
VOXELISATION AND VOXEL MANAGEMENT OPTIONS IN UNITY3D

M. Aleksandrov1*, S. Zlatanova1, D. J. Heslop2

1 UNSW Built Environment, Red Centre Building, Kensington NSW 2052, Sydney, Australia

(mitko.aleksandrov, s.zlatanova)@unsw.edu.au
2 UNSW Public Health and Community Medicine, Kensington NSW 2052, Sydney, Australia

d.heslop@unsw.edu.au

Commission IV, WG IV/9

KEY WORDS: Voxels, Voxelisation, Voxel visualisation, Voxel data structures, Mesh construction.

ABSTRACT:

Voxels have been used in various application domains successfully for the last several decades. Their main advantage is the

underlying discrete data structure allowing to reliably work with surrounding voxels all the time. In this paper, capabilities of the

Unity game engine for voxels management and geometry voxelisation are assessed, where 4 native solutions and 7 open-source

projects written for Unity are investigated. Although many voxel-based options exist in Unity, they only deal with one part related to

voxels. Therefore, the available capabilities to voxelise, visualise, structure and export voxels are combined and extended with the

goal of successfully processing large 3D models and geometries. Many voxel visualisation techniques are investigated including

mesh, VFX, point clouds and SVO, which have distinctive benefits in various aspects. Possibilities to structure voxels for effective

management in simulations and other tasks are shown. Also, it is enabled to export voxels as point clouds and to the Postgres

database for further processing, spatial analysis and distribution. One of the main conclusions is the lack of support for state-of-the-

art voxel data structures, where the presented platform can easily be extended to support any. This platform can be used by people

who deal with 3D discrete data, require voxelising 3D data, visualise voxels in different ways and technologies, as well as manage

more efficiently sparsely occupied voxels.

1. INTRODUCTION

Voxels are commonly being investigated in many application

domains including computer graphics (Amanatides & Woo,

1987), city modelling (Nießner et al., 2013), geology (Jørgensen

et al., 2013), spatial analysis (Beckhaus et al., 2002), point

clouds processing (Vo et al., 2015), machine learning (Poux &

Billen, 2019), collision detections (Silver & Gagvani, 2000),

shadow calculations (Gorte et al., 2018), visibility analysis

(Aleksandrov et al., 2019), egress modelling (Gorte et al.,

2019), pedestrian navigation (Bernardus Gorte et al., 2019) and

so on. As we can see voxels are highly applicable and further

investigations are required to better understand their

characteristics and advantages.

Voxelisation is a process of transferring vector data into a

structure that discretely represents geometry and semantics.

Many researchers considered for voxelisation different

geometric primitives such as points (Nourian et al., 2016), lines

(Laine, 2013), triangles (IX & Kaufman, 2000), polygons

(Kaufman & Shimony, 1987), surfaces and solid models

(Schwarz & Seidel, 2010). At the same time, many voxelisation

algorithms achieve different voxelisations targeting properties

such as connectivity and separability. The first step in

understanding what kind of voxelisation is possible to achieve is

important to assess the available implemented algorithms. One

of the main issues as suggested by Aleksandrov et al., (2021) is

the availability of these approaches in common software and

platforms for usage and testing. Storing additional information

for each voxel goes in the direction of non-binary voxelisation,

which is useful in preserving some properties needed for voxel

rendering, management, and interaction. Therefore, it is

important to assess the current capabilities of voxelisation

algorithms implemented in Unity in this regard.

Many times voxels are visualised as points using different

libraries such as UnityPointCloudViewer(1) and Open3D (Zhou

* Corresponding author

et al., 2018). Aleksandrov et al. (2019) indicated that voxels can

share common faces which can be omitted for rendering

purposes. Thus, it is important to understand if better

performance is possible to achieve by visualising simply all

occupied voxels as cubes, by rendering only the visible voxel’s

faces or some other voxel-based techniques could be used

allowing us to reduce the number of voxels’ triangles to render

a voxel model in a more light-weighted way. Thus, assessing

different voxel visualisation techniques is needed.

To deal with large voxel data sets, efficient compression and

decompression methods are suggested since many 3D scenes

have less than 1% of occupied voxels. Thus, the most prominent

approaches for visualisation of large voxel scenes rely on sparse

voxel octrees (SVO) (Laine & Karras, 2010), sparse voxel

directed acyclic graphs (SVDAG) (Kämpe et al., 2013) and

symmetry-aware sparse voxel directed acyclic graphs

(SSVDAG) (Villanueva et al., 2017, 2016). Apart from voxels

visualisation, 3D spatial queries and simulations can be

performed over voxels. Aleksandrov et al. (2021) indicated that

for modelling more dynamic phenomena such as smoke

propagations and fluid simulations the use of voxel data

structures such as SPGrid (Setaluri et al., 2014) and VDB

(Museth, 2013) are suggested. Therefore, it is crucial to

understand if these data structures are easily available or some

other data structures are more commonly utilised.

To be able to work with voxels, it is key to identify what the

options are in one software, where the Unity3D game engine is

selected as a testing platform. The paper consists of 4 main

parts. In section 2, the most relevant voxel-based technology

and projects are assessed in aspects related to the acquisition,

storage, interaction, and visualisation of voxels. Section 3

(1) UnityPointCloudViewer.

https://github.com/unitycoder/UnityPointCloudViewer

(accessed on 27 April 2022)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

13

https://github.com/unitycoder/UnityPointCloudViewer

explores how to combine and extend the available capabilities

to achieve voxelisation and voxel visualisation of large 3D

models, as well as shows how to structure and export voxels for

further processing and usage. Section 4 presents the discussion

and resulting conclusions, whereas section 5 proposes future

directions to deal with voxels more effectively.

2. EVALUATION OF VOXEL-BASED APPROACHES

IN UNITY3D

In the paper, the Unity game engine is selected as a testing

platform for several reasons. Unity is one of the best 3D game

engines along with the Unreal game engine. Although Unity is

not a voxel-based engine, it can support the use of different data

structures and provide user-specific rendering. Also, it allows

application deployment to many platforms including Windows,

Mac OS, Linux, web and so on. The community using the

software is huge and many voxel-related projects are known in

the software. The evaluation of several native solutions and

open-source projects built in Unity are presented in the

following subsections.

2.1 Native Unity solutions

It is possible to work with voxels in several ways based on the

technology that Unity provides. 4 different approaches that can

be utilised for the successful management of voxels are

identified including GameObjects, DOTS, VFX graph and

compute shaders (Table 1).

GameObjects are fundamental blocks in Unity to which

components can be attached to hold properties that users can

manipulate defining their behaviours. This approach supports

standard C#-based programming, which can be highly

advantageous for people not familiar with the other available

approaches, allowing them to reuse many available C# libraries

and code. By using GameObjects, users would work with

triangulated meshes (e.g., quads, cubes and triangles) to work

with voxels. One of the main issues with this approach is

performance, having difficulty dealing with large scenes, many

objects and computationally expensive operations.

Data-Oriented Technology Stack (DOTS) has several

advantages in dealing with the issues associated with the

GameObject approach. This allows users to create richer user

experiences and execute faster iterative operations. To work

with each object (i.e., known as an entity) users can assign

components which are represented as data containers and be

processed by systems holding behaviours and logic. Unity

allows the effective transition and compatibility between

GameObject and DOTS, as well as a partial usage of these two.

This method is particularly useful to offload GPU to balance the

usage of both processing units in terms of rendering and

computations. To use voxels, users would need to work with

meshes as well as subscenes which allows subdividing large

scenes into smaller areas for effectively loading/unloading as

needed. Also, all voxel-related data would be stored in

components and processed by systems in specified ways.

Although DOTS can handle a large number of objects it might

not the best for rendering and simulations of millions of objects.

VFX graph is a powerful tool that directly uses GPU to create

particle systems which can be manipulated in user-defined

ways. The main advantage of this system is the ability to work

with even millions of particles. In this case, each voxel would

be most likely considered a cube which can be manipulated by a

graph-based logic. It should be pointed out that other visual

representation options for voxels such as quads and meshes are

possible to use. The transition between other approaches is

possible, but it can result in an additional overhead in case of

requiring a frequent transfer of data to the CPU and vice versa.

Therefore, it might not be the best option if the system requires

loading very often data from a database or files. Apart from the

option to calculate a signed distance field, other data structures

like octrees are not available, which is the current main issue to

manage voxels efficiently. Due to the use of specific shaders

and rendering pipelines like the high definition rendering

pipeline (HDRP) some platforms cannot be targeted for

application export like WebGL, so the universal rendering

pipeline (URP) is more recommended.

Compute shaders are shader programs that use the GPU without

the need to operate on meshes or texture data, and their main

usage is for a large set of calculations involving mathematics

and parallelisation. Voxels are usually represented in discrete

space via arrays over which some mathematical operations are

performed. The main difference with the VFX graph approach

is the low-level programming control. However, the main issue

can be the programming knowledge required as well as the

incompatibility with even more platforms.

(2) https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@14.0/manual/System-Requirements.html (accessed on 27 4 2022)
(3) https://docs.unity3d.com/Manual/class-ComputeShader.html (accessed on 27 April 2022)

Table 1. Voxelisation approaches and voxel data structures supported in Unity

Approach Characteristics

 Processing

unit

Pros Cons Platform level

compatibility

GameObjects CPU Full control of the scene; standard C#

object-oriented programming

Not suitable for physical simulations and

dealing with a lot of objects

High

DOTS Multicore

CPU

Multicore processing; simplified

usage; dealing with large scenes;

reduced power usage; smaller

building applications

Not suitable for extremely large simulations

and rendering, and compatibility with

different Unity versions

High

VFX graph GPU Particle-based modelling; node-based

visual logic; dealing with a lot of

objects; suitable for creating visual

effects and physical simulations

Limited programming control; availability

of voxel data structures; heavily shaders

usage; adjustable occlusion culling; not

suitable to combine with CPU processes

Medium(2)

Compute

shaders

GPGPU Usage of massively parallel functions;

accelerated game rendering

In-depth knowledge of GPU architecture

and algorithms parallelisation

Low(3)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

14

https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@14.0/manual/System-Requirements.html
https://docs.unity3d.com/Manual/class-ComputeShader.html

2.2 Open-source projects in Unity

The first step to working with voxels requires their generation.

As presented in the introduction section, several geometric

primitives can be used for voxelisation. While voxelisation of

points is relatively easy to achieve, other primitives require the

use of specific algorithms for voxelisation. In the case of having

sparsely represented voxels, the use of plane arrays can result in

a high memory footprint. Therefore, more efficient voxel data

structures are suggested (Aleksandrov et al., 2021).

Table 2 shows different voxel-ralated open-source projects

available to download from GitHub. 7 projects are identified

dealing with some aspects related to voxels, helping us to

understand the current status and capabilities for effective

management of voxels in Unity. When it comes to voxelisation

options, 2 projects are identified where surface voxelisation is

possible to achieve either on CPU or GPU, while solid

voxelisation is possible to obtain only on GPU. 26-connected

and conservative voxelisation is being targeted in these projects

showing interest in different voxelisations. The first project is

allowing to voxelise an object’s texture, while the second

project targets exclusively binary voxelisation of a 3D object.

Regarding voxel data structures, 3 of them use regular octrees to

keep reference type objects storing them either as points or

minimal bounding boxes (MBB). In general, octrees do not take

a huge memory of a computer and they are useful if the

intention is to conduct frequently some spatial queries like

proximity analysis over objects which are spread around in a

larger area. The Unity-SVO project uses a sparse version of an

octree reducing the memory footprint even more and enabling

effective rendering of large voxel scenes. For each voxel, colour

can be stored as well as some integer parameters. Until recently,

the OpenVDB library was also possible to use in Unity, but the

project seems abandoned. This is unfortunate since the VDB

data structure allows to manage effectively voxels in scenarios

when voxels often update positions like in simulations.

Approach Characteristics

 Processing

unit

Purpose Queries Unity version

compatibility

GitHub

stars

Unity-voxel(2)

CPU-based Conservative surface voxelisation

Array-based queries Unity 2018.3.0f2 1031 GPU-based Conservative surface and solid

voxelisation

Mesh-voxelization(3) CPU-based 26-connected voxelisation Array-based queries Unity 2020.1.14f1 162

UnityOctree(4) CPU-based

octree

A dynamic and loose octree;

allowing to store point and MBB

referenced objects

MBB intersections,

points within

distance

all Unity versions 727

ESC-Octree(5) DOTS-based

octree

A dynamic and loose octree;

allowing to store point and MBB

referenced objects

MBB intersections,

points within

distance, raycasting

Unity 2020.1a 126

NativeOctree(6) DOTS-based

octree

allowing to store point referenced

objects

Points inside a box Unity 2019.3.0b10 89

Unity-SVO(7) GPU-based

SVO

Voxel storage and rendering Raycasting Unity 2019.4.21f1 74

OpenVDBForUnity(8) CPU-based

VDB

Manipulation of sparse, time-

varying, volumetric data

Topological and

morphological

operations, etc.

Abandoned 209

(2) Unity-voxel. https://github.com/mattatz/unity-voxel (accessed on 27 April 2022)
(3) Mesh-voxelisation. https://github.com/Scrawk/Mesh-Voxelization (accessed on 27 April 2022)
(4) UnityOctree. https://github.com/Nition/UnityOctree (accessed on 27 April 2022)
(5) ESC-Octree. https://github.com/Antypodish/ECS-Octree (accessed on 27 April 2022)
(6) NativeOctree. https://github.com/marijnz/NativeOctree (accessed on 27 April 2022)
(7) Unity-SVO. https://github.com/BudgetToaster/unity-sparse-voxel-octrees (accessed on 27 April 2022)
(8) OpenVDBForUnity. https://github.com/karasusan/OpenVDBForUnity (accessed on 27 April 2022)

Table 2. Voxelisation approaches and voxel data structures supported in Unity

3. VOXELS MANAGEMENT PLATFORM

Aleksandrov et al., (2021) presented that many geometrical

primitives exist including points, lines, triangles, polygons,

surfaces and volumes, where for each one of them different

voxelisations can be achieved considering the application of

interest. Apart from the geometrical transition to discretised

shape, it is important to consider attributes preservation during

the process. For the fast insert, retrieval, rendering and update

of voxels and their properties, it is important to use voxel data

structure. At the same time, visualisation of voxels is possible to

perform in many ways considering different techniques, data

structures and needs. Therefore, we identify 3 main components

starting with input geometry, voxelisation, followed by data

storage, visualisation and export (Figure 1). The main idea is to

use the available technology that Unity provides, and the

projects evaluated above to establish the support for

voxelisation of various geometrical primitives, many data

structures and export options. Therefore, a platform is created to

deal with each of these aspects separately.

Figure 1. Processing workflow

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

15

https://github.com/mattatz/unity-voxel
https://github.com/Scrawk/Mesh-Voxelization
https://github.com/Nition/UnityOctree
https://github.com/Antypodish/ECS-Octree
https://github.com/marijnz/NativeOctree
https://github.com/BudgetToaster/unity-sparse-voxel-octrees
https://github.com/karasusan/OpenVDBForUnity

3.1 Voxelisation of 3D models

As a first step, it is important to understand how to voxelise

quickly not only one object, but an entire scene. At the same

time, enabling voxelisation of any size voxels without having

constraints in terms of available computer memory is needed.

To establish such a flexible approach, we consider several steps.

The first step involves the storage of bounding boxes of objects

representing a 3D model in an octree to be able to query areas

which should be voxelised. Afterwards, a model is divided into

2563 blocks which can fit in the computer’s memory for

voxelisation. The following step involves the identification of

components belonging to each block using the bounding boxes

stored in the octree. Once all objects are identified, objects’

meshes are combined and sent to the voxeliser. For now, only

the conservative surface voxelisation is considered using

compute shaders to process voxels on the GPU. After that,

voxels can be processed for visualisation and stored in an

octree. The process is repeated for each block until the whole

area of interest or 3D model is voxelised.

Figure 2 shows the voxelisation process of a 3D model using a

voxel size of 10 cm. It can be observed that 3 blocks are needed

to voxelise the model successfully. Users can voxelise only part

of the building if needed at any time since bounding boxes of all

objects are stored in an octree and can be queried using a 3D

area. Also, to preserve semantic information during voxelisation

objects are voxelised individually.

Figure 2. Binary voxelisation of a 3D model using 10 cm size

voxels; upper image shows the 3D model in Unity; lower image

shows 3 blocks used for voxelisation, where the middle one is

highlighted.

3.2 Voxels visualisation options

Many ways exist to render voxels, where each approach has a

specific aim for its usage. Reviewing the presented open-source

projects and Unity technologies 4 approaches are identified as

suitable for voxel visualisation, but there can be even more.

These approaches include mesh, VFX, point clouds and SVO.

As assessed above these approaches' purpose is not just

visualisation. They can be utilised for different applications

requiring simulations, physical interactions and shadow

analysis.

3.2.1 Mesh-based voxels visualisation

Working with meshes represents a common way to render

voxels in software dealing with 3D computer graphics. There

are several ways to utilise meshed for voxels visualisation. The

most obvious way is to create cubes representing the occupied

voxel, where each cube will be a separate GameObject in Unity.

However, this process is expensive and not many voxels can be

rendered this way. A slightly better approach is to create a mesh

where only one face is created if two occupied voxels are

sharing it, but such faces can be even omitted since they are not

visible from outside a voxelised model. Thus, such faces are

omitted during the mesh construction, having fewer quads and

correspondingly triangles to render.

Small voxel sizes can result in large meshes where smaller

blocks/chunks can be used to construct voxel-looking meshes.

The same approach can be easily extended to visualise colour-

based voxelised meshes (Figure 3).

Figure 3. Voxels visualisation using blocks of meshes; upper

image shows voxelised model created from smaller mesh

chunks; lower image shows mesh chunks colouring each voxel

based on object’s id to which it belongs.

At the same time, such blocks can be utilised for occlusion

culling that Unity supports. It is required to define all

GameObjects (i.e., meshes) as static allowing an octree to be

generated and automatically cull objects that are not visible

from a camera point of view (Figure 4).

Figure 4. Occlusion culling of voxel blocks; upper image

shows the rays send from the camera to see which components

to turn off; lower image shows the corresponding camera view.

Once a voxel-looking mesh is constructed, the first impression

is that triangles belonging to one surface can be merged to

reduce their number and improve the visualisation performance.

After a thorough search of a suitable method, a library(9)

utilising quadric mesh simplification is identified (Garland &

Heckbert, 1998). However, the implemented method works well

(i.e., keeps the voxel-looking structure intact) only when using

large voxel sizes (e.g., >50 cm) and it requires fully enclosed

meshes (Figure 5).

(9)UnityMeshSimplifier.https://github.com/Whinarn/UnityMesh

Simplifier (accessed on 27 April 2022)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

16

https://github.com/Whinarn/UnityMeshSimplifier
https://github.com/Whinarn/UnityMeshSimplifier

Figure 5. Mesh simplification of a voxelised model; upper

image shows all triangles representing voxel visible faces; lower

image shows simplified mesh.

3.2.2 VFX voxels visualisation

As explained previously VFX works with particles allowing

users to directly work with the GPU performing simulations or

other computations on them. Two approaches are assessed,

where voxels are visualised as cubes and quads (i.e., faces) that

are visible. To create voxels at specific locations their

coordinates and all other information (e.g., colour, voxel size,

etc.) should be transferred from CPU to GPU where the

desirable objects will be instantiated. Figure 6 shows different

representations of the voxels. The top image represents voxels

visualised as cubes, but since there is no option to enable

receiving shadow only the outline of the building voxelised

model is visible. On the other hand, if quads are used visible

voxels' faces can receive and cast a shadow. A graph used to

achieve the quad visualisation is available in the appendix.

Figure 6. Voxel visualisation using VFX graph; top image

shows voxel visualisation using cubes for each voxel; the

middle image shows voxel visualisation using only visible

quads; bottom image shows voxels considering each object to

which they belong.

3.2.3 Point clouds voxel visualisation

Another way of visualising voxels is to use point clouds

techniques where every voxel is displayed as a point, which is

very similar to visualising them as particles. To test this, the

previously mentioned UnityPointCloudViewer plugin is used.

Voxels can be grouped into blocks for quick load/unload. It

allows random culling of voxels based on their distance from

the camera. Although this might work nicely for point clouds

allowing to render larger scenes, culling randomly voxels

creates a discontinuity effect (Figure 7).

Figure 7. Rendering voxels as point clouds; upper image shows

all voxels as points; lower image shows some randomly culled

voxels based on the distance to a camera

3.2.4 SVO visualisation

The implemented SVO in Unity is the one from Laine & Karras

(2010). It allows visualising large voxel models without

requiring a huge memory (Figure 8). Users can add voxels at

different octree depth levels, and assign a colour and other

attributes. On our computer, it is possible to render successfully

a 4K3 size model. Out of all presented solutions, this one is the

only one that is officially designed for voxels rendering and to

some extent for management.

Figure 8. Voxels rendering using SVO

3.2.5 Methods comparison

Several techniques are presented for voxels visualisation in the

previous sections. They can be evaluated in a few aspects to

better understand their strengths and weaknesses. 10 different

scenarios are selected for testing (Table 3). The first 4 are

related to mesh visualisation. After that, the next 4 are

considering VFX graphs to visualise voxels. Scenario 9 is

testing the usage of the point clouds visualiser, while the final

scenario is related to SVO usage.

As mentioned, URP is used for better performance reasons and

compatibility with more platforms. Experiments are run on a

computer with an Intel(R) Core(TM) i7-7600 CPU @ 2.80GHz

using 16GB of RAM, Intel(R) HD Graphics 620, and running

Windows 10. The project is available for download and

contributions on GitHub(10).

As a case study 3D model of Red Centre building at the UNSW

is selected. The size of 3D model is 150x28x32 meters and

contains 11457 objects, being a very complex model. Update

rate and creation time to rendering are measured for 20 cm (i.e.,

2179434 cubes or 3032906 quads) and 50 cm (i.e., 267615

cubes or 315244 quads) voxel sizes. The selection of these sizes

is arbitrary, but they perfectly show the differences between the

selected methods. SVO outperformed other methods in terms of

achieved frame rate, while VFX approaches accomplished the

lowest frame rate. Among mesh-based methods, the one

reducing the number of triangles performed the best. The

method that uses the occlusion culling method achieved a

smaller frequency than without using it. However, this

technique might perform better if the user is inside a building,

(10) https://github.com/grid-unsw/Voxel-Management

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

17

https://github.com/grid-unsw/Voxel-Management

and many objects ahead are easily occluded by walls. For the

mesh using many colours, we create the same number of

materials, which might not be the best strategy and the achieved

frame rate is smaller than expected.

In contrast, VFX achieved the quickest rendering creation time.

SVO requires slightly more time for construction especially if

the model is large. To create the occlusion culling octree several

minutes are required. The mesh simplification approach is

relatively quick, achieving ~10x reduction of triangles for 50

cm voxel size (Figure 4). However, as mentioned previously it

cannot handle models when the voxel size is small. The point

clouds approach can be positioned somewhere in the middle

regarding the creation time and update rate. It should be

mentioned that the time to perform the binary voxelisation is not

included in the calculations, where the voxelisation time for the

20 and 50 cm size voxels is 3.8 and 0.4 seconds, respectively.

 Voxel size 50 cm Voxel size 20 cm

Update

rate [fps]

Creation

time [s]

Update

rate [fps]

Creation

time [s]

Mesh 102* 0.7 22.3** 7.3

Mesh with

colours

47* 7.8 17.8** 20

Occlusion

culled mesh

80* 198 22.4** 889

Simplified

mesh

115 36 / /

VFX-cube 60 1.1 12.2 1.7

VFX-cube

with colour

59.2 1.4 12.1 4

VFX-quad 68 0.2 13.1 1.6

VFX-quad

with colour

67.8 0.7 13 3.8

Point clouds 88 2.5 16.5 29

SVO 128 0.9 53.1 9

Table 3. Comparison of voxel visualisation approaches; * 323

blocks used; ** 1283 blocks used.

3.3 Voxels export

There are several ways in which voxels can be exported. A

common way is to export them as point clouds. Another option

enabled is to distribute them to a spatial database over which

various spatial analyses can be run. For the point clouds, only

PTS is considered as an exporting option for now, whereas

PostgreSQL with several PostGIS extensions is considered for

exporting voxels to a database. Since Postgres does not provide

support for any voxel data structure like octrees, users can

export them as POINTs, pgPointcloud or Arrays (Li et al.,

2020). To export voxels, at the right location, an offset and

coordinate reference system should be specified in Unity. Once

the voxels are stored in PostgreSQL, they can be visualised in

QGIS even in 3D (Figure 9) and perform many spatial analyses.

Figure 9. Visualisation of 1m voxels in QGIS via Qgis2threejs

plugin

3.4 Voxels storage

As presented in section 2.2 several options exist to store and

manage voxels. Surprisingly all of them rely on octrees

targeting different technologies including the use of single-

threaded CPUs, multi-core CPUs based on the DOTS

technology as well as the GPU by using SVO.

Once the voxels are created, users can store them in any of these

octree-based data structures for any further voxel management

purposes or simulations. Regarding semantics, the CPU-based

approaches are created to support the storage of reference type

objects which are perfect for OOP, while the SVO can store

colour and integer type attributes.

4. DISCUSSION AND CONCLUSION

Several native and open-source solutions are explored in the

first section showing the interest in voxelisation, voxel

visualisation, management and export. The most interesting fact

is that many different options exist to work with voxels. The

native solutions mainly concentrate on bringing the technology

to programmers allowing them to explore different options for

the same problem. On the other hand, the open-source projects

proceed further to create context-specific solutions. Various

voxelisation strategies and voxel data structures are explored.

Surface and solid voxelisation are mainly explored targeting

different voxelisation properties such as connectivity and

coverage. The main area that is not explored in the process is

attention to the preservation of semantic information. In terms

of voxel data structures, octree-related structures are

predominantly used. However, the latest research has not been

implemented, where many great data structures such as SPGrid,

VDB, SVDAG and SSVDAG are yet to be explored how they

perform for different scenarios.

In section 3, voxelisation of large 3D models, 4 voxel

visualisation techniques, as well as voxel storage and export are

presented. Voxelising large 3D voxel models is possible to

achieve in a matter of seconds. At the same time, the approach

is extended to support the usage of any voxel size if the purpose

is to deal with large scenes or small voxels. When it comes to

voxel visualisation, several different techniques are

investigated, where all techniques performed distinctively.

Several methods are presented including chunking, mesh

simplification and occlusion culling trying to improve the

performance of using meshes in Unity. By splitting the mesh

into smaller blocks, the possibility to construct large voxel-

based mesh models is achieved. Mesh simplification is partially

explored, but the results seem promising since the number of

triangles can be reduced significantly especially if not many

materials are used and there are a lot of flat areas in the model.

In contrast, the occlusion culling did not bring any performance

improvement for the given scenario if the full model is to be

visualised, and it can be expensive to construct, but it might be

interesting to consider for indoor navigation where some parts

will be culled out from the camera forward view. VFX

performed the best in terms of the time needed to create the

rendering of voxels. Voxels can be rendered as cubes or quads.

For quads shadow casting and receiving is possible to enable,

which is not the case with the cubes. We should mention that

the creation of mesh on VFX is not explored which can increase

the frame rate performance due to the reduction of mesh draw

calls. Although VFX allows direct usage of GPU, the main

issue is the lack of support for voxel data structures which will

allow storage and management of voxels. The use of point

clouds techniques to render voxels can be used, but most likely

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

18

it is not the best strategy to consider. The one that is explored

here renders voxels as individual points, which might not be the

best way if voxels are condensed in one place as in our

example. Also, point clouds can use octrees to store and render

many points, becoming similar to the SVO approach. Using

SVO users can reliably render huge voxel models without

taking a large portion of the computer’s memory. However, the

construction time starts increasing with large models, which

users should bear in mind if the intention is to consider dynamic

scenarios where many voxels need position update within the

octree.

Regarding the storage and management of voxels in Unity, the

underlying data structure needs to support the storage of

reference type objects which can be updated via other scripts

out of the data structure but still be reflected in the data

structure itself.

It is possible to export voxels as point clouds and to a

PostgreSQL database, allowing to further process and work

with voxels on other platforms. However, in both cases, voxels

can be exported predominantly as points, which are not native

containers for voxels storage.

5. FUTURE RESEARCH

At the moment conservative surface and solid voxelisation of

3D models are explored, but it would be nice to provide support

for all geometrical primitives including points, lines, curves,

triangles, polygons, and solids with the intention of attribute

preservation during the voxelisation process. Also, different

voxelisations including 26- & 6-connected should be possible to

achieve using not only GPU but also CPU.

As mentioned previously, the available voxel data structures are

not suitable if voxels move their positions as in simulations.

Therefore, bringing the OpenVDB library for the processing

and storage of voxels can bring another dimension to the

platform. In the future, it would be nice to implement the other

mentioned data structures to speed up the voxelisation to render

process and consider the storage of voxels into different data

structures directly on GPU (Schwarz & Seidel, 2010).

Since the mesh simplification approach is not working with

meshes constructed of small voxels and even does not simplify

all possible triangles for some scenarios, we should explore

using other methods which are based on quadtrees and

rectangular decomposition to find per slice in 2D the minimal

number of triangles (Suk et al., 2012). Of course, this can work

well if the scene has many flat areas, not many colours and

when small voxels are used. By having lighter models,

applications can be more performant and models can be easily

loaded on other software.

For easier georeferencing of 3D models in Unity, without

defining manually model’s offset, integration of the platform

with some of the available GIS systems in Unity like ArcGIS or

Mapbox can be suggested. Also, voxelisation of geospatial data

stored in a database should be enabled to provide two

directional integration with PostgreSQL.

Although more testing is needed, the project uses URP and not

many shaders are used which should be compatible with many

platforms. Therefore, it should be determined exactly for each

approach the compatibility with WebGL, Linux, Android, and

so on.

REFERENCES

Aleksandrov, M., Zlatanova, S., Kimmel, L., Barton, J., &

Gorte, B. (2019). Voxel-based visibility analysis for safety

assessment of urban environments. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, 4(4/W8). https://doi.org/10.5194/isprs-annals-IV-4-

W8-11-2019

Aleksandrov, Mitko, Zlatanova, S., & Heslop, D. J. (2021).

Voxelisation Algorithms and Data Structures: A Review.

Sensors, 21(24), 8241.

Amanatides, J., & Woo, A. (1987). A fast voxel traversal

algorithm for ray tracing. Eurographics, 87(3), 3–10.

Beckhaus, S., Wind, J., & Strothotte, T. (2002). Hardware-

based voxelization for 3d spatial analysis. Proceedings of the

5th International Conference on Computer Graphics and

Imaging, 20.

Garland, M., & Heckbert, P. S. (1998). Simplifying surfaces

with color and texture using quadric error metrics. Proceedings

Visualization’98 (Cat. No. 98CB36276), 263–269.

Gorte, B., Aleksandrov, M., & Zlatanova, S. (2019). Towards

egress modelling in voxel building models. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, 4(4/W9). https://doi.org/10.5194/isprs-annals-IV-4-

W9-43-2019

Gorte, B. G. H., Zhou, K., Van Der Sande, C. J., & Valk, C.

(2018). A computationally cheap trick to determine shadow in a

voxel model. ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 4(4).

Gorte, Bernardus, Zlatanova, S., & Fadli, F. (2019). Navigation

in Indoor Voxel Models. ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 4, 279–283.

https://doi.org/10.5194/isprs-annals-IV-2-W5-279-2019

IX, F. D., & Kaufman, A. (2000). Incremental triangle

voxelization. Proceedings of Graphics Interface, 205–212.

Jørgensen, F., Møller, R. R., Nebel, L., Jensen, N.-P.,

Christiansen, A. V., & Sandersen, P. B. E. (2013). A method for

cognitive 3D geological voxel modelling of AEM data. Bulletin

of Engineering Geology and the Environment, 72(3), 421–432.

Kämpe, V., Sintorn, E., & Assarsson, U. (2013). High

resolution sparse voxel dags. ACM Transactions on Graphics

(TOG), 32(4), 1–13.

Kaufman, A., & Shimony, E. (1987). 3D scan-conversion

algorithms for voxel-based graphics. Proceedings of the 1986

Workshop on Interactive 3D Graphics, 45–75.

Laine, S. (2013). A topological approach to voxelization.

Computer Graphics Forum, 32(4), 77–86.

Laine, S., & Karras, T. (2010). Efficient sparse voxel octrees–

analysis, extensions, and implementation. NVIDIA Corporation,

2.

Li, W., Zlatanova, S., & Gorte, B. (2020). Voxel data

management and analysis in PostgreSQL/PostGIS under

different data layouts. ISPRS Annals of Photogrammetry,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

19

Remote Sensing & Spatial Information Sciences, 6.

Museth, K. (2013). VDB: High-resolution sparse volumes with

dynamic topology. ACM Transactions on Graphics (TOG),

32(3), 1–22.

Nießner, M., Zollhöfer, M., Izadi, S., & Stamminger, M. (2013).

Real-time 3D reconstruction at scale using voxel hashing. ACM

Transactions on Graphics (ToG), 32(6), 1–11.

Nourian, P., Gonçalves, R., Zlatanova, S., Ohori, K. A., & Vu

Vo, A. (2016). Voxelization Algorithms for Geospatial

Applications: Computational Methods for Voxelating Spatial

Datasets of 3D City Models Containing 3D Surface, Curve and

Point Data Models. MethodsX, 3, 69–86.

https://doi.org/10.1016/j.mex.2016.01.001

Poux, F., & Billen, R. (2019). Voxel-based 3D point cloud

semantic segmentation: unsupervised geometric and

relationship featuring vs deep learning methods. ISPRS

International Journal of Geo-Information, 8(5), 213.

Schwarz, M., & Seidel, H.-P. (2010). Fast parallel surface and

solid voxelization on GPUs. ACM Transactions on Graphics

(TOG), 29(6), 1–10.

Setaluri, R., Aanjaneya, M., Bauer, S., & Sifakis, E. (2014).

SPGrid: A sparse paged grid structure applied to adaptive

smoke simulation. ACM Transactions on Graphics (TOG),

33(6), 1–12.

Silver, D., & Gagvani, N. (2000). Shape-based volumetric

collision detection. 2000 IEEE Symposium on Volume

Visualization (VV 2000), 57–61.

Suk, T., Höschl, C., & Flusser, J. (2012). Rectangular

decomposition of binary images. International Conference on

Advanced Concepts for Intelligent Vision Systems, 213–224.

Villanueva, A. J., Marton, F., & Gobbetti, E. (2017). Symmetry-

aware Sparse Voxel DAGs (SSVDAGs) for compression-

domain tracing of high-resolution geometric scenes. Journal of

Computer Graphics Techniques Vol, 6(2).

Villanueva, A. J., Marton, F., & Gobbetti, E. (2016).

SSVDAGs: Symmetry-aware sparse voxel DAGs. Proceedings

of the 20th ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games, 7–14.

Vo, A.-V., Truong-Hong, L., Laefer, D. F., & Bertolotto, M.

(2015). Octree-based region growing for point cloud

segmentation. ISPRS Journal of Photogrammetry and Remote

Sensing, 104, 88–100.

Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A modern

library for 3D data processing. ArXiv Preprint

ArXiv:1801.09847.

6. APPENDIX

Figure 10. VFX graph using quads for voxel visualisation

Figure 11. Voxel management options

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-13-2022 | © Author(s) 2022. CC BY 4.0 License.

20

