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ABSTRACT:

3D point clouds represent an essential category of geodata used in a variety of geoinformation applications. Typically, these 
applications require additional semantics to operate on subsets of the data like selected objects or surface categories. Machine 
learning approaches are increasingly used for classification. They operate directly on 3D point clouds and require large amounts of 
training data. An adequate amount of high-quality training data is often not available or has to be created manually. In this paper, 
we introduce a system for virtual laser scanning to create 3D point clouds with semantics information by utilizing 3D models. In 
particular, our system creates 3D point clouds with the same characteristics regarding density, occlusion, and scan pattern as those 
3D point clouds captured in the real world. We evaluate our system with different data sets and show the potential to use the data to 
train neural networks for 3D point cloud classification.

1. INTRODUCTION

3D point clouds represent objects, environments, and spatial
phenomena and have been established as a universal category
of geodata. They can be captured with remote sensing tech-
niques and are used to create spatial digital twins of our physical
world. The data acquisition is well established and can be per-
formed on different scales for indoor and outdoor environments
(Figure 1) with platforms such as aircrafts, UAVs, vehicles and
terrestrial scanners. The use of 3D point clouds for application-
specific tasks often requires a classification. This means that 3D
point clouds must be enriched with semantics and each point
must be assigned to a surface category (e.g., ground, vegeta-
tion, building) or object class (e.g., sign, pole, furniture, tree).
Traditional classification approaches analyze the 3D point cloud
structure based on predefined rules and parameters according to
the 3D point cloud characteristic (e.g., density, distribution). In
recent years, machine learning (ML) and deep learning (DL)
approaches for the classification of 3D point clouds have been
developed as promising alternatives. They do not require pa-
rameterization and configuration by the user. However, they
require already classified data as training data. This data should
represent as closely as possible the data to be classified. The
generation of comprehensive, high quality and for the applica-
tion domain suitable training data is usually a manual and time-
consuming process.
In this paper, we present a method to automate the process of
generating semantically enriched 3D point clouds that are suit-
able for training. 3D models with semantics information are
used to simulate a LiDAR scan to produce 3D point clouds
that have almost identical properties as in real acquisition cam-
paigns. The virtual LiDAR scan (vLiDAR) allows to determine
semantic information per point from the scanned 3D object.
Hence, the output data can be used directly for training neural
networks. This in turn can be used to classify 3D point clouds
of real environments. An exemplary high-level vLIDAR work-
flow is shown in Figure 2.

1.1 Background

LiDAR is a well-established technology for capturing objects,
structures, and assets of the real world. By measuring the time
of flight of a rapidly firing laser beam LiDAR scanners are able
to sample hundreds of thousands of points per second from an
environment with high precision, often with an error margin of
a few millimeters. Scanners can be mounted on various ve-
hicles and platforms. From handheld laser scanners used to
scan individual objects (Otero et al., 2020), over car-mounted
scanners able to scan road environments (Haala et al., 2008),
to plane-mounted scanners that can scan thousands of hectares
from an aerial perspective (Yan et al., 2015). LiDAR is used
to capture environments at any scale with high levels of preci-
sion. Hence, it is used in many different industries, such as ur-
ban planning (Hu et al., 2003), construction(Wang et al., 2015),
robotics (Bansal et al., 2011), agriculture (Rosell et al., 2009),
and many others.
Depending on the used scan platform and the type of scan con-
ducted, the resulting 3D point clouds have several properties
that are specific to the scenario at hand. Vehicle-mounted scan-
ners (i.e., mobile mapping) usually rotate on a single plane,
relying on the movement of the vehicle to capture the entire
environment. This results in 3D point clouds with a lower den-
sity when the car is moving faster. Stationary scanners on the
other hand create very high point densities close to the scanner
position but a density drop-off with increasing distance to the
device.
Whenever a scan is not aiming to fully cover the surface of an
object, the 3D point clouds usually contain shadows and occlu-
sions. Objects close to the scanner are represented with a high
point density, as they cover a large part of the scanner’s field
of view, and objects far away are sampled with a lower point
density for the same reason. Reflective surfaces such as glass
can lead to artifacts where reflected objects appear behind the
reflecting surface. Some of these scan properties can be seen in
Figure 1.
The high data resolution, large-scale and area-wide data ac-
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(a) Mobile mapping scan recorded in Essen, Germany. The 3D point
cloud shows typical properties such as scan line patterns and occlusions.

(b) Terrestrial scan recorded in an office. Shadows, reflections, and
distance related point density differences can be seen.

Figure 1. Typical real-world LiDAR scans from outdoor and indoor environment colored in grey-scale based on intensity data.

quisition (e.g., entire cities and countries) as well as regular
data acquisition (e.g., daily, weekly, annually) result in mas-
sive amounts of data (e.g., Terabytes or even Petabytes). An
automated analysis and classification is essential to make use
of the data. A promising approach to solve several common
3D point cloud analysis problems, i.e., object detection, seman-
tic segmentation and anomaly detection is the use of deep neu-
ral networks (DNNs). Several works have achieved improving
results in recent years, e.g., PointNet (Qi et al., 2017a), Point-
Net++ (Qi et al., 2017b), DGCNN (Wang et al., 2019), KPConv
(Thomas et al., 2019), and PointMLP (Ma et al., 2022).
DNNs require large amounts of training data to perform well
in real-world scenarios. The mentioned networks were trained
and evaluated on either small or unrealistic (in comparison to
real scans) benchmark data sets, such as ModelNet40 (Wu et
al., 2015), ShapeNet (Chang et al., 2015), or SemanticKITTI
(Behley et al., 2021). ModelNet40 and ShapeNet consist of sev-
eral thousand instances of standalone mesh models of objects
from different classes, each uniformly sampled into 3D point
clouds. SemanticKITTI is a real-world mobile mapping data
set, consisting of several kilometers of mobile mapping LiDAR
scans recorded in and around the city of Karlsruhe, Germany.
While the variety of ModelNet40 and ShapeNet is not negligi-
ble, the data sets do lack realism regarding sampling patterns,
as well as scene complexity encountered in real life. Since Se-
manticKITTI is based on real-world data, it does present all
the properties of a real-world scan, however, it is still limited
in size, and the labeling of the data set alone required over
1.700 hours of work. Majgaonkar et al. (2021) argue that much
larger data sets are required still, especially with an increasing
complexity of scenes. Further, the learnings from classifica-
tion tasks in street environments are not easily transferable into
other domains such as indoor or aerial scans, as vastly differ-
ent geometry needs to be analyzed. To process data from other
spaces, a new dataset of similar size would have to be labeled,
which seems uneconomical based on experience from the Se-
manticKITTI project. Other machine learning domains such
as 2D image recognition have successfully circumvented the
problem of not having enough real-world training data by using
synthetic data instead (Georgakis et al., 2017, Su et al., 2015).
In 3D point cloud analysis, very few synthetic data sets have
aimed to create realistic 3D point clouds.
This paper addresses the problem of creating suitable training
data for deep learning and machine learning on 3D point clouds.
It introduces concepts and techniques to generate suitable train-
ing data for different application fields in terms of quality and
quantity. The generated synthetic 3D point clouds are already
labeled and correspond to real acquisition data in terms of their
characteristics (e.g., resolution, scan pattern, artifacts), thus en-

Figure 2. Machine learning based 3D point cloud classification
workflow using vLIDAR (orange components).

suring and optimizing the quality of training and prediction.

1.2 RELATED WORK

Synthetic data has successfully been used as training data in
multiple machine learning domains. Georgakis et al. super-
impose 2D cutouts from labeled 2D image data sets onto pho-
tos of indoor scenes, virtually placing labeled objects into the
scenes. The generated synthetic data was used in combination
with real data to train state-of-the-art object detectors, which
showed an increase in performance compared to the object de-
tectors trained solely on real-world data.
Su et al. (2015) synthesize training data from 3D models for
a neural network capable of object viewpoint estimation. In
their paper, they use the annotated 3D model data set ShapeNet
(Chang et al., 2015) to render 2D images combined with the
corresponding viewpoint attached to each render. Their work
showed increased performance over other state-of-the-art ap-
proaches for viewpoint estimation with the large amount of gen-
erated training data.
Several works propose different approaches to generate syn-
thetic data for 3D point cloud analysis research. ShapeNet and
ModelNet40 are frequently used benchmark datasets that con-
sist of large collections of stand-alone 3D mesh models. In
state-of-the-art research, 3D point clouds are generated from
the data sets by uniformly sampling points from the object sur-
faces. While the object counts of the data sets are large enough
to perform basic performance benchmarks on novel analysis ap-
proaches, the used uniform sampling stands in direct contrast
to the complex properties of real-world LiDAR measurements.
Further, real-world scenes consist of more than a singular ob-
ject. Therefore, these benchmark data sets and the associated
uniform sampling do not lend themselves to real-world LiDAR
scan analysis. Other works aim to generate 3D point clouds that
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are more similar to real-world LiDAR scans.
PreSIL (Hurl et al., 2019) implements a LiDAR simulation in
the popular video game Grand Theft Auto V (GTA V) to gener-
ate 3D point clouds for autonomous driving applications. The
PreSIL data set uses the advantage of GTA V’s large virtual
open world consisting of urban and rural scenery to generate
diverse, yet realistic, pre-labeled 3D point clouds of outdoor
road scenes. While GTA V provides a highly detailed realis-
tic environment, the approach is strongly limited by the size of
the virtual world, as there is no easy way of expanding the pre-
existing game world to generate even more diverse data.
HELIOS++ (Winiwarter et al., 2022) implements a LiDAR sim-
ulation framework designed to realistically simulate real-world
laser scanners with full waveform simulation. The framework
is designed to simulate LiDAR surveys, to aid with planning
and designing terrestrial, mobile mapping, and aerial LiDAR
surveys in the real world, and to visualize survey simulations
in real-time 3D. It provides close integration with GIS soft-
ware by providing a plugin for the QGIS software1 allowing for
GUI-based survey planning and execution. While HELIOS++
is able to perform quite realistic LiDAR simulations, its focus
does not appear to be on generating training data for machine
learning experiments, and its ability to deal with arbitrary input
data seems lacking, only providing direct support for OBJ and
GeoTIFF models.
BlenSor (Gschwandtner et al., 2011) is a Blender add-on that
does basic LiDAR simulation in Blender. It does not work with
modern versions of Blender, so a new implementation is re-
quired.

2. VLIDAR

Labeled real-world data as training data is not available in scales
that are large enough to train networks robust enough to per-
form well in most real-world scenarios. To solve this problem
of data scarcity, we propose a new method to synthesize realis-
tic 3D point clouds containing extensive semantic information.
For this, we first define several goals that our method aims to
fulfill:

1. Imitate real-world scan properties, such as distance-depen-
dent point density, scan patterns, shadows, and occlusions.

2. Enrich 3D point clouds with additional data that can not
be sampled in the real world, i.e., semantic data, surface
normals, or segmentation data.

3. Integrate the solution closely into existing 3D modeling
workflows, to enable rapid iteration of virtual environment
design, as well as compatibility with complex scenes.

4. Provide robust support for different formats used in 3D
modeling (e.g., OBJ, IFC, FBX) to enable use of diverse
modeling options.

5. Synthesize 3D point clouds at high speeds even in complex
scenes, to encourage generation of large data sets.

In this section, we explain how our solution fulfills the stated
goals by implementing a virtual LiDAR (vLiDAR) as an add-on
to the open-source 3D computer graphics tool Blender2.

2.1 LiDAR Simulation

To generate 3D point clouds containing realistic scan properties
such as occlusions, shadows, and distance-dependent point den-
sities, we choose to closely imitate time-of-flight LiDAR scan-
ners. Where real-world LiDAR uses laser beams to precisely
1 https://www.qgis.org/
2 https://www.blender.org/

sample points from the environment, we use ray casting algo-
rithms to achieve the same effect in virtual scenes. To do this,
a vLiDAR scanner is first placed in the virtual 3D scene which
is represented as a collection of triangle meshes. The vLiDAR
then casts a ray into the scene to perform intersection tests with
the geometry of the objects. The closest intersection is chosen
as sample point and stored as a point with corresponding coor-
dinates. Additional per-point attributes such as semantic class
or object ID of the hit object, as well as the surface normal of
the hit surface can optionally be stored as well. After the ray
cast, the vLiDAR scanner is rotated and moved according to
the scanner’s rotation and movement speeds, before conducting
the next ray cast. By repeatedly sampling the scene in this man-
ner, a realistic 3D point cloud representing the scene is created
with the same principles of operation of a real-world LiDAR
scanner.
In Figure 3 multiple scenarios for vLiDAR scans are presented.
The figure shows the use cases of stationary scanning an in-
door scene, using mobile mapping to scan an urban road en-
vironment, and using aerial laser scanning to scan an entire
urban area from a birds-eye perspective. For each use case,
an overview of the scanned 3D model is presented, next to an
overview of the resulting 3D point clouds and a closeup of the
scan results to showcase the realistic scan properties of the syn-
thetic 3D point clouds, i.e., shadows and scan patterns. The
images presenting the 3D models also contain the graphical rep-
resentation of the vLiDAR scanner, or the path of the moving
scanner respectively. The colorization of the 3D point clouds
represents the semantic data encoded in the original 3D meshes,
sampled for each point. Each color represents a different class
in the scan.

2.2 Integration into Blender

The vLiDAR is implemented as an add-on to the commonly
used open-source 3D computer graphics tool Blender. The tool
is actively used in the field of 3D modeling, and as such we
see it as a good fit for integrating the vLiDAR to close the
gap between modeling workflows and 3D point cloud synthesis.
Blender has many qualities that aid in fulfilling the stated design
goals. It has a suitable representation of 3D models, both in its
user interface and in its internal data representation, and can im-
port data from many different file formats, such as OBJ, Alem-
bic, FBX, IFC, and others. Further, Blender has a Python script-
ing environment. Through an API named bpy, programmers
have full access to all of the data accessible through Blender’s
user interface. The API also provides a lot of functions to di-
rectly work with 3D data, and even modify Blender’s user inter-
face. Finally, custom data can be attached to objects through the
API, allowing for easy addition and access of semantic informa-
tion, surface normals, and other data that would be of interest
for 3D point cloud generation. The combination of its sophis-
ticated 3D data modeling capabilities, the open-source nature
of the project, and its powerful Python scripting environment
make Blender a good fit to be used as a framework for the vLi-
DAR project.

2.3 vLiDAR Design

The vLiDAR add-on is designed to give its users the freedom
to simulate LiDAR surveys with high variability. As such, it
implements different scan modes that cover the most common
mounting platforms, as well as the most common scan beam ro-
tation patterns. Scanners can be simulated to be mounted on a
mobile mapping vehicle, fully rotating on a single axis to cover
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(a) Indoor scene with visible stationary
vLiDAR scanner overlay.

(b) Stationary vLiDAR scan of indoor scene
with semantic information.

(c) Stationary vLiDAR scan of indoor scene
with visible shadows and scan patterns.

(d) Urban scene with visible path of mobile
mapping vLiDAR scanner.

(e) Mobile mapping vLiDAR scan of urban
scene with semantic information.

(f) Mobile mapping vLiDAR scan of urban
scene with visible shadows and scan pattern.

(g) Large urban scene with aerial vLiDAR
flight path visible.

(h) Aerial vLiDAR scan of large urban scene
with semantic information.

(i) Aerial vLiDAR scan of large urban scene
with visible shadows and scan pattern.

Figure 3. Synthetic 3D scenes for indoor (top), mobile mapping (middle) and outdoor (bottom) scenario. 3D models (left) as input are
used to generate 3D point clouds with semantics (middle). Detailed view of vLiDAR characteristics is illustrated (right).

Figure 4. The vLiDAR user interface as part of the Blender GUI.
The pictured classes are linked to a two-level class ID system.

the vehicle’s surroundings, or mounted on a plane, scanning
downwards and panning the scan beam from left to right. Fur-
ther, stationary scanners can be simulated, scanning in a mod-
ifiable field of view of up to 360 degrees left to right and 170
degrees up and down, similar to real-world stationary scanners.
The add-on can be extended with new rotation patterns to sim-
ulate further types of LiDAR scanners.
All scanner types can be attached to a user-defined path to de-
fine the movement of the scanner during the scan simulation.
This movement, as well as the right rotational patterns, is key
for simulating realistic LiDAR behavior to produce realistic 3D
point clouds.
The user is given full control over many different parameters of
the vLiDAR scanners. They can modify rotation speeds, sam-
pling rate, scan duration, as well as movement speed when a
path is to be followed. With these options, users can directly
simulate most real-world scanner devices. All controls are fully
integrated into Blender’s user interface to stay as close as pos-
sible to the modeling workflow (Figure 4). The user can assign
semantic class information to the 3D models, which can then be
appended to the sampled points during scan time. Further meta-
data such as object affiliation and surface normals can also be

extracted by the vLiDAR, to allow for generating information-
rich data sets. Scan results are stored in CSV files with the raw
XYZ, semantic class, normal, and object ID data as columns
to allow for compatibility with most state-of-the-art 3D point
cloud processing software. This can be easily extended to sup-
port other formats such as PLY, LAS/LAZ, HDF5, or DBMS in
the future.
To be able to generate large amounts of synthetic 3D point
clouds as training data for machine learning approaches, the
vLiDAR needs to scan scenes with good performance. Since
the vLiDAR is required to perform millions of ray casts for
one scan simulation, it is important that these ray casts are per-
formed as efficiently as possible. For this, it is inevitable to uti-
lize a high-performance data structure as basis for the ray cast-
ing algorithm. Dos Santos et al. (2014) compare several high-
performance data structures that can be used in ray traversal al-
gorithms, finding that octrees and bounding volume hierarchies
(BVHs) are the most suitable structures for ray casting. Oc-
trees perform slightly faster than BVHs when it comes to pure
ray casting performance, however, octrees are also much more
memory intensive. They conclude that for complex scenes used
in non-real-time rendering, BVHs are the more suitable option
due to their lighter memory requirements. This goes in line with
BVHs being the industry standard being used in state-of-the-art
non-real-time rendering engines, such as Blender’s Cycles en-
gine.
As such, we opt to use BVHs as the underlying data structure
for the vLiDAR’s ray casting operations. With the BVH in
place, the vLiDAR is able to scan over 100,000 points per sec-
ond in small scenes with under 500 objects (e.g., indoor scenes),
and can still scan over 10,000 points per second in highly com-
plex scenes with more than 5,000 objects. Section 4 contains
an in-depth run time performance evaluation of the vLiDAR.
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3. DEEP LEARNING PIPELINE

Deep learning approaches like PointNet and DGCNN require
appropriately labeled data sets for the training stage, which ide-
ally is relatively close to the target data in their properties.
Manual labeling of real-world data sets is very tedious and ex-
isting labeled data sets might not necessarily fulfill require-
ments for the intended target data. For example, labeled data
sets such as SceneNN and S3DIS (Armeni et al., 2017) are
captured using photogrammetric methods, and therefore do not
have the precision or artifacts shown in real-world LiDAR
scans. They are sometimes not labeled consistently, and their
scenes might not always match up with the ones of the target
data sets. vLiDAR offers a cheap solution to these issues by
supplying realistic, automatically labeled data sets that can be
used in training stages at a comparatively small cost.
To demonstrate the feasibility of using vLiDAR data in real-
world use cases, we propose a proof-of-concept classification
pipeline using DGCNN (Wang et al., 2019) with a newly cre-
ated vLiDAR data set as training data, and evaluate it against
both vLiDAR and real-world LiDAR data sets.

3.1 Training Data Creation

Since the objective is to classify common indoor scenes, a com-
bination of office and apartment rooms is used as a reference.
The 3D model is created in Blender. The general structures –
walls, windows, doors, stairs – are modeled using Archipack3,
an open-source plugin that is provided with Blender, which in-
cludes tools and models for quick and easy creation of architec-
tural models.
The smaller 3D models used to populate the scene come from
multiple sources: Most of the 3D models used, especially the
furniture, come from IKEA, being published in multiple for-
mats for architectural use cases on the platform Polantis4. Fur-
ther 3D models, especially smaller objects, clutter, and wall
paintings were taken from Blend Swap5, a platform for Blender
3D models licensed under various Creative Commons licenses.
A small number of very simple 3D models have additionally
been created for this model. This includes objects such as light
switches, certain tables, or lamps. The modeled floor for the
evaluation has eight rooms (Figure 6).
The resulting 3D point clouds from the vLiDAR implementa-
tion contain XYZ and normal data. However, the normal in-
formation is not used in the actual training of the model, since
doing so would otherwise require the target 3D point clouds to
also have normal data. Additionally, since the normal informa-
tion is generated directly from the model geometry, they do not
show the artifacts that would normally arise when generating
them from a 3D point cloud, and therefore are not comparable
to the normal data that would be present in any real-world target
3D point clouds. Rooms 2, 3, 4, 5, 7 and 8 (Figure 6) are used
as training data.

3.2 Evaluation Data

Rooms 1 and 6 (Figure 6) from the vLiDAR data set are used
as test data for a direct, best-case comparison.
To evaluate the model using real-world data, the real-world Li-
DAR scans from the Redwood data set (Park et al., 2017) is
used, as shown in Figure 6. Because the original data sets do
not have any semantic annotations, the Redwood boardroom 3D

3 https://blender-archipack.org/
4 https://www.polantis.com/ikea
5 https://www.blendswap.com/

point clouds are manually annotated for this evaluation, using
the same semantic classes that are used for the vLiDAR data
set.
As a current limitation, the data set includes objects that do not
exist within the vLiDAR training data, and are therefore likely
to cause problems when being classified with the trained mod-
els. This includes for example kitchen counters (which are an-
notated as storage), stucco (which are annotated as part of the
walls), and wooden wall panels (which are also annotated as
part of the walls).

3.3 Classification Pipeline

The overall classification pipeline used for evaluation purposes
consists of multiple preprocessing steps, one DGCNN-based
semantic classification step, and further postprocessing, as seen
in Figure 5.

3.3.1 Preprocessing To bring the 3D point clouds into a
uniform format, various preprocessing steps are applied before
the actual classification.
Individual scans of the same scene are merged into a single 3D
point cloud. This way, the shadowing artifacts from (v)LiDAR
3D point clouds are less severe, and there is more spatial context
available when sampling points for the classification step. For
the vLiDAR data set, scans of each room are merged, resulting
in eight 3D point clouds total. Since the individual scans all
use the same global coordinate system, this can be done easily
by combining the sets of points, without elaborate point cloud
registration methods.
Imperfections are added artificially to the input data to both
make the input data sets more uniform and prevent overfitting
on the properties of vLiDAR data. This is done to compen-
sate for vLiDAR training data sets that are “too perfect”, given
that the virtual scanner is always perfectly precise and that the
3D models that they are based on might not be modeled to the
level of detail that would be required to be completely on par
with real-world data. In the implementation of this processing
pipeline, this is done by shifting points along the direction of
their surface normals which were calculated by the vLiDAR im-
plementation, to generate a rougher surface for specific seman-
tic classes such as beds and sofas. The strength of this shifting is
determined by a noise value that is calculated using Perlin Noise
for each axis separately. A similar approach could be used to
simulate inaccuracies of the scanning platform. However, be-
cause of the later applied density reduction and sampling, this
was skipped for our pipeline.
(v)LiDAR data sets are often captured with a point density far
beyond what is usually necessary for correct classification.
Since this additional information usually has a negative effect
on the hardware requirements and the performance, the density
is reduced down to a more appropriate level. This is done by
subdividing the 3D point clouds using a regular voxel grid and
choosing only one representative point from each voxel cell.
While spatial information (and in the case of the training data,
the semantic class annotations) is a requirement, it is an impor-
tant decision which additional point attributes – like color in-
formation, intensity values (in case of LiDAR scans), or normal
values – to include in the used data sets. This is always a trade-
off between potential classification quality, performance, and
specialization in regard to potential target data sets. Supplying
additional point attributes to the ML-based model might sup-
port the decision-making, however, this would require both the
training and the target data sets to have these point attributes, to
have sufficient variation regarding these attributes, and it might
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Figure 5. Overview classification pipeline.

Figure 6. From left to right: Overview of created 3D model, two synthetic example scenes, and the Redwood boardroom scene used as
real-life comparison.

come with additional performance requirements. Therefore, all
attributes except the XYZ data are removed in a last prepro-
cessing step.

3.3.2 Classification The actual classification step is done
using a DGCNN model trained on the vLiDAR data. DGCNN
extracts neighborhood relations between points and their neigh-
bors and can group points in Euclidian and semantic space. As
a result of heuristic evaluations, a sampling radius of 1.0 m with
1024 sampled points is used.
DGCNN was chosen since in earlier tests of ours it offered
the best combination of quality and performance compared to
PointNet and PointNet++. PointNet, while being the fastest of
the three, very often showed artifacts in the form of extremely
noisy results, especially in relatively crowded areas (e.g., with
cabinets or TVs standing directly next to a wall), and needed
a relatively large amount of training epochs to reduce this kind
of artifacts. While PointNet++ with its hierarchical architec-
ture with different sampling radii in theory has the advantage
of using more context of the input 3D point cloud, this did not
seem to have a significant influence in the context of these in-
door scans, presumably because of the already limited differ-
ences in scale of object classes. The actual classification re-
sults seemed to be on par with the original PointNet, however
with much higher hardware requirements (especially in terms
of used VRAM) and much longer processing times. DGCNN
seemed to handle the issues with noisy areas the best of the
three. Although the network has longer per epoch process-
ing times than PointNet, it produced usable results after fewer
epochs compared to PointNet or PointNet++. Therefore, we
chose DGCNN for our pipeline.

3.3.3 Postprocessing Since the preprocessing steps apply
irreversible changes to the classified data sets, it might be desir-
able to reproject the classification results back onto the original
data sets. By applying the semantic class of each points near-
est neighbor from the preprocessed and then classified 3D point
cloud, the result has both the original point density, all original
attributes, etc. and the semantic information from the DGCNN
classification step.
For the calculation of quality metrics, this reprojection step
is, however, skipped, since this might skew the distribution of
points among the semantic classes. If the scanner positions
were chosen in a way that some regions of the scene were cap-
tured with far higher point counts than other parts, for example,
because of overlapping scans, these specific parts would oth-
erwise overproportionally contribute to the overall metrics and
lead to a result that would be far less intuitive.

3.4 Results

For the vLiDAR data set, the trained network seems to detect
objects of most semantic classes reasonably well, especially the
rough structures like walls, ground, and ceiling. Only specific
classes were problematic, as can be seen in Figure 7 (a), with
specific examples shown in Figures 8 (a) and (b). Beds and
sofas seem to be mixed up, likely because of the similarities of
some of the models used. Clutter often gets wrongly classified
as furniture because there often seem to be slight issues with
correctly separating the large, main structures from the clutter
laying on top, especially in tight spaces such as cupboards filled
with clutter.

(a) Classification result for
the vLiDAR data set.

(b) Classification result for
the Redwood data set.

Figure 7. Confusion matrices for the classification results.

The metrics when classifying the real-world data set are notice-
ably worse than their vLiDAR counterpart, as can be seen in
Figure 7 (b), with specific examples shown in Figures 8 (c) and
(d). This was expected, given how it differs from the vLiDAR
data set. For example, the real-world 3D point clouds contain
a kitchen sink, wood paneling on the walls, and a ledge near
the wall, all of which do not occur within the vLiDAR data set.
While the vLiDAR data set only included ceiling lamps that
were hanging from the ceiling, the real-world data set also in-
cludes ones that are included as panels within the ceiling, and
are therefore wrongly classified as part of the ceiling. Never-
theless, many classes, like ground, ceiling, walls, furniture, and
desks, are still detected reliably.
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Figure 8. Classification comparison using both the vLiDAR and the real-world data set.

4. VLIDAR RUN TIME EVALUATION

To evaluate the vLiDAR’s scanning performance, two bench-
marks are run. The first benchmark evaluates the impact of
varying scene complexity, i.e., the number of objects in the
scene, and the second benchmark evaluates the impact of vary-
ing object complexity, i.e., the number of primitives of each
object. The default setup for the benchmarks is a stationary
vLiDAR scanner, placed at the origin of the scene, with a hor-
izontal rotational speed of 50,000°/s, and a vertical rotational
speed of 10,000°/s. The scanner runs for 10 in-simulation sec-
onds with a sample rate of 100,000 points/s, resulting in a total
of 1 million points sampled for each benchmark configuration.
All benchmarks are run on an AMD Ryzen 7 5800X. For both
benchmarks, the BVH generation time, as well as the scan time
is measured, as for highly complex scenes the BVH build time
has been not negligible.

4.1 Scene Complexity Benchmark

To measure the impact of scene complexity on the vLiDAR
performance, the benchmark configuration is tested with an in-
creasing amount of sphere objects with 400 faces each, placed
in an 8 unit radius around the vLiDAR scanner. The bench-
mark starts with a low-complexity scene of only 5 objects and
continually increases scene complexity to up to 5,000 objects
to represent a highly complex scene. Figures 9 (a) and (b) show
the results of this benchmark.
As shown in Figure 9 (a), there is a logarithmic relationship be-
tween the number of spheres present in the scene and the time
needed to complete the benchmark. With Blender’s current
API, only a linear run time was possible, by building object-
wise BVH trees. A custom BVH generator for the entire scene
was therefore implemented into Blender to reach logarithmic
scan time. The vLiDAR is able to scan with over 20,000
points/s even in the extremely complex scene containing 5,000
objects, which in our experience is the upper limit for object
count in many virtual scenes.

4.2 Object Complexity Benchmark

To measure the impact of object complexity on the vLiDAR
performance, the benchmark configuration is tested with a sta-
ble amount of sphere objects with increasing face count, placed
in an 8 unit radius around the vLiDAR scanner. The benchmark
starts at a low object complexity of 200 faces per sphere, equal-
ing 300,000 faces in the scene in total, and increases to 10,000
faces per sphere, equaling 15,000,000 faces in the scene. Fig-
ures 9 (c) and (d) show the result of this benchmark.
Object complexity does not have a big impact on scan perfor-
mance. As can be seen in Figure 9 (c), the efficiency of the BVH
and the associated logarithmic run time increase come into ef-
fect. A five-fold face count increase leads to a run time increase
of 9 seconds, 4 of those being due to longer BVH generation

times when inspecting the run time differences between 1 mil-
lion and 5 million faces.
The benchmarks show that the vLiDAR is capable of scan-
ning large scenes containing complex objects with good perfor-
mance, even in scenes with a high complexity of 5,000 objects.
They further show that object complexity has a measurable, but
small impact on overall vLiDAR scan speed.

5. CONCLUSION

In this paper, we have introduced a system for virtual LiDAR
scans to create 3D point clouds with semantics for machine
learning applications. Through this, we solved the problem of
missing or insufficient amounts of training data. We have im-
plemented a system for scanning virtual 3D objects to create 3D
point clouds with typical characteristics and artifacts regarding
real on-site acquisition. The vLiDAR is integrated into the 3D
software tool Blender to support a variety of common 3D for-
mats and allow easy creation of 3D scenes. It performs fast
enough to generate large amounts of training data. We have
shown that the training of neural networks with synthetic data is
a promising way to classify real-world data. It circumvents the
process of manually labeling training data, increases the amount
of available training data, and improves the overall quality of
machine learning based classification approaches for 3D point
clouds. Thus, we made an important contribution to reduce the
entry barrier to machine learning approaches for a variety of ap-
plications in the geospatial domain. Further research directions
could focus on a more physically correct simulation of LiDAR
(e.g., pulse, intensity, material information) or a simulation of
image-based data acquisition for 3D point cloud creation (e.g.,
dense image matching). Synthetic point cloud data could be
used for various analysis research, such as large-scale outdoor
analysis, transfer learning between different data sets, or com-
bining synthetic and real-world training data.
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Masip, J., Escolà, A., Camp, F., Solanelles, F., Gràcia, F.
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