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ABSTRACT: 

Hydrocarbon spills play a vital part in contaminating water resources such as the seas and oceans. Establishing a quick and accurate 

approach to identifying hydrocarbons is critical to addressing these pollutants' harmful effects on the aquatic environment and local 

residents. The use of satellite remote sensing to detect large-scale oil spills is one of the most extensively used domains for this purpose. 

A machine learning method with high speed and accuracy was proposed in this study to detect occurring hydrocarbon leaks in a SAR 

image captured by the Sentinel-1A satellite in the Caspian Sea. The suggested method is a dense-structured network of deep learning 

(DenseNet) that takes the required image as input and divides it into two classes, namely, oil Spill and non-oil Spill. This dense Network 

outperforms the standard convolutional neural network algorithm (CNN). As a result of using the Sentinel-1A SAR image of the 

Caspian Sea, we achieved an overall accuracy of 99.83% and a Kappa coefficient of 0.9055. 

1. INTRODUCTION

Oil leak accidents have been more frequent in recent years due to 

the growth of maritime transportation and extensive oil 

extraction. Oil spills have severely disrupted maritime 

economics, and monitoring and controlling oil pollution is costly 

and time-consuming. According to the points mentioned, having 

an accurate and quick method for detecting oil spills is critical to 

planning for the collection and removal of the polluted area. On 

the other hand, traditional approaches require a person's presence 

and direct contact with the contaminated environment. Due to 

necessity of continuous site observations to locate oil slicks, 

traditional approaches are expensive and time-consuming 

(Yekeen et al., 2020). 

The use of remote sensing images for this purpose has grown in 

popularity as remote sensing technology has advanced in all areas 

required to identify oil slicks, such as spatial and temporal 

separation, large coverage, continuous data availability, and so 

on (Hassani et al., 2020). Furthermore, since passive microwave 

sensors do not perform well for detecting and displaying oil slicks 

due to their limited spatial resolution, active microwave sensors, 

including the most well-known radar sensors, are commonly 

employed to detect oil slicks. 

Nowadays, SAR and optical images are the most often utilized 

methods for identifying oil slicks. SAR images, unlike optical 

images, are not impacted by weather conditions such as fog, 

clouds, and rain and may record high-resolution images at any 

time of day or night. As a result, in this study, SAR images were 

employed to identify oil slicks (Yu et al., 2017). 

Oil slicks detected in SAR images are darker than the 

surrounding regions. This distinction between the oil slick and 

the environment aids in identifying and displaying the oil slick 

(Hassani et al., 2020). 

With the growth of machine learning in recent years, various 

image recognition and classification algorithms have been 

introduced (Jordan and Mitchell, 2015). Machine learning, 

particularly deep learning, is a practical, rapid, and accurate 

method of extracting features that, compared to older and more 

widespread methods in artificial intelligence, performs better in 

separating oil spills from look-alikes. Among the typical deep 

learning approaches, Densenet has produced superior results in 

various aspects (Iandola et al., 2014), even in spotting oil spills. 

There are numerous works in detecting oil spills; to name a few, 

we can mention that Orfanidis et al. (2018) that used a deep 

neural network to identify oil slicks in Sentinel-1 images. They 

semantically categorized the images into three classes oil spill, 

look-alike, and background and reached the accuracy of 0.8063 

and 0.8166. Cantorna et al. (2019) compared neural network, 

clustering, and logistic regression techniques for oil spill 

categorization in ENVISAT and Sentinel-1A SAR images. In this 

instance, the neural network outperformed the other two methods 

by precision of 0.950. Yekeen et al. (2020) classified SAR 

images using a deep learning CNN Mask-Region-based model. 

They employed 2882 SAR images from Sentinel-1A and B 

satellites and classified them into four categories with an 

accuracy of 0.964. Zeng and Wang (2020) developed the Oil Spill 

Convolutional Network, a deep neural network approach 

(OSCNet) using SAR images. The suggested OSCNet approach 

outperformed existing machine learning methods in 

classification performance with an accuracy of 94.01%. 

Conceição et al. (2021) introduced a method based on two 

random forest classifiers testing with sentinel-1 SAR image with 

up to 90% accuracy. Wang et al. (2022) proposed an improved 

deep learning model named BO-DRNet using quad-polarimetric 

SAR images of RADARSAT-2, and they reached the mean 

accuracy of 74.69%. 

This article is structured as follows: The proposed method's 

specifics and some of its details are presented in Section 2. The 

description of SAR image used in this study and the proportion 
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of it in every step is described in Section 3. The evaluation results 

are presented in Section 4, and a review of the study and results 

is presented in Section 5. 

 

 

2. PROPOSED OIL SPILL DETECTION FRAMEWORK 

 

In the following part, we will discuss the suggested model's 

specifics. This model is made up of three major sections (Figure 

1). The input data, which is a SAR image, is pre-processed in the 

first stage before being fed into the algorithm. Following that, 

comes the model training stage, which is responsible for tuning 

the parameters to achieve the optimum model. The final result is 

created in the third stage, which consists of prediction and 

accuracy assessment, and the accuracy indices that are derived by 

comparing the result with the test dataset. 

 
Figure 1. Flowchart of the proposed method. 

 

2.1 Pre-processing 

The Sentinel-1 Level-1 GRD SAR image must be pre-processed 

before it can be used in the network as an input. As a result, some 

of the standard pre-processing for SAR images was done to this 

image. This step consists of radiometric correction, de-noising, 

and radiometric calibration.  
 

2.2 DenseNet 

DenseNet is a network introduced by (Huang et al., 2017) that 

connects each layer to every other layer in a feed-forward 

method. In other words, DenseNet attempts to connect all layers 

through Dense blocks. As can be observed in Figure 2, this 

framework consists of three major components: (1) a dense 

block, (2) a transition block, and (3) a fully connected layer. The 

Dense block has numerous convolution layers, using the feature 

map of all previous layers as input and its own feature map as 

input to all following layers. A convolution layer and a pooling 

layer are included in the transition block to reduce the size of the 

feature map. The most recent layer is a fully connected layer 

whose feature map is flattened before a decision is taken by the 

input dataset. 

 
Figure 2. The architecture of DenseNet for oil spill detection. 

The Dense block has a crucial role in extracting deep features, as 

shown in Figure 3. Based on this figure, the Dense block is 

included four convolution layers with beach-normalisation and 

rectified linear unit (ReLu) activation function. 

 
Figure 3. The structure of Dense block. 

Figure 4 depicts the structure of a transition block. This block 

includes a convolution layer and a max-pooling layer for feature 

size map reduction. 

 

Figure 4. The structure of transition block. 

 

2.3 Convolution layer 

Extracting deep high-level features from input pictures is the 

primary purpose of the convolution layers. Most of the time, the 

convolution layers automatically analyse both spectral and 

spatial data (Seydi et al., 2021). The computation for a 

convolutional layer in the lth layer is defined by Equation 1 

(Seydi et al., 2021). 

  

 𝑎𝑙 = 𝑓(𝑤𝑙𝑥𝑙−1) + 𝑏𝑙 (1) 

 

where  𝑓= activation function 

 𝑥 = input data from layer l-1 

 𝑤 = weight parameter 

 𝑏 = bias vector 

 

Equation 2 can be used to calculate the output of the jth feature 

map (z) in the ith layer at the spatial position of (x,y) in the 2D 

convolution layer (Ansari et al., 2021; Seydi and Hasanlou, 

2021). 

  

𝑧𝑖,𝑗
𝑥𝑦

= 𝑓(𝑏𝑖,𝑗 + ∑ ∑  

𝑁𝑖−1

𝑛=0

∑  

𝑃𝑖−1

𝑝=0

𝐾𝑖,𝑗
𝑛,𝑝

𝑣𝑖−1,𝑢
(𝑥+𝑢)(𝑦+𝑝)

)

 

𝑢

 (2) 

 

where  𝑢 = feature cube connected to the current feature 

cube in the (𝑖 − 1)𝑡ℎ layer 
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𝐾 = (𝑛, 𝑝)𝑡ℎ value of the kernel connected to the 

𝑢𝑡ℎ feature cube in the previous layer 

 𝑁 = length of convolution kernel size 

 𝑃 = width of convolution kernel size 

 

2.4 Accuracy Assessment 

An accuracy evaluation follows the procedure of finding an oil 

spill. When the optimal model is found by tuning the parameters, 

the trained model predicts from the test data. The predicted result 

is then compared to the ground truth image to compute the 

confusion matrix (Table 1). The arrays of this matrix are (1) True 

Negative (TN), the number of oil spills which were correctly 

predicted as oil spills, (2) False Positive (FP), the number of non-

oil spills which were incorrectly predicted as oil spills, (3) False 

Negative, the number of oil spills which were incorrectly 

predicted as non-oil spills, and finally (4) True Positive (TP), the 

number of oil spills which were correctly predicted as oil spills 

(Carvalho et al., 2022). 

 

  
Predicted 

Non-Oil Oil 

Actual 

Non-Oil 
True Negative 

(TN) 

False Positive 

(FP) 

Oil 
False Negative 

(FN) 

True Positive 

(TP) 

Table 1. The confusion matrix. 

 

Then the accuracy assessment indices are derived from the 

confusion matrix. This study used numerical and visual analysis 

to assess the performance of the DenseNet model that was 

suggested, and then its performance was compared with a simple 

CNN structured algorithm. The most popular accuracy 

assessment indices (Seydi et al., 2022) are utilised for numerical 

analysis to evaluate the proposed model's effectiveness in this 

study (Table 2). 

 

Criteria Formula 

N Total number of pixels in the image 

OA 
(TN + TP)

(N)
 

F1-Score 
2TP

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

FAR 
(FP)

(TN + FP)
 

KC 

TP
(TP + FP) −

(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) × (𝐹𝑃 + 𝑇𝑁)

𝑁2

1 −
(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) × (𝐹𝑃 + 𝑇𝑁)

𝑁2

 

MCC 
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

Table 2. The accuracy assessment indices. 

 

 

3. CASE STUDY AND DATASET 

 

In this study, the SAR image conducted to train and test the 

model is illustrated in (Figure 5). The image belongs to the oil 

spill that happened in the west of Cheleken Peninsula 

(Turkmenistan), located on the east side of the Caspian Sea. This 

image was captured by Sentinel-1A satellite. This scene is mainly 

the combination of the oil spill and non-oil (like ship and water). 

 

The data is captured by the Sentinel-1A C-SAR sensor. The 

Synthetic Aperture Radar C-band is a high-resolution, all-

weather sensor that captures multi-purpose images for ocean, 

land, and ice. The spatial resolution for this sensor is between 4 

to 80 meters with a swath range of 80 to 400 km, which both 

depends on the operation mode. Other description of the data is 

written in Table 3. 

 

Data 
Date of 

acquisition 

Resolution 

(m×m) 

Polarization 

Channels 

Caspian 

Sea 
08/06/2019 10×10 VV, VH 

Table 3. The description of the SAR image. 

 

 

The data must be separated into evaluation, training, and testing 

datasets for each algorithm step. In this study, 1% and 4% of the 

ground truth data were used for validation and train, respectively. 

The model was then tested by assessing 95% of the input image. 

 

 
Figure 5. Display of the SAR Image and its ground truth with 

the approximate location of the oil spill. 

 

 

4. EXPERIMENT AND RESULT 

 

In this section, we demonstrate the outcomes of approaches, both 

visually and quantitatively, for better comprehension and 

comparison analysis. As previously stated, the results of our 

proposed DenseNet model is compared against a CNN algorithm, 

which is a common approach in image processing, particularly in 
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oil spill detection, and has demonstrated excellent performance 

in detecting oil spills in SAR images (Zhang et al., 2020). 

 

Before the model is trained, the algorithm's hyperparameters 

must be specified. The following is a list of the values that were 

utilized for these parameters:  patch-size 11×11, Adam optimizer 

(Kingma and Ba, 2014), binary cross entropy loss function, He-

normal initializer (He et al., 2015). 

 

4.1 Visual Comparison 

One of the efficient techniques of comparison in this field is 

comparing the outputs of each methodology with the ground truth 

image of the oil spill to visually identify which parts have been 

miss detected or well predicted. As a result, the visual outputs are 

provided below (Figure 6), which white areas are the oils and 

black ones are representing the non-oil areas. 

 

 

 

 
Figure 6. The outputs of CNN-based methods. The (a) common 

CNN method, (b) proposed DenseNet method and (c) ground 

truth image. The white pixels show the oil, and the black ones 

illustrate the non-oil. 

By referencing the output images, we can state that both 

techniques recognized oil spills well, indicating the proper 

performance of deep learning in the field of oil spill detection 

(Seydi et al., 2021).  

 

The results, however, have some discrepancies. The number of 

non-oil spills recognized as oil spills in the CNN technique output 

is more than that of our proposed method as it is shown that white 

points are indicated in places that are non-oil in the ground truth 

image, especially at the top left part of the image and around the 

actual oil spill area. As a result, it should produce more false 

alarms than the suggested method.  

 

The amount of wrongly indicated oil spills are relatively low and 

requires more focus to be seen with the unaided eye, despite the 

false detection of oil spills in our suggested approach near the 

upper left area.  

 

It is evident that the output of our suggested approach is far more 

similar to the ground truth image than the outcome of CNN's 

method, even with the incorrectly appointed oil spills. We may 

thus draw the conclusion that our suggested DenseNet technique 

performs better at locating oil spills. 

 

4.2 Quantitative Comparison 

The second evaluation step is to calculate and compare the 

accuracy indices for each approach. As was already discussed in 

Section 2, the arrays of the confusion matrix are used to construct 

the accuracy indices, which are then used to assess how well the 

algorithms performed. The algorithm's performance is shown by 

the overall accuracy (OA), which is calculated by adding the TP 

and TN together and dividing by the total number of 

observations. The result that is closest to 100% has the best 

performance. 

 

A measure called F1-score is more useful than accuracy, with the 

optimum value of 100%. The likelihood of incorrectly predicting 

the real actual pixels is depicted by the false alarm rate, also 

known as the false positive rate alarm. If this rate is near 0, the 

model created a prediction that is extremely close to the ground 

truth image. Additionally, the Kappa coefficient, which has a 

maximum value of 1, is an excellent way to compare the 

outcomes of each approach; since it demonstrates how closely the 
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model classified the input picture to the ground truth image. The 

Matthews correlation coefficient reveals that the prediction and 

the ground truth image coincide perfectly with a value of 1, while 

the 0 and -1 values show randomly prediction and total 

disagreement respectively. 

 

Criteria CNN DenseNet 

OA (%) 99.29 99.83 

F1-Score (%) 99.64 99.92 

FAR 0.4313 0.0514 

KCC 0.7191 0.9055 

Matthews Correlation 

Coefficient (MCC)  
0.7499 0.9065 

Table 4. The accuracy assessment measurements for a standard 

CNN algorithm and proposed DenseNet method. 

 

The accuracy score for each approach indicates that both detected 

the oil spill well; however, the variations in their function can be 

determined from other indices. Regarding (Table 4), the 

suggested DenseNet approach outperforms all of the given 

indices. 

 

The considerable difference in the false alarm rate (FAR) of each 

strategy confirms our observation in the visualization comparison 

that the CNN approach has more false detection than our 

proposed one. DenseNet's Kappa coefficient (KCC) is at 0.9055, 

indicating high agreement with ground truth data (Islami et al., 

2022), whereas CNN's KCC is around 0.7191. Furthermore, the 

Matthew correlation coefficient (MCC), a more reliable 

statistical rate (Chicco and Jurman, 2020), for the DenseNet 

approach, is greater than the CNN and near to one, indicating that 

the DenseNet prediction has good outcomes in all four confusion 

matrix categories true positive (TP), false negative (FN), true 

negatives (TN), and false positive (FP). Despite CNN's 

good performance, our proposed DenseNet technique 

outperformed it in identifying oil spills. 

 

 

5. CONCLUSION AND DISCUSSION 

 

A key element in maintaining the marine ecosystem, from the 

local inhabitants to the underwater wildlife, is the oil spill 

detection in the shortest amount of time with the highest level of 

accuracy. Therefore, tackling these issues can be greatly aided by 

the use of remote sensing images. Additionally, SAR data is the 

most useful type of remote sensing data for finding oil in ocean 

areas. As a result, we used a SAR image in this study to assess 

our approach and contrast it with a conventional convolutional 

neural network technique. 

 

Additionally, the low number of polarimetric channels in a SAR 

image makes it challenging to detect oil spills using conventional 

supervised learning techniques (. i.e., Support Vector Machine). 

In contrast, deep learning-based approaches can extract deep 

features from SAR data, considerably improving the results. 

Although these techniques show promise in detecting oil spills, 

constructing an effective architecture alters each algorithm's 

performance, making it difficult to create an architecture that 

produces exceptional results. As a result, in this work we created 

an efficient method based on DenseNet structure. Convolution 

layers in this arrangement are completely interconnected by a 

dense block. 

 

By detecting an oil spill using an actual SAR image of an oil spill 

in the Caspian Sea acquired by a Sentinel-1 sensor, the 

effectiveness of the suggested method was assessed. Only 5% of 

the ground truth data were used to train the algorithm. 

 

As previously noted, a CNN method was used in this study to 

compare our findings to theirs. The results showed that both 

approaches offered overall accuracy of more than 99%, showing 

the significant potential of deep learning approaches in 

identifying oil spills. In terms of specifics, the proposed approach 

DenseNet demonstrated superior results over the CNN method in 

identifying oil spills and non-oil spills. 
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