number 

approach created by the SCS. The equation for calculating the 
SCS curve number is given by: 
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where  𝑄𝑆𝑢𝑟𝑓 = the accumulated runoff (mmH2O) 

 𝑅𝑑𝑎𝑦  = is the rainfall depth for the day (mmH2O) 

                𝐼𝑎= the initial abstraction (mmH2O) 

                𝑆 = the retention parameter (mmH2O) 

 
Changes in soils, land use, management, and slope affect the 

retention parameter regionally, whereas changes in soil water 
content affect it temporally. The following is the definition of the 
retention parameter: 
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where  CN = the day's curve number 
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3.3.1. SWAT model’s agricultural management 

Agricultural management was applied to the model using the 
automatic watering option in the SWAT model after separating 
the land into several crops. Data on cropping patterns in the 

Zayandeh-Roud River Basin upstream were obtained from the 
Isfahan Agricultural Jahad Office and used to assign the irrigated 
crops. The area under each crop was first used to identify the 
primary crop(s) in each region due to the broad variety of 
cropping patterns in the Basin. The Geographic Information 
System assigned common crops to each SWAT subbasin in the 
model by using the land-use maps, township boundary maps, and 
border maps of the sub-basins built in the ArcSWAT model. The 

most significant crops were ultimately decided to be barley, 
wheat, potatoes, corn, rice, alfalfa, and. 

3.3.2. Model calibration, sensitivity, and uncertainty analysis 

The SUFI-2 algorithm in the SWAT-CUP application was 
performed to the process of model calibration and validationn 
using the observed runoff. This tool also calculates model 
uncertainty and parameter sensitivity. All modelling errors are 
addressed by model prediction uncertainty (Abbaspour et al., 

2007). Variables in the model's output are affected by 
uncertainties in the parameters. Both the p-factor and the r-factor 
are measures for assessing the model's accuracy and uncertainty. 
The percentage of observed data bracketed by the 95PPU band is 
the p-factor. The r-factor is computed by subtracting the 
observation data's standard deviation from the average thickness 
of the 95PPU band. A perfect match between the observed and 
simulated data can be shown by the optimal p-factor and r-factor 

values, which are 100% and 0%, respectively.. According to 
(Abbaspour et al., 2015), values of >0.7 for p-factor and <1.5 for 
r-factor constitute a good calibration result. 

3.3.3. The developed models' hydrologic performance 

The resulting models' hydrologic performance, accuracy, and 
efficiency were evaluated using streamflow rates. Both SPPs and 
GRGs were used to model these discharges. The Coefficient of 
Determination (R2) and the Nash–Sutcliffe Efficiency (NS) were 

used to determine the accuracy of the simulated discharges. 
Equations (4) and (5) offer the mathematical definitions for R2 
and NS, respectively. 
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where  𝑂𝑖 = observed discharges 

 𝑂𝑚𝑒𝑎𝑛 = average of observed flow 

                𝑆𝑚𝑒𝑎𝑛 = average of simulated flow 

                𝑆𝑖= observed discharges  
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4. RESULT AND DISSCUSSION 

4.1. Comparing SPPs and GRGs datasets  

In order to compare SPPs and GRGs datasets, their annual and 
monthly time series are illustrated in Figure (3a) and Figure (3b), 
respectively. As it can be clearly seen in the pictures, the annual 
and monthly trends of SPPs and GRGs datasets were almost the 
same, which means that PERSIANN-CDR database presents 
precipitation time series accurate enough and can be used in 
hydrological studies in Zayandeh-Roud basin. 

Figure (3c) demonstrates the correlation of monthly SPPs and 
GRGs datasets. Looking at Figure (3c) in more detail, it is evident 
that the number of points that are under and up of the slope line 
are roughly the same. This means that the datasets are correlated 
enough.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparing SPPs and GRGs datasets, (a) Annual time 

series, (b) Monthly time series, and (c) Time series’ correlation. 

4.2. SWAT sensitivity analysis 

For the sensitivity analysis, a significant number of parameters 
were initially chosen using SWAT-CUP software. At the 95 
percent confidence level, seven hydrologic metrics were 
sensitive to discharge. CN2, PLAPS, TLAPS, SMFMN, and 
SMFMX were the most sensitive parameters (Table 2). To 
prevent identifiability issues with the other hydrologic 
parameters, the four snow parameters were first calibrated and 
then deleted from further calibration. SMFMN was the most 

critical snow parameter. 
 

Parameter Parameter definition fixed value 

CN2.mgt SCS runoff curve number 0.03 

PLAPS.sub 
Precipitation laps rate (mm 

H2O/km) 
163.43 

TLAPS.sub 
Temperature laps rate (˚C 

/km) 
4.71 

SMFMN.bsn 
Minimum melt rate for 
snow during year (mm 

H2O/ ˚C /day) 
0.58 

SMFMX.bsn 

Maximum melt rate for 

snow during year (mm 
H2O/ ˚C /day) 

1.03 

SFTMP.bsn Snowfall temperature (˚C) 0.75 

GW_REVAP.gw 
Groundwater revap. 

coefficient 
0.02 

ALPHA_BF.gw Base flow alpha factor 
(days) 

0.32 

RCHRG_DP.gw Deep aquifer percolation 
fraction 

0.42 

CH_N2.rte Manning's "n" value for the 
main channel 

0.03 

SMTMP.bsn Snow melt base 
temperature (˚C) 

0.30 

REVAPMN.gw 
Threshold depth of water in 

the shallow aquifer for 
"revap" to occur (mm H2O) 

9.25 

SOL_K1.sol 
Saturated hydraulic 

conductivity of first soil 
layer (mm/hr) 

0.46 

SOL_BD1.sol 
Moist bulk density of first 

soil layer (Mg/m3) 
-0.04 

Table 2. Ultimate actual magnitides of sensitive parameters to 
discharge. 

4.3. SWAT calibration and validation 

At the Ghaleshahrokh station, a p-factor of 0.54 was achieved for 
the simulated runoff using GRGs dataset over the calibration 

period (Table 3), indicating that the 95PPU bracketed 54 percent 
of the observed data.  
 

Period Indicator 

Simulated 

runoff by 

GRGs 

Simulated 

runoff by 

SPPs 

Calibration 
(1994-2008) 

p-factor 0.54 0.52 

r-factor 0.42 0.41 

NS 0.81 0.78 

R2 0.82 0.79 

Validation 
(2009-2015) 

p-factor 0.49 0.48 

r-factor 0.51 0.57 

NS 0.72 0.70 

R2 0.74 0.71 

Table 3. Calibration and validation results of the developed 
SWAT model based on GRGs and SPPs datasets. 
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The r-factor was 0.42, suggesting an acceptable amount of 

discharge uncertainty. These numbers for the simulated runoff 
using SPPs stood at 52%, and 0.41%, respectively, which means 
that SWAT model calibration accuracy indicators for both 
datasets are almost the same. Additionally, NS coefficient for the 
best-simulated runoffs using GRGs and SPPs datasets stood at 
0.81, and 0.78, respectively, which means that both simulated 
runoffs are accurate enough in order to be used in hydrological 
studies.  

For the validation period (2009-2015), which had similar climatic 
and hydrologic circumstances to the calibration period, 
satisfactory findings were yielded, as well. The p-factor was 0.49, 
and the r-factor was 0.51 for simulated runoff using GRGs 
dataset (Table 3). These values were 0.48 and 0.57 for the SPPs 
dataset (Table 3), respectively. 
Figures (4) shows the best time series of simulated runoff per 
SWAT model using GRGs and SPPs datasets, and observational 
runoff during the calibration and validation periods. 
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Figure 4. Discharge calibration results for the period of 1994–
2008 using (a) GRGs dataset and (b) SPPs dataset. Discharge 
validation results for the period of 2009–2015 using (c) GRGs 

dataset and (d) SPPs dataset. 
 

Simulated runoff per SWAT model using SPPs datasets, 

observational runoff, and monthly average precipitation during 
the study time period are demonstrated in Figure 5. According to 
the chart, it can be clearly concluded that SPPs dataset performed 
properly regarding runoff simulation. This means that in the area 
of Zayandeh-Roud basin where there is inadequate GRGs 
datasets, SPPs dataset will be a suitable replacement in order to 
be applied to hydrological models and lack of accurate 
precipitation records in this fundamental basin in central Iran will 

be solvable. 
 

 
Figure 5. Time series of the best runoff simulated by the SWAT 

model using GRGs and SPPs datasets, and PERSIANN-CDR 

total monthly precipitation over the period of 1994-2015. 
 

5. CONCLUSION  

Access to reliable meteorological data has always been critical to 

the advancement of hydrological research. Consequently, many 
satellite-based precipitation products (SPPs) have been 
developed in recent years. This study compared the use of 
satellite-based and gauge-based gridded precipitation products 
for hydrologic modelling in the Chelgerd sub-basin, which is the 
main branch of the Zayandeh-Roud Basin in central Iran. In this 
regard, two different SWAT models were developed in order that 
the hydrological performance of GRGs and SPPs datasets 
simulating runoff were evaluated. The results illustrated that the 

SWAT model calibration accuracy indicators for developed 
models was almost the same. P-factor, r-factor, NS, and R2 
coefficients stood at 0.54, 0.52, 0.81, and 0.82 simulated runoff 
using GRGs dataset and 0.52, 0.41, 0.78, and 0.79 for simulated 
runoff using SPPs dataset over the calibration period.  
 
Even though a basin in the center of Iran was chosen as a case 
study in this research, this method can be employed in various 

basins, especially dry and semi-arid basins to evaluate the 
performance of satellite-based precipitation compared to ground-
based rainfall records. Precisely, watersheds with high water 
demand where the number of rain gauge stations are insufficient 
to be used in hydrological models. Despite its inherent 
difficulties, this technique could be applied to catchments and 
bigger case studies. 
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