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ABSTRACT: 

 

Buildings are one of the key components in change detection, urban planning, and monitoring. The automatic extraction of the 

building from high-resolution aerial imagery is still challenging due to the variations in their shapes, structures, textures, and colours. 

Recently, the convolutional neural networks (CNN) show a significant improvement in object detection and extraction that surpasses 

other methods. To extract building, in this paper two segmentation architectures, the UNet and the Inception ResNet UNet are 

implemented and then tested on the Inria aerial image datasets. The Inception ResNet UNet utilizes the Inception architecture and 

residual blocks. This makes the model wide and deep, though there are a few differences between numbers of UNet and Inception 

ResNet UNet parameters. The analyses show that UNet has a high rate of metrics in the training progress. However, on the unseen 

dataset, Inception ResNet UNet extracts buildings more accurately (97.95% accuracy and 0.96 in the dice metric) in comparison with 

UNet (94.30% accuracy and 0.55 in the dice metric). 
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1. INTRODUCTION 

The development of remote sensing earth observation systems 

led to the availability of aerial images at almost all times and 

locations. It opened numerous applications in computer vision 

and photogrammetry, e.g., change detection (Gomroki et al., 

2022, Isaienkov et al., 2021; Zhang et al., 2020), long-term 

large-scale monitoring (Immerzeel et al., 2009; Lehmann et al., 

2015), and urban management (Mignard and Nicolle, 2014). 

One of the vital elements that can be extracted from the 

aforementioned aerial images are buildings. For this task, some 

datasets and benchmarks have been developed, such as the Inria 

aerial image dataset (Maggiori et al., 2017) and the 

Massachusetts buildings dataset (Mnih, 2013). The aim of these 

processes is to detect the features of buildings or other urban 

elements (binary or multiple) in aerial images by semantic 

segmentation (Huang et al., 2018; Ji et al., 2018; Li et al., 2021; 

Pan et al., 2019).  

Semantic segmentation is a crucial task in computer vision and 

remote sensing community, which deals with assigning a label 

to each pixel in an image (Yuan et al., 2021). Different machine 

learning algorithms including artificial neural networks (ANN) 

have been used to perform this task in the recent years (Mas and 

Flores, 2008). Over the previous years, researchers have 

proposed many methods to deal with spatial dependency 

algorithms (Tarabalka et al., 2009), geographical object-based 

image analysis (Blaschke, 2010), feature extraction algorithms 

(Yang et al., 2010), and super-pixel algorithms (Hadavand et 

al., 2019). These methods could be considered as pre-

processing steps for the task of building extraction. 

CNN revolutionized a new way to deal with this problem by 

involving a mathematical convolution with the traditional ANN 

algorithm. Mathematical convolution in image processing is a 

matrix operation that works by applying a kernel to each pixel 

and its neighbours to produce a new value for the centre pixel 

(Gonzalez, 2009). Nowadays, researchers paid more attention 

by introducing the AlexNet (Krizhevsky et al., 2012) and 

showing the good performance on the ImageNet dataset (Deng 

et al., 2009). 

The reasons for super-passing CNN algorithms are that they 

provide an end-to-end solution and object-based classification 

(Diakogiannis et al., 2020). In the CNN architecture, any 

convolution layer generates a new feature from the original 

image data and uses it as extra information to get a better result. 

Due to the use of plenty of convolutional layers in the CNN 

algorithms, they are usually known as "deep CNN," "deep 

networks," or "deep learning algorithms". Deep learning models 

are successfully applied in different computer vision and remote 

sensing tasks such as object detection (Wu et al., 2020; Zhao et 

al., 2019), image segmentation (Ghosh et al., 2019; Wang et al., 

2019), human activity monitoring (Toshev and Szegedy, 2014; 

Zheng et al., 2019), object tracking (Ciaparrone et al., 2020; 

Zhai et al., 2018) and also the semantic segmentation. 

Semantic segmentation is the essential input for plenty of 

applications in computer vision and remote sensing, including 

scene understanding for autonomous driving (Siam et al., 2018), 

augmented reality (Ko and Lee, 2020), and different 

environmental monitoring applications such as precision 

agriculture (Anand et al., 2021), change detection (Venugopal, 

2020), and urban mapping and monitoring (Du et al., 2021). In 

urban remote sensing, discriminating different elements of a 

city, including different kinds of buildings, paved areas, water 

bodies, trees and grasslands, cars and clutter are challenging 

due to variations in shapes, structures, textures, and colours 

differences (Diakogiannis et al., 2020). In object-based image 

analysis, this problem is solved by defining several subclasses 
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for a specific class such as building, and therefore, in the post-

processing step, they will merge to get a map of buildings (Benz 

et al., 2004). However, having an algorithm able to detect a 

class of objects with different characteristics is still a difficult 

task in remote sensing image analysis. 

Among the various existing architectures, UNet (Ronneberger et 

al., 2015) is a well-known and powerful architecture that shows 

prominent results in labelling remote sensing imagery in 

different applications (Feng et al., 2018; Freudenberg et al., 

2019; Yang et al., 2019). The UNet structure was originally 

developed by Ronneberger et al. (2015) to segment biomedical 

images consisting of an encoder-decoder block to label the 

pixels of the input image. This model aims to distinguish 

between the disease location and the corresponding total area in 

biometrical images to obtain the size and location of the disease 

in the body. 

Chhor et al. (2017) used slightly modified version of UNet by 

considering the following modifications: 

 replacing the stochastic gradient decent with Adam 

optimizer, which converge faster 

 using ‘same’ padding 

 adding batch normalization after every ReLU  

 using Dice coefficient of cross entropy as loss  

 not utilizing drop out though no overfitting and in 

training process 

 removing down-sampling layer for ease of use in 

optimization and tackle vanishing gradient. 

The loss is set to negative value of Dice. This leads to 0.75 in 

Dice coefficient and IOU 0.60. 

Emek and Demir (2020) used the Sentinel SAR images of 

Sentinel-1 SAR and Sentinel multi spectral images that cover 

120 km2. Their model is a CNN-based on the UNet architecture. 

They achieve an implementation accuracy of 81%. The output 

mask of the model detects some other elements such as 

buildings, e.g., in wooded areas, some wood is classified as 

buildings because of its high reflectance value. In addition, it is 

powerful enough to deal with building extraction problems in 

complex urban landscapes (Pan et al., 2020). 

Wang and Miao (2022) developed RS-UNet. This architecture 

is based on incorporating the Residual Learning in UNet and 

combination of Focal Loss (FL) and the Atrous Spatial Pyramid 

Pooling (ASPP). Focal Loss was used for connection between 

encoder and decoder, and ASPP as a loss function. For the 

extraction of more features in the images, a larger size of images 

has been used in training which was implemented at the size of 

512×512 px. However, this increases the training time. In the 

architecture, the encoder and decoder parts five layers have 

been used. FL was used for balancing the encoder and decoder 

parts. The results of various sizes of images with a larger size 

(512×512) have 97.66% precision in 200 epochs, which is 

reduced to 97.41% in 128×128 px. The selected best size for 

training is 256x256 px with consideration of time and precision. 

In this paper, the UNet and Inception ResNet UNet 

architectures are trained and analysed on the Inria aerial image 

dataset. All buildings are categorized in one class. Our analyses 

show that by using UNet with the same kernel size in 

convolution, leads to inability to detect the very large and very 

small building in the image. In addition, the detection is limited 

into number of building size. Furthermore, it is not deep enough 

to detect all kind of building.  In some cases, this architecture 

detects shadows as part of building. The Inception ResNet UNet 

is a deep and wide. Due to using of various kinds of kernel size, 

the architectures could detect all kind of building with various 

shapes, structures, textures, and colours. More details of 

architectures are presented in the following sections.  

This paper is organized as follows: Section 2 presents the 

methodology. In section 3, experimental results are discussed 

and interpreted. The summary and conclusions are represented 

and discussed in section 4. 

2. METHODOLOGY 

Our proposed deep learning structure is based on the UNet and 

Inception ResNet UNet architectures. Inception ResNet UNet is 

an improvement on UNet to solve the convergence problem for 

deeper encoder-decoder layers. The bing deeper and wider of 

Inception ResNet UNet allows for precise detection of the 

object in the image, which is why the Inception ResNet UNet is 

selected. In the following, the UNet and Inception ResNet UNet 

architectures are explained. 

2.1 UNet architecture 

UNet is a convolutional network were proposed in 2015 for 

medical image segmentation to obtain the precise location and 

area of objects in a class (Ronneberger et al., 2015). The 

architecture has a U-shaped structure consisting of two main 

paths called contracting and expansive paths by the authors and 

is known as encoder and decoder. 

The contracting or encoder path uses repeated convolutions 

with 3×3 kernel size, same padding, and stride one with 

Rectified Linear Unit (ReLU), followed by batch normalization 

and max pooling, which increases the number of feature layers 

and decreases the size of the image simultaneously. There are 

no fully connected layers in this model. This part of the 

architecture is a typical CNN that can be replaced with any pre-

trained model. In every step of down sampling, the number of 

features is doubled. Contrarily, in an expansive or decoder path, 

up-convolution is used to decrease the number of features and 

take the image size back to the original input image. Every up-

convolution step halved the number of features. To prevent 

losing the details, concatenating the features from the 

contracting path is considered in up sampling. In this step, 

typical convolution layers are applied to the concatenated 

features. This procedure continues until mask image creation 

and getting the result. Figure 1 depicts the UNet network in the 

proposed paper. The encoder is considered on the left and the 

decoder on the right side. 512×512 px is the input size of the 

image in the model. Dataset images are cropped to this size, e.g. 

the 5000×5000 px size, which is the size of any image in the 

Inria aerial image dataset. In the preprocessing step, they are 

cropped to a size of 512×512. This operation yields 100 images 

with a 12-px overlap in images and their side images. The 

output image size is 512×512 px. 

 
Figure 1. UNet architecture (Ronneberger et al., 2015) 
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2.2 Inception ResNet UNet architecture 

The main structures of network architecture are represented in 

Figure 3. The Inception ResNet UNet architecture is a 

modification of the UNet and the Inception ResNet v2 (Szegedy 

et al., 2016b). Inception ResNet is a combination of the 

Inception architecture (Szegedy et al., 2015) and residual blocks 

(He et al., 2016). 

The Inception architecture has convolution with multiple kernel 

sizes at the same level (Szegedy et al., 2015). In other words, 

instead of transforming a single convolution, the architecture 

considers multiple convolutions with different kernel sizes in 

parallel at every block (Figure 5), and at the end of every block, 

they are concatenated to form a single layer of features 

(Szegedy et al., 2016a). Due to utilizing multiple kernel sizes, 

objects of different sizes will be detected in the image. In other 

words, the model gets wider and deeper (Szegedy et al., 2016a). 

Sub-blocks depicted in Figure 5 contain parallel convolutions. 

For improvement in accuracy and reducing computational 

complexity in Inception ResNet v2, the modifications in 

architecture are summarised as follows: 

Factorizing the 5×5 kernel size into the two 3×3 kernel sizes (as 

well as 7×7 into the three 3×3 kernels). Instead of using the 5×5 

kernel size, we utilize the two 3×3 kernel sizes. The analysis 

shows they yield the same results, though in this case the 

number of parameters is reduced. This procedure is repeated in 

the 7×7 kernel, which is replaced with three 3×3 kernels 

(Szegedy et al., 2016b). 

Factorizing the n×n into n×1 and 1×n convolutions. Every n×n 

convolution consists of two linear kernels in the horizontal and 

vertical directions. If we combine these two kernels, we get a 

squared kernel. In this model, every square kernel is divided 

into two linear parts in the horizontal and vertical directions. 

This again leads to reducing the parameters without losing the 

accuracy (Szegedy et al., 2016b). Typically, the accuracy is 

increased by making the network deeper by adding more layers. 

This may aid the network in learning the basic and complex 

details of an image. By adding more layers, due to the 

overfitting, the accuracy starts to degrade. The number of layers 

and designing deeper layers is a challenge to obtain optimum 

results, especially in building detection and segmentation. An 

aerial image consists of various building types. The model 

should be able to detect all kinds of buildings (varying in 

shapes, structures, textures, and colours) that are all considered 

in one class. We can make the network deeper by considering 

the residual block. In a residual block, each layer feeds into the 

next layer and directly into the next layer.  

 
Figure 2. Residual block (He et al., 2016). 

Figure 2 depicts the residual black, which helps to design a 

deeper model without overfitting. The model is learned the 

simple and complex elements in the image by designing the 

model with this concept. The residuals block in deep 

architecture helps to avoid gradient vanishing in 

backpropagation, especially for the deeper architectures with 

plenty of layers (He et al., 2016).  

As previously stated, the Inception ResNet is a combination of 

the Inception architecture and residual blocks. It consists of 164 

layers of very deep and wide CNN. In Inception ResNet the 

performance is optimised by balancing the filter at every stage. 

There are 37 blocks in the encoder and six blocks in the decoder 

part of the Inception ResNet UNet network (Figure 3). The 

result of convolutions in encoder is concatenated into three 

different parts in decoder, as in the original UNet algorithm 

(Figure 1), to form the final result. The number of inputs and 

outputs of each block is included in Figure 3.  The output size 

of features of every block is mentioned in Figure 3 in every 

block unit. Block 3 is then 10 times repeated, and finally, the 

output size is mentioned in the related section. The output 

feature size is 61×61×320, which is the input of the next block. 

We have the same conditions in block 5. The outcome is 

presented after 20 iterations of this block. The output feature 

size is 30×30×1088 which feeds into the next section. The 

details of sub-blocks of Figure 3 are displayed in Figure 5. In 

Figure 5, block 1 simply shows the typical convolution, batch 

normalization, and an activation function. Blocks 3 and 5 have 

the skip connection and block 1 and others have block 1 in their 

structure. 

In Inception ResNet UNet architecture, we have one to four 

parallel convolutions in every block (Diakogiannis et al., 2020). 

The common property of all blocks is to concatenate the results 

of all internal operations of the block, similar to residual 

connections, to produce the output, which is usually the input of 

another block. Block 4 shares two outputs, one for 

concatenation and the second for zero-padding, which is 

reserved for use in the decoder part. Block 6 is the core part of 

the output of the network, which uses the concatenation of the 

input image and the output of the UNet encoder-decoder block 

to produce the result. The proposed structure has 36 million 

parameters which need to be trained. In the 2014 ILSVRC  

classification challenge (Russakovsky et al., 2015), VGGNet 

(Simonyan and Zisserman, 2015) and GoogLeNet (Szegedy et 

al., 2015) produced comparable high performance.  VGGNet 

needs more resources for computations; in other words, this 

architecture has 138 million parameters. The computation cost 

of VGGNet is higher than GoogLeNet, with 5 million 

parameters. In the 2014 ILSVRC  classification challenge 

(Russakovsky et al., 2015), VGGNet (Simonyan and Zisserman, 

2015) and GoogLeNet (Szegedy et al., 2015) produced 

comparable high performance.   

VGGNet needs more resources for computations; in other 

words, this architecture has 138 million parameters. The 

computation cost of VGGNet is higher than GoogLeNet, with 5 

million parameters. The observations (Szegedy et al., 2015)  

show the quality of Inception ResNet v2 is higher than 

GoogLeNet and needs very low resources as we need in 

VGGNet and the computation cost of Inception is lower than 

the VGGNet (Szegedy et al., 2015). These are the main reasons 

for selecting the Inception Resnet v2 over other networks. 

3. IMPLEMENTATION AND EXPERIMENTS 

3.1 Dataset 

The Inria aerial image labelling dataset (Maggiori et al., 2017) 

was used in our experiments. The dataset covers 405 squares 

kilometres with a 0.30 meter ground sampling distance 

(GSD), consists of 180 images and a mask image with 

5000×5000 px dimensions. Existing masks divide the image 

area into two semantic classes: building and non-building.  
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Figure 3: An Overview of the Inception ResNet UNet architecture. The left part is a regular convolution neural network, called an 

encoder. The right side is called the decoder, which consists of convolution blocks, convolution transpose, and concatenation. Zero 

padding is utilized to get the same size for concatenating features. Details of blocks 1 to 6 have been shown in Figure 5. The output 

of every block is represented at the end of every section. 

 

The images are captured across various urban landscapes and 

illumination. The dataset is gathered from the US and Austrian 

areas, including Bellingham, Innsburck, San Francisco, Tyrol, 

and Chicago (Figure 4). These cities contain both high and low 

densities urban features. There is higher density in Chicago, San 

Francisco, Vienna, and Innsbruck, and lower density in Kistap, 

Bloomington, and West and East Tyrol. Every image is divided 

into 512×512-px sub-images for training the algorithm, leading 

to a total of 30,000 training and validation images and masks. 

3.2 Implementation details 

Inception ResNet UNet and UNet have 36 and 34 million 

parameters, respectively. The UNet is a standard CNN, but the 

Inception ResNet UNet is made up of Inception architecture and 

residual blocks. By considering the number of layers in 

Inception ResNet UNet, there are a few differences between 

their parameters. The reason, as mentioned in the methodology 

section, is updates in the GoogLeNet (Szegedy et al., 2015) that 

led to a deeper and wider model with a few variations in the 

number of parameters. 

 

Figure 4. The images and their related masks from the Inria 

aerial image dataset belong to the Vienna, Kitsap, and Chicago 

regions. The images have a dimension of 5000×5000 px. 
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Figure 5. Every block in detail has been used in the ResNet UNet network in Figure 3. Blocks3 and 5 have the residual 

network and Block 1 in their structure. In architecture, we have one to four parallel convolutions in every block. We use 

binary classification in this paper, but it can also be used for multi-labeled classes. 

 

The networks are analysed using training and validation data 

during the training process in every epoch. The results 

demonstrate that overfitting or underfitting doesn’t occur in the 

training of the models. After completion of the training, the 

unseen dataset (form the same distribution as models initial 

input) is segmented by trained models and compared the metric 

(accuracy and dice) results. The main aim of trained models is 

to perform well in unseen datasets. Therefore, our main focus is 

to analyse the performance of models on the unseen datasets. 

Figure 6-9 show the results of applying models to these kinds of 

datasets. The loss function and metrics during training are 

cross-entropy, dice, and accuracy, respectively. These metrics 

will be explained in the following. The cross-entropy, which 

measures the difference between two probability distributions, 

is used as the loss function of the models (De Boer et al., 2005). 

Its mathematical equation is as follows: 

 

where:  ytrue: the mask image 

             ypred: the predicted image 

The dice and accuracy metrics are computed and used to 

evaluate the results of experiments. The Dice coefficient 

measures the overlap between the model's prediction results and 

the corresponding mask (Milletari et al., 2016). The dice metric 

returns a value between 0 and 1, and its maximum values 

coincide with the ideal prediction result. The dice metric is 

computed using the following equation: 

 

 

Accuracy is based on the confusion matrix. The confusion 

matrix represents counts from predicted and actual values. This 

is a 2-dimensional matrix that includes true positives (TP), the 

number of positive examples classified accurately; true 

negatives (TN), the number of negative examples classified 

accurately; false positives (FP), the number of actual negative 

examples classified as positive; and false negatives (FN), the 

number of actual positive examples classified as negative to 

describe model performance. A related mathematical equation is 

presented as follows (Pan et al., 2019): 
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 (a)          (b)          (c)         (d)         (e)         (f)        (g)             (h) 

Aerial 

Image 

 

Mask 

Inception 

ResNet 

Unet 

UNet 

Figure 6. From (a) to (d), some buildings of small size are detected in Inception ResNet UNet, but UNet couldn’t detect them 

precisely. In (f), large buildings are not detected in UNet properly, though the Inception ResNet UNet detects them more accurately. 

Some shadows were detected as part of building in (h) in UNet, whereas Inception Resnet UNet could handle relief displacement. 

 

 

The results of computed metrics for the training phase and 

testing on the unseen datasets for two networks are presented in 

Table 1. In accordance with it, the results show that UNet 

reaches higher accuracy on the training dataset; the accuracy 

and Dice are 99.77% and 0.98, respectively. But its 

performance is reduced when it is utilized on the unseen 

dataset; the accuracy and Dice are reduced to 94.30% and 0.55. 

Methods Type 
Accuracy 

(%) 
Loss Dice 

Inception 

ResNet UNet 

Training 98.17 0.0449 0.973 

Unseen 

dataset 
97.95 - 0.965 

UNet 

Training 99.77 0.0035 0.984 

Unseen 

dataset 
94.30 - 0.558 

Table 1. Result of training for both network architectures 

Contrarily, Inception ResNet UNet results in training are lower 

than the UNet (98.17% accuracy with 0.97 in Dice), while it 

performs better than the UNet when dealing with the unseen 

dataset. The final results of accuracy and Dice are as follows: 

97.95% and 0.96 on the unseen dataset. The results of the 

building detection using Inception ResNet UNet and the UNet 

on the unseen dataset are depicted in Figure 6. From top to 

bottom, the images are the aerial images (first row), their 

corresponding masks (second row), and predicted masks in 

Inception ResNet UNet (third row) and UNet (last row). The 

edges and building footprints in the third (Inception ResNet 

UNet) and last row (UNet) show that Inception ResNet UNet 

has high accuracy in building detection and edge extraction.  

The visual comparison and inspection of the results (Figure 7) 

show that the UNet has issues in detecting the building borders 

accurately. 

  
Aerial image                      Related mask 

  
Inception ResNet UNet                        UNet 

Figure 7. The edges in Inception ResNet UNet are detected 

more precisely in comparison with UNet. 

 Inception ResNet UNet performs significantly better and is 

successful in detecting details of building borders. The 

Inception ResNet UNet architecture consists of various kernel 

sizes and residual blocks (Figure 5). By utilizing them, 

Inception ResNet UNet detects objects with varying shapes, 

structures, textures, and colour. As illustrated in Figure 8, the 

Inception ResNet UNet can detect very small and large-scale 

buildings, though the UNet couldn’t detect those buildings 

accurately. Especially in very large-scale buildings in the 

Vienna region, the UNet (Figure 6, 6th and 7th columns and 

Figure 8) couldn’t detect footprints. In medium-sized buildings 

in the Austin region, the models detect almost the same level.  
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Figure 8. From top to bottom: the aerial images (first row), 

related masks (second row), and predicted masks in 

Inception ResNet UNet (third row) and UNet (last row). 

Inception Resnet UNet detects the large and small building 

more precisely. 

Another issue with working with buildings is the relief 

displacement that occurs for elevated objects such as tall 

buildings in aerial and satellite imagery. To remove this effect, 

the image should be processed to generate a true orthophoto, 

which is a hard process due to the need for precise 3D models 

of buildings. Therefore, the relief displacement usually appears 

in orthorectified images, especially in areas with tall buildings. 

The results of Figure 9 show that the Inception ResNet UNet 

enables us to extract tall building footprints more precisely. In 

the UNet, the shadows are detected as part of the building. 

4. DISSCUSSION AND CONCLUSIONS 

In this research, two deep network architectures, UNet and 

Inception ResNet UNet, are implemented and evaluated in 

automatic building detection from aerial imagery. The Inception 

Resnet UNet could detect buildings of different shapes, 

structures, textures, and colours in images in almost all regions, 

though UNet couldn’t detect very large buildings, e.g., in the 

Vienna region. That is because the Inception ResNet UNet 

model is wide and deep with few variations in the number of 

parameters in comparison to UNet. Our experiment results 

demonstrate that Inception ResNet UNet with 97.95% is 

preferable in comparison with UNet with 94.30% accuracy in 

unseen data. Our future work includes in improvement in 

architectures for multiclass classification of aerial images and 

precise boundary detection of objects for vectorization of 

objects. 

  
Aerial image                Related mask 

  
Inception ResNet UNet  UNet 

Figure 9. Tall buildings in Inception ResNet UNet are 

detected more precisely in comparison with UNet. This 

model detects some shadows as part of the buildings. 
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