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ABSTRACT:

Point clouds acquired through laser scanning techniques are applied in the three-dimensional modelling of vegetation. They provide
the three-dimensional coordinates of geometric surfaces with attributes. However, raw point clouds are unstructured and do not provide
semantic, geometric, or topological information about an object. Voxelisation is a method for structuring point clouds. It is a gener-
alisation of point clouds and therefore the voxel size and the voxel neighbourhood play a critical role in the processing. This research
explores the influence of voxelisation of point clouds acquired of heathland in Australia and how it influences the three-dimensional
modelling and the representation of important heathland structure using different voxel sizes and voxel connectivities. Voxel sizes of
0.4 m, 0.6 m, 1.0 m, 1.2 m and 1.6 m with a voxel neighbourhood connectivity of 6, 18 and 26 are examined for three-dimensional
modelling and segmentation of heathland vegetation in Australia. The results indicate that the choice of voxel size and the voxel
connectivity influence the representation of important heathland parameters. A smaller voxel size of 0.4 m provides a detailed rep-
resentation of mallee structure while the the processing time is longer compared to a larger voxel size. While a larger voxel size
produces blobs while the processing speed is shorter. The results from the voxel neighbourhood connectivity represent a stronger voxel

connectivity of 26-connected voxels suitable for heathland modelling rather than a 6-connected voxels.

1. INTRODUCTION

Australia has a diverse range of vegetation, thus potential fuel
types, in which a bushfire can burn. Fuel along with other im-
portant factors such as weather and topography determine fire
behaviour, severity of the fire in terms of suppression difficulty,
and its physical impact on the forest (Brodu and Lague, [2012).
Knowledge of relevant fuel types is necessary as they affect
fire propagation and behaviour differently. Australia has a rich
and diverse range of vegetation with distinct fuel arrangements,
quantities, and combustion characteristics (Hollis et al., [2015).
One fuel type found in Australia is heathland. Heathland is dom-
inated by shrubs, with emergent trees or mallee, a multistemmed
eucalyptus. This vegetation environment is highly flammable and
the ladder-type structure of heathland can facilitate the transition
of a surface fire to a crown fire. Traditionally, methods for meas-
urement of fuel types, attributes and characteristics included field
surveys using handheld instruments, or through image interpol-
ation using satellite and aerial imagery. But these methods of
data acquisitions face limitations (Lillesand et al.l 2015). Field
surveys are bias and result in errors while satellite and photo-
grammetry methods are not suitable to provide accurate three-
dimensional vegetation structural details.

Recently, light detection and ranging (lidar) with laser scan-
ners has emerged as a powerful tool for direct three-dimensional
measurement of objects on the earth surface. Point clouds ac-
quired through laser scanners such as airborne laser scanners
(ALS), mobile laser scanners (MLS), and Terrestrial laser scan-
ners (TLS), have proven to be an optimal source for three-
dimensional vegetation modelling and mapping within forested
and city environments (Yebra et al., 2015} [Trochta et al.| [2017;
Xu et al| 2021a). However raw point clouds have drawbacks.
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Raw point clouds are usually unstructured and they do not con-
tain semantic, topological or geometric details about an object
(Otepka et al.l 2013). But voxels overcome current drawbacks
encountered by point clouds through the structuring of the three-
dimensional discrete point.

Voxels are the 3D analogue to 2D pixels. They provide a con-
venient unified geometrical structure for organising point clouds
by providing the means to implicitly represent neighbourhood to-
pology in a three-dimensional array. Voxels have many different
geometry shapes. They can be represented as cubes, cuboids,
spheres, cylinders etc (Poux| 2021). But their conventional geo-
metry shape is a cubic geometry shape that consists of six faces,
eight vertices, and twelve edges. While the storage of voxels is
either based on the voxel mass centre or the voxel corner ver-
tices. To be able to work with voxels it is important to convert
discrete lidar point clouds into a volumetric structure. During the
voxel generation and processing, there are two important voxel
properties to consider, the voxel size, and the voxel neighbour-
hood connectivity (Xu et al.,|2021b). These two voxel properties
impact the voxelisation output.

The voxel size is important for the representation of voxelised
point clouds (Griffioen| 2018)). It is also significant for the geo-
metric representation of objects. A too fine voxel resolution can
result in too many voxels that are no different to the number of ex-
isting point clouds. This results in data redundancy and reduced
computational efficiency. The voxelisation computational time
can be minimised by introducing a large voxel size. However,
a large voxel size can result in the loss of important geographic
data due to the overestimation or misrepresentation of vegetation
structural components. For example, a too coarse voxel resolu-
tion may result in the classification of separate objects as a single
object. This is particularly significant for the modelling of mallee
so that the stems are modelled and represented correctly. Indeed,
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the optimal voxel size varies depending on research objectives,
object structure, and lidar platform. Therefore, the voxel size se-
lection remains an active area of research.

The voxel neighbourhood connectivity is another important voxel
property of voxelisation. Connectivity is a measure of the way
that voxels are linked to their neighbouring voxels (Aleksandrov
et al.}2021). In three-dimensional space, neighbouring voxels are
connected through either 6, 18 or 26 voxel neighbourhood con-
nectivity (Figure 3). Voxels connected to neighbouring voxels
based on this predetermined neighbourhood connectivity define
a region (an object). The size of the neighbourhood is determ-
ined based on the image parameters and the desired features for
extraction.

Thus, it is important to examine how voxel size and neighbour-
hood connectivity impact the three-dimensional modelling of
heathland while identifying the pros and cons of different voxel
properties on heathland modelling. To our knowledge, there
are currently no papers examining the impact of voxel size and
neighbourhood connectivity on the three-dimensional modelling
of heathland. Therefore this paper examines how different voxel
sizes can impact the representation of heathland parameters. This
paper begins with a literature review on voxel-based point cloud
representations in section 2. Section 3 provides a description of
the workflow methodology for the voxelisation and segmentation
of the heathland point clouds. This is followed by section 4 which
provides the results and findings from the different voxel sizes
and neighbourhood connectivities in three-dimensional heathland
modelling. Finally, this paper concludes with the conclusions and
future work in section 5.

2. LITERATURE REVIEW

The word voxel stems from the words “volume” and “element”
(Foley, 1990), or VOlumetric piXELs (Gebhardt et al.| (2009).
Voxel representations are commonly implemented in scientific
computation and medical imaging. They have become increas-
ingly popular in the field of geospatial (Gorte et al.l 2019;
Aleksandrov et al.l 2019; [Homainejad et al 2022a). After the
widespread use of point cloud applications, voxel-based repres-
entation have experienced a significant boost. There are a wide
variety of applications using voxel-based point cloud representa-
tions, including pre-processing, segmentation and classification,
registration, and modelling. They are increasingly applied in
three-dimensional city modelling and analysis(Gorte et al.,[2019;
Aleksandrov et al., [2019). They are also becoming favourable
in three-dimensional vegetation modelling (Barton et al.l 2020;
Gorte and Pfeifer] |2004; Hancock et al.|[2017; | Homainejad et al.,
2022a)).

In three-dimensional vegetation modelling, |Gorte and Pfeifer
(2004) developed an algorithm for the voxelisation, modelling
and reconstruction of (real world) trees based on terrestrial laser
scans. The methodology for this work included applying mor-
phological operations such as closing and opening to close the
gaps and holes. This is followed by a 3D skeletonisation. The 3D
skeletonisation is an iterative process of removing voxels until the
final layer of voxel is reached. Finally, Dijkstra’s minimum span-
ning tree algorithms is applied to ensure that the skeleton from
the previous step becomes a tree. While, |Vonderach et al.| (2012)
applied a voxel-based method for the modelling of urban veget-
ation acquired using a TLS. A voxel-based method using a 26-
neighbourhood connectivity is applied for the modelling of urban
trees to model the tree branch volume, DBH (diameter at breast
height) and height of a single tree.

During a standard voxelisation process, selecting the best fitting
voxel size is important and can influences the voxelised recon-
struction. [Ross et al.| (2022) evaluated the impact of voxel size
and assessed it in terms of canopy structure variability and its in-
fluence on the canopy gap at six vertical transects. Voxel lenghts
of 10 cm, 25 cm, 50 cm, 100 cm, and 200 cm are tested. The
results indicated that the optimal voxel size varied with LiDAR
platform—which may relate to laser penetration and occlusion
compensation between the two platforms. [Puletti et al.| (2021)
applied voxel method for the estimation of canopy cover. Voxel
sizes ranging between 5 cm - 20 cm with voxel point cloud dens-
ities ranging between 1-9 points/dm3 are tested to identify their
influence on the retrieval of canopy cover. The results indicated
that the choice of voxel size and point density is critical while a
voxel size of 10 cm and point density of 8 points/dm3 is recom-
mended for this dataset.

Additionally, |Wang et al.| (2020) examined the influence of voxel
sizes on the precision of canopy height. A range of voxel sizes
ranging from 10 m to 40 m with a 2 m interval in the horizontal
and a vertical size of 0.15 m were tested. The influence of voxel
size on the precision of canopy heigh was noted and a voxel size
of 18 m was identified as the most fitting voxel size for this work.
While Eusuf et al.| (2020) presented an automated method for
measuring fuel load in a multi-layered forest in Newcastle, Aus-
tralia. In this work a voxel size of 0.4 m was selected for the rep-
resentation of the fuel load and classification of the near-surface
fuel.

3. METHODOLOGY

This work is a continuation from (Homainejad et al.|[2022a)). The
method for the processing and voxelisation of heathland environ-
ment follows Homainejad et al.|(2022b). It includes the identific-
ation of important heathland parameters for its application in the
Anderson et al.|(2015) bushfire behaviour model. The next phase
of this work consists of point cloud processing. This is followed
by the voxelisation of the processed point clouds. The voxelisa-
tion phase consists of defining the voxel size and the voxel con-
nectivity, followed by the segmentation and the classification of
the voxelisation data.

3.1 Heathland parameters

Heathland occupy a relatively small portion of the Australian
continent, covering 10-20 million ha (Lindenmayer et al.|[2014).
They grow on rock benches in exposed situations, usually ridge
tops in nutrient-poor and sandy soil. This environment is dom-
inated by shrubby, treeless communities with co-occurring un-
dershrubs, sedges, forbs, and a few types of grass (Lindenmayer
et al.| [2014). Trees are seldom present in this environment or
present as mallee, a group of multistemmed eucalyptus. The ab-
sence of trees in this environment exposes the dominated shrubby
region to sun and wind causing the rapid drying of fine dead fuels
a short time after substantial rain while the presence of flammable
terpenes and waxes in the foliage of some shrubs promotes the
combustion of live fuel components. This makes heath environ-
ment highly flammable and fire-prone throughout much of the
year.

In the absence of fire, the vegetation structure in this region can
transform from an open heath to a closed heath making it more
flammable. The heath shrubs in this environment are generally
between 0.5 m to 2 m. While mallee trees grow between 5 m-
10 m and have an umbrella-like leaf canopy that shades 30-70 %
of the ground. Mallee is extremely flammable with fire-prone fea-
tures and the ability to support intense fires while the ladder-type
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Figure 1. Heathland environment with multistemmed mallee in
the Blue Mountains, New South Wales, Australia

pattern of heathland can transition surface to crown fire which is
the most intense and dangerous type of bushfire. Thus it is im-
portant to predict the spread and movement of a fire through a
bushfire behaviour model.

To predict the movement of heathland bushfires, accurate 3D
modelling of heathland parameters is required. These paramet-
ers should meet the parameters outlined in the
model. [Anderson et al | (2013)) is the fire behaviour model

utilised in Australia for the fire behaviour modelling of heathland.
Important heathland parameters include the continuity and dis-
continuity of heath shrubs, the height of heath shrubs, the height
of emergent trees and mallee, and the density of the trees

mainejad et al.}[2022b).

3.2 Voxelisation of Point Clouds

Point clouds are usually delivered as a set of unstructured 3D
points in Euclidean space with X,y,z coordinate values with
Cartesian coordinates z,y,z of a point p;,¢ = 1,...,n.
Each point cloud can contain additional attributes such as R,
G, B, amplitude, echo width, number of echo returns as at-
tributes.  The first step for the voxelisation of the point
clouds begins by determining a minimum cubic bounding box
((szn, Xmax» Ymin7 Ymaam Zmin, Zmar)) enCIOSing P, such
that is a set of points p; with N the number of points in R® x 1.
A voxel V}, contains several points in one cloud such that k is the
voxel index in the voxelised space and V' = Vi,...., Vi, M is
the number of generated voxel cubes. While the bounding box
and the voxel size (Vs;ze) define the dimensions of the voxel
space. Each voxel contains other measurable properties such as
volume and attributes. The voxel volume is the number of point
clouds that occupy each voxel. The attributes of a voxel V' are
described by the geometric appearance of the point clouds inside
the voxel cubes V. These attributes consist of the spatial position
of the point clouds, the normal vectors along with the geometric
features calculated from the point clouds.

3.2.1 Voxel size : The voxel size is a significant part of the
voxelisation phase. In heathland environment, voxels can impact
the representation of finer heathland parameters such as the rep-
resentation of mallee stems. Mallee has fine stems and is mul-
tistemmed from the ground up. A large voxel size can result in the
aggregation of objects resulting in the misrepresentation of ob-
jects (Figure 2). For example, a too large of a voxel size can result
in the representation of different tree elements (eg: tree branches
or tree stems) as a single element. Thus different voxel size are
tested on this dataset to explore the results the influence of the
voxel size on the dataset and the representation of the heathland

Figure 2. The impact of voxel size on point cloud voxelisation

shrubs and mallee. Voxel sizes of 0.4 m, 0.6 m, 1.0 m, 1.2 m and
1.6 m are experimented on the dataset to explore the influence of
the different voxel size.

3.2.2 storage : Voxels can be stored in two different ap-
proaches: a dense array and a spars array (Gebhardt et al., 2009).
A dense array behaves as a typical M x N x O matrix where each
cell in the array represents a value. This includes vacuum cells
such that every cell has a row and column number. As a result this
increases the processing time because all cells in a voxel model
store values such as red, green, blue and opacity so do vacuum
cells. Vacuum cells have a storage value of zero eg: (0,0,0,0).
This increases the storage space and in return increases the pro-
cessing time.

To reduce storage space and decrease processing time vacuum
cells can be separated from occupied cells containing point
clouds. The extracted occupied cells form a sparse voxel array.
Thus, a sparse voxel array referred to an array where vacuum
voxels are removed with only voxels that contain non-zero in-
formation remaining. This method is more efficient compared to
dense arrays.

A variety of algorithms are available for dense and sparse voxel-

isation of the ALS point clouds (Nourian et al., 2016
[2018). For this study, the (2020) voxelisation code is

applied. During the voxelisation phase, the voxel size can be
altered. After defining the voxel size a dense or sparse voxel array
can be generated.

3.3 Voxel connectivity

For the segmentation of the voxels the seeded region growing al-
gorithm is implemented. The seeded region growing algorithm in
a voxel 3D space is based on voxel neighbourhood connectivity
and the identification of a common trait between the neighbour-
ing voxels. The algorithm searches for connected voxels based
on their neighbourhood connectivity with the additional specific-
ation of a common trait, if necessary.

The connectivity of a voxel is based on a predetermined neigh-
bourhood so that all voxels that belong to the same connected
region may have the same region number. In a three-dimensional
grid each voxel has 26 neighbouring voxels; eight voxels at each
corner, 12 voxels at each edge, and six voxels at each surface and
thus three voxel connectivities, 6-, 18-, or 26 connectivity (Figure
3). The three different voxel connectivities are further explained
below.

e 6- connected - every voxel that shares a common face with
an adjacent voxel is considered a neighbour in this voxel
neighbourhood. These voxels are connected on one of the
primary axes such that each voxel with coordinates ((z &
1,y,2),(z,y£1,2)) or ((z,y,z £ 1)) is connected to the
voxel at ((z,y, 2)).
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Figure 3. voxel connectivity, 6 neighbourhood, 18
neighbourhood and a 26 neighbourhood connection

e 18- connected - every voxel that shares a common faces and
at least on edges is considered a neighbour in this voxel
neighbourhood. These voxels are connected on one or two
of the primary axes such that each voxel with coordinates
(@£1,y£1,2),(zx1,yFLz2), (et 1y z£1),(c*
Ly,zF1),(z,y£1l,zx1))or ((x,y£1,zF 1)) is con-
nected to the voxel at ((z,y, 2)).

e 26- connected- every voxel that shares a voxel face and at
least one edge and one vertex with an adjacent voxel is con-
sidered a neighbour in this voxel neighbourhood. These
voxels are connected on one or two or three of the primary
axes such that each voxel with coordinates ((z £ 1,y +
Lzt1l),(zxl,yxtL,zF1),(z+1l,yF1l,z+ 1)) or
((xF1,y+£1, 2+1)) is connected to the voxel at ((x, y, 2)).

The voxel neighbourhood connectivity is based on the data and
the desired output and it can be changed in the segmentation al-
gorithm. When a 6-connected voxel neighbourhood is defined
only voxels sharing a common face are selected resulting in the
exclusion of all other neighbouring voxels. It results in a lar-
ger number of voxel clusters. While the specification of an 18
or 26- connected searches for neighbouring voxels with a com-
mon face, and a common edge with the addition of a voxel corner
connection for the 26- connection. This results in strongly con-
nected voxel connections in a 3D voxel array. The specification
of such voxel connectivities results in thinner objects with shorter
lengths or areas compared to a 6 voxel neighbourhood connection

(Aleksandrov et al, 2021).

For the segmentation of the voxels the region growing is applied.
is selected because it is based on voxel 3D ar-
ray. In this code the voxel neighbourhood connectivity can be
altered to explore the results from the different connectivities.
Changes were additionally applied to this code to make it spe-
cific for this work. For example, a point cloud density threshold
specification is added. This allows for the specification of a min-
imum point cloud density to speed up the segmentation process.

4. RESULTS

For this study lidar point clouds collected over Kelly Hills Cave,
Kangaroo Island, South Australia are utilised. Kangaroo Island is
4,405 km? in the area and is dominated by heath and mallee ve-
getation. The Kelly Hills Cave lidar data is collected and supplied
by Airborne Research Australia (ARA) (Airborne Research Aus-|
[2020). The scan for this region was carried out following
the 2019-2020 bushfires. The data includes hyperspectral data in
addition to geometric and radiometric attributes (xyz, intensity,
Echo Number and Number of Echoes). The point clouds are dis-
crete return point clouds, and the data is compressed and supplied
in laz format, a compressed version of las. The data covers 1200
Hectare (ha) and is split into 6 strips. The strip used for this study
is 190 ha in area with a point density of 120 points per square
meter (ppsm).

4.1 Voxelisation of point clouds

The result of the voxelisation is a voxel mesh of all occupied
voxels. The voxel mesh is imported into MeshLab
and CloudCompare (CloudCompare] [2020) for visual-
isation. MeshLab is an open-source system for the processing
and editing of 3D triangular meshes. While CloudCompare is
an open-source software for the processing and visualisation of
three-dimensional data.

The results from the different voxel sizes indicate a larger voxel
count for a smaller voxel size. For example the 0.4 m voxel size
has a larger voxel count compared to the 1.6 m voxel size. As
the voxel size increases the voxel count reduce but this impacts
the object representation. This is specifically noticeable in mallee
(Figure 4). The results from the 0.4 m voxel size provide a better
representation of the different mallee elements such as the mallee
stems. As the voxel size increases the representation of the dif-
ferent tree elements becomes difficult to distinguish with the two
larger voxel sizes, the 1.2 m and the 1.6 m voxel size, causing a
blob-like representation of mallee Table[T]

4.2 Voxel connectivity

Following, the voxelisation, seeded region growing is performed
on the spare voxel array. In this study, the region growing is
only based on the voxel neighbourhood connectivity. A minimum
point cloud threshold of zero points per voxel was set in the re-
gion growing algorithm. This is to avoid connectivity loss in the
smaller voxel size. Voxel connectivity can be lost by applying a
threshold for the lower voxel resolutions thus impacting the final
segmentation result.

The results of the three different voxel neighbourhood connectiv-
ity are presented in Figure 5. A change in the voxel neighbour-
hood connectivity can impact the shape and size of the result-
ing clusters. For example, the change in the voxel neighbour-
hood connectivity is noticeable in mallee. The mallee stems and
branches lose connectivity with a smaller voxel size compared to
a larger voxel size of a similar voxel neighbourhood connectiv-
ity. The processing time for the different voxel neighbourhood
connectivities is variable. A 26-connected voxel neighbourhood
connectivity usually requires a longer processing time and occu-
pies a larger memory size compared to a 6-connected voxel.

5. CONCLUSION AND FUTURE WORK

This paper demonstrated the impact of voxel size and voxel con-
nectivity on point cloud data acquired of heathland from South
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Voxel Size (m)  Voxel Count Connectivity  Segment Count  Processing Time (second)

0.4 6 367143 22
0.4 18 171858 45
0.4 2598448 26 111400 165
0.6 6 117959 12
0.6 18 50357 27
0.6 1632854 26 32715 105
1.0 6 19002 17
1.0 18 7132 14
1.0 803965 26 4664 54
1.2 6 8898 13
1.2 18 3321 10
1.2 604229 26 2151 40
1.6 6 2485 7
1.6 18 929 6
1.6 371803 26 620 23

Table 1. Impact of voxel size and voxel connectivity on the point cloud dataset for the modelling of heathland

Figure 4. Impact of voxel size on mallee modelling. From right to left - a) point cloud model of a mallee tree in CloudCompare, b)
voxel model of the mallee tree with 0.4 m voxel size, c) voxel model of the mallee tree with 0.6 m voxel size, d) voxel model of the
mallee tree with 1.0 m voxel size, e) voxel model of the mallee tree with 1.2 m voxel size, f) voxel model of the mallee tree with 1.6 m
voxel size
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Figure 5. Voxel connectivity of 6 connected neighbourhoods

Australia. The results from the voxelisation demonstrate that a
0.4 m voxel size is a suitable voxel size for the representation of
heath shrubs and mallee structure. As the voxel size increases the
representation of the mallee becomes more blob type. Although
the 0.4 m voxel size was the most suitable voxel size for the rep-
resentation of mallee structures a smaller voxel size such as 0.2 m
is recommended for the representation of mallee. A finer voxel
size allows for a better representation and modelling of mallee
stems. This is due to how thin mallee stems and branches are and
the fact that they are multistemmed. In such a case morphological
operations are recommended to remove any gaps and holes in the
stems and to build the tree stem connectivity. Thus the voxel size
needs to be selected based on specific requirements. For example,
if the representation of different vegetation structures is important
then a smaller voxel size is recommended.

As heathland is comprised of heath shrubs and mallee the voxel
neighbourhood connectivity for both heath shrubs and mallee was
examined. Based on the analysis a 6-connected voxel is not ap-
propriate for the modelling of heathland. Both mallee trees and
heath shrubs do not have vertical connectivity thus a 6-connected
is not recommended while a 18-connected or 26-connected is
recommended for the three-dimensional modelling of heathland
and heathland parameters. For the representation of finer heath-
land elements such as the leaves 26-connected voxel connectivity
is also recommended. Future work for this research will cover
quantitative analysis of the data with respect to training data.
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