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ABSTRACT: 

 

Voxels have been used in various application domains successfully for the last several decades. Their main advantage is the 

underlying discrete data structure allowing to reliably work with surrounding voxels all the time. In this paper, capabilities of the 

Unity game engine for voxels management and geometry voxelisation are assessed, where 4 native solutions and 7 open-source 

projects written for Unity are investigated. Although many voxel-based options exist in Unity, they only deal with one part related to 

voxels. Therefore, the available capabilities to voxelise, visualise, structure and export voxels are combined and extended with the 

goal of successfully processing large 3D models and geometries. Many voxel visualisation techniques are investigated including 

mesh, VFX, point clouds and SVO, which have distinctive benefits in various aspects. Possibilities to structure voxels for effective 

management in simulations and other tasks are shown. Also, it is enabled to export voxels as point clouds and to the Postgres 

database for further processing, spatial analysis and distribution. One of the main conclusions is the lack of support for state-of-the-

art voxel data structures, where the presented platform can easily be extended to support any. This platform can be used by people 

who deal with 3D discrete data, require voxelising 3D data, visualise voxels in different ways and technologies, as well as manage 

more efficiently sparsely occupied voxels. 

 

1. INTRODUCTION 

Voxels are commonly being investigated in many application 

domains including computer graphics (Amanatides & Woo, 

1987), city modelling (Nießner et al., 2013), geology (Jørgensen 

et al., 2013), spatial analysis (Beckhaus et al., 2002), point 

clouds processing (Vo et al., 2015), machine learning (Poux & 

Billen, 2019), collision detections (Silver & Gagvani, 2000), 

shadow calculations (Gorte et al., 2018), visibility analysis 

(Aleksandrov et al., 2019), egress modelling (Gorte et al., 

2019), pedestrian navigation (Bernardus Gorte et al., 2019) and 

so on. As we can see voxels are highly applicable and further 

investigations are required to better understand their 

characteristics and advantages. 

 

Voxelisation is a process of transferring vector data into a 

structure that discretely represents geometry and semantics. 

Many researchers considered for voxelisation different 

geometric primitives such as points (Nourian et al., 2016),  lines 

(Laine, 2013), triangles (IX & Kaufman, 2000), polygons 

(Kaufman & Shimony, 1987), surfaces and solid models 

(Schwarz & Seidel, 2010). At the same time, many voxelisation 

algorithms achieve different voxelisations targeting properties 

such as connectivity and separability. The first step in 

understanding what kind of voxelisation is possible to achieve is 

important to assess the available implemented algorithms. One 

of the main issues as suggested by Aleksandrov et al., (2021) is 

the availability of these approaches in common software and 

platforms for usage and testing. Storing additional information 

for each voxel goes in the direction of non-binary voxelisation, 

which is useful in preserving some properties needed for voxel 

rendering, management, and interaction. Therefore, it is 

important to assess the current capabilities of voxelisation 

algorithms implemented in Unity in this regard.  

 

Many times voxels are visualised as points using different 

libraries such as UnityPointCloudViewer(1) and Open3D (Zhou 

 

* Corresponding author 

et al., 2018). Aleksandrov et al. (2019) indicated that voxels can 

share common faces which can be omitted for rendering 

purposes. Thus, it is important to understand if better 

performance is possible to achieve by visualising simply all 

occupied voxels as cubes, by rendering only the visible voxel’s 

faces or some other voxel-based techniques could be used 

allowing us to reduce the number of voxels’ triangles to render 

a voxel model in a more light-weighted way. Thus, assessing 

different voxel visualisation techniques is needed. 

 

To deal with large voxel data sets, efficient compression and 

decompression methods are suggested since many 3D scenes 

have less than 1% of occupied voxels. Thus, the most prominent 

approaches for visualisation of large voxel scenes rely on sparse 

voxel octrees (SVO) (Laine & Karras, 2010), sparse voxel 

directed acyclic graphs (SVDAG) (Kämpe et al., 2013) and 

symmetry-aware sparse voxel directed acyclic graphs 

(SSVDAG) (Villanueva et al., 2017, 2016). Apart from voxels 

visualisation, 3D spatial queries and simulations can be 

performed over voxels. Aleksandrov et al. (2021) indicated that 

for modelling more dynamic phenomena such as smoke 

propagations and fluid simulations the use of voxel data 

structures such as SPGrid (Setaluri et al., 2014) and VDB 

(Museth, 2013) are suggested. Therefore, it is crucial to 

understand if these data structures are easily available or some 

other data structures are more commonly utilised. 

 

To be able to work with voxels, it is key to identify what the 

options are in one software, where the Unity3D game engine is 

selected as a testing platform. The paper consists of 4 main 

parts. In section 2, the most relevant voxel-based technology 

and projects are assessed in aspects related to the acquisition, 

storage, interaction, and visualisation of voxels. Section 3 

 
(1) UnityPointCloudViewer. 

https://github.com/unitycoder/UnityPointCloudViewer 

(accessed on 27 April 2022) 
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explores how to combine and extend the available capabilities 

to achieve voxelisation and voxel visualisation of large 3D 

models, as well as shows how to structure and export voxels for 

further processing and usage. Section 4 presents the discussion 

and resulting conclusions, whereas section 5 proposes future 

directions to deal with voxels more effectively.  

 

2. EVALUATION OF VOXEL-BASED APPROACHES 

IN UNITY3D 

In the paper, the Unity game engine is selected as a testing 

platform for several reasons. Unity is one of the best 3D game 

engines along with the Unreal game engine. Although Unity is 

not a voxel-based engine, it can support the use of different data 

structures and provide user-specific rendering. Also, it allows 

application deployment to many platforms including Windows, 

Mac OS, Linux, web and so on. The community using the 

software is huge and many voxel-related projects are known in 

the software. The evaluation of several native solutions and 

open-source projects built in Unity are presented in the 

following subsections.  

 

2.1 Native Unity solutions 

It is possible to work with voxels in several ways based on the 

technology that Unity provides. 4 different approaches that can 

be utilised for the successful management of voxels are 

identified including GameObjects, DOTS, VFX graph and 

compute shaders (Table 1).  

 

GameObjects are fundamental blocks in Unity to which 

components can be attached to hold properties that users can 

manipulate defining their behaviours. This approach supports 

standard C#-based programming, which can be highly 

advantageous for people not familiar with the other available 

approaches, allowing them to reuse many available C# libraries 

and code. By using GameObjects, users would work with 

triangulated meshes (e.g., quads, cubes and triangles) to work 

with voxels. One of the main issues with this approach is 

performance, having difficulty dealing with large scenes, many 

objects and computationally expensive operations.  

 

Data-Oriented Technology Stack (DOTS) has several 

advantages in dealing with the issues associated with the 

GameObject approach. This allows users to create richer user 

experiences and execute faster iterative operations. To work 

with each object (i.e., known as an entity) users can assign 

components which are represented as data containers and be 

processed by systems holding behaviours and logic. Unity 

allows the effective transition and compatibility between 

GameObject and DOTS, as well as a partial usage of these two. 

This method is particularly useful to offload GPU to balance the 

usage of both processing units in terms of rendering and 

computations. To use voxels, users would need to work with 

meshes as well as subscenes which allows subdividing large 

scenes into smaller areas for effectively loading/unloading as 

needed. Also, all voxel-related data would be stored in 

components and processed by systems in specified ways. 

Although DOTS can handle a large number of objects it might 

not the best for rendering and simulations of millions of objects.  

 

VFX graph is a powerful tool that directly uses GPU to create 

particle systems which can be manipulated in user-defined 

ways. The main advantage of this system is the ability to work 

with even millions of particles. In this case, each voxel would 

be most likely considered a cube which can be manipulated by a 

graph-based logic. It should be pointed out that other visual 

representation options for voxels such as quads and meshes are 

possible to use. The transition between other approaches is 

possible, but it can result in an additional overhead in case of 

requiring a frequent transfer of data to the CPU and vice versa. 

Therefore, it might not be the best option if the system requires 

loading very often data from a database or files. Apart from the 

option to calculate a signed distance field, other data structures 

like octrees are not available, which is the current main issue to 

manage voxels efficiently. Due to the use of specific shaders 

and rendering pipelines like the high definition rendering 

pipeline (HDRP) some platforms cannot be targeted for 

application export like WebGL, so the universal rendering 

pipeline (URP) is more recommended. 

 

Compute shaders are shader programs that use the GPU without 

the need to operate on meshes or texture data, and their main 

usage is for a large set of calculations involving mathematics 

and parallelisation. Voxels are usually represented in discrete 

space via arrays over which some mathematical operations are 

performed. The main difference with the VFX graph approach 

is the low-level programming control. However, the main issue 

can be the programming knowledge required as well as the 

incompatibility with even more platforms. 

 
(2) https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@14.0/manual/System-Requirements.html (accessed on 27 4 2022) 
(3) https://docs.unity3d.com/Manual/class-ComputeShader.html (accessed on 27 April 2022) 

Table 1. Voxelisation approaches and voxel data structures supported in Unity 

Approach Characteristics 

 Processing 

unit 

Pros Cons Platform level 

compatibility 

GameObjects CPU Full control of the scene; standard C# 

object-oriented programming 

Not suitable for physical simulations and 

dealing with a lot of objects 

High 

DOTS Multicore 

CPU 

Multicore processing; simplified 

usage; dealing with large scenes; 

reduced power usage; smaller 

building applications 

Not suitable for extremely large simulations 

and rendering, and compatibility with 

different Unity versions 

High 

VFX graph GPU Particle-based modelling; node-based 

visual logic; dealing with a lot of 

objects; suitable for creating visual 

effects and physical simulations 

Limited programming control; availability 

of voxel data structures; heavily shaders 

usage; adjustable occlusion culling; not 

suitable to combine with CPU processes 

Medium(2) 

Compute 

shaders 

GPGPU Usage of massively parallel functions; 

accelerated game rendering  

In-depth knowledge of GPU architecture 

and algorithms parallelisation 

Low(3) 
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2.2 Open-source projects in Unity 

The first step to working with voxels requires their generation. 

As presented in the introduction section, several geometric 

primitives can be used for voxelisation. While voxelisation of 

points is relatively easy to achieve, other primitives require the 

use of specific algorithms for voxelisation. In the case of having 

sparsely represented voxels, the use of plane arrays can result in 

a high memory footprint. Therefore, more efficient voxel data 

structures are suggested (Aleksandrov et al., 2021). 

 

Table 2 shows different voxel-ralated open-source projects 

available to download from GitHub. 7 projects are identified 

dealing with some aspects related to voxels, helping us to 

understand the current status and capabilities for effective 

management of voxels in Unity. When it comes to voxelisation 

options, 2 projects are identified where surface voxelisation is 

possible to achieve either on CPU or GPU, while solid 

voxelisation is possible to obtain only on GPU. 26-connected 

and conservative voxelisation is being targeted in these projects 

showing interest in different voxelisations. The first project is 

allowing to voxelise an object’s texture, while the second 

project targets exclusively binary voxelisation of a 3D object.  

 

Regarding voxel data structures, 3 of them use regular octrees to 

keep reference type objects storing them either as points or 

minimal bounding boxes (MBB). In general, octrees do not take 

a huge memory of a computer and they are useful if the 

intention is to conduct frequently some spatial queries like 

proximity analysis over objects which are spread around in a 

larger area. The Unity-SVO project uses a sparse version of an 

octree reducing the memory footprint even more and enabling 

effective rendering of large voxel scenes. For each voxel, colour 

can be stored as well as some integer parameters. Until recently, 

the OpenVDB library was also possible to use in Unity, but the 

project seems abandoned. This is unfortunate since the VDB 

data structure allows to manage effectively voxels in scenarios 

when voxels often update positions like in simulations. 

 

Approach Characteristics 

 Processing 

unit 

Purpose Queries Unity version 

compatibility 

GitHub  

stars 

Unity-voxel(2) 

CPU-based Conservative surface voxelisation 

Array-based queries Unity 2018.3.0f2 1031 GPU-based Conservative surface and solid 

voxelisation 

Mesh-voxelization(3) CPU-based 26-connected voxelisation Array-based queries Unity 2020.1.14f1 162 

UnityOctree(4) CPU-based 

octree 

A dynamic and loose octree; 

allowing to store point and MBB 

referenced objects 

MBB intersections, 

points within 

distance 

all Unity versions 727 

ESC-Octree(5) DOTS-based 

octree 

A dynamic and loose octree; 

allowing to store point and MBB 

referenced objects 

MBB intersections, 

points within 

distance, raycasting 

Unity 2020.1a  126 

NativeOctree(6) DOTS-based 

octree 

allowing to store point referenced 

objects 

Points inside a box Unity 2019.3.0b10 89 

Unity-SVO(7) GPU-based 

SVO 

Voxel storage and rendering Raycasting Unity 2019.4.21f1 74 

OpenVDBForUnity(8) CPU-based 

VDB 

Manipulation of sparse, time-

varying, volumetric data 

Topological and 

morphological 

operations, etc. 

Abandoned 209 

 
(2) Unity-voxel. https://github.com/mattatz/unity-voxel (accessed on 27 April 2022) 
(3) Mesh-voxelisation. https://github.com/Scrawk/Mesh-Voxelization (accessed on 27 April 2022) 
(4) UnityOctree. https://github.com/Nition/UnityOctree (accessed on 27 April 2022) 
(5) ESC-Octree. https://github.com/Antypodish/ECS-Octree (accessed on 27 April 2022) 
(6) NativeOctree. https://github.com/marijnz/NativeOctree (accessed on 27 April 2022) 
(7) Unity-SVO. https://github.com/BudgetToaster/unity-sparse-voxel-octrees (accessed on 27 April 2022) 
(8) OpenVDBForUnity. https://github.com/karasusan/OpenVDBForUnity (accessed on 27 April 2022) 

Table 2. Voxelisation approaches and voxel data structures supported in Unity 

3. VOXELS MANAGEMENT PLATFORM 

Aleksandrov et al., (2021) presented that many geometrical 

primitives exist including points, lines, triangles, polygons, 

surfaces and volumes, where for each one of them different 

voxelisations can be achieved considering the application of 

interest. Apart from the geometrical transition to discretised 

shape, it is important to consider attributes preservation during 

the process. For the fast insert, retrieval, rendering and update 

of voxels and their properties, it is important to use voxel data 

structure. At the same time, visualisation of voxels is possible to 

perform in many ways considering different techniques, data 

structures and needs. Therefore, we identify 3 main components 

starting with input geometry, voxelisation, followed by data 

storage, visualisation and export (Figure 1). The main idea is to 

use the available technology that Unity provides, and the 

projects evaluated above to establish the support for 

voxelisation of various geometrical primitives, many data 

structures and export options. Therefore, a platform is created to 

deal with each of these aspects separately. 

 
Figure 1. Processing workflow 
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3.1 Voxelisation of 3D models 

As a first step, it is important to understand how to voxelise 

quickly not only one object, but an entire scene. At the same 

time, enabling voxelisation of any size voxels without having 

constraints in terms of available computer memory is needed.  

 

To establish such a flexible approach, we consider several steps. 

The first step involves the storage of bounding boxes of objects 

representing a 3D model in an octree to be able to query areas 

which should be voxelised. Afterwards, a model is divided into 

2563 blocks which can fit in the computer’s memory for 

voxelisation. The following step involves the identification of 

components belonging to each block using the bounding boxes 

stored in the octree. Once all objects are identified, objects’ 

meshes are combined and sent to the voxeliser. For now, only 

the conservative surface voxelisation is considered using 

compute shaders to process voxels on the GPU. After that, 

voxels can be processed for visualisation and stored in an 

octree. The process is repeated for each block until the whole 

area of interest or 3D model is voxelised. 

 

Figure 2 shows the voxelisation process of a 3D model using a 

voxel size of 10 cm. It can be observed that 3 blocks are needed 

to voxelise the model successfully. Users can voxelise only part 

of the building if needed at any time since bounding boxes of all 

objects are stored in an octree and can be queried using a 3D 

area. Also, to preserve semantic information during voxelisation 

objects are voxelised individually. 

 

 
Figure 2. Binary voxelisation of a 3D model using 10 cm size 

voxels; upper image shows the 3D model in Unity; lower image 

shows 3 blocks used for voxelisation, where the middle one is 

highlighted. 

 

3.2 Voxels visualisation options 

Many ways exist to render voxels, where each approach has a 

specific aim for its usage. Reviewing the presented open-source 

projects and Unity technologies 4 approaches are identified as 

suitable for voxel visualisation, but there can be even more. 

These approaches include mesh, VFX, point clouds and SVO. 

As assessed above these approaches' purpose is not just 

visualisation. They can be utilised for different applications 

requiring simulations, physical interactions and shadow 

analysis.  

 

3.2.1 Mesh-based voxels visualisation 

 

Working with meshes represents a common way to render 

voxels in software dealing with 3D computer graphics. There 

are several ways to utilise meshed for voxels visualisation. The 

most obvious way is to create cubes representing the occupied 

voxel, where each cube will be a separate GameObject in Unity. 

However, this process is expensive and not many voxels can be 

rendered this way. A slightly better approach is to create a mesh 

where only one face is created if two occupied voxels are 

sharing it, but such faces can be even omitted since they are not 

visible from outside a voxelised model. Thus, such faces are 

omitted during the mesh construction, having fewer quads and 

correspondingly triangles to render. 

 

Small voxel sizes can result in large meshes where smaller 

blocks/chunks can be used to construct voxel-looking meshes. 

The same approach can be easily extended to visualise colour-

based voxelised meshes (Figure 3). 

 

 
Figure 3. Voxels visualisation using blocks of meshes; upper 

image shows voxelised model created from smaller mesh 

chunks; lower image shows mesh chunks colouring each voxel 

based on object’s id to which it belongs. 

 

At the same time, such blocks can be utilised for occlusion 

culling that Unity supports. It is required to define all 

GameObjects (i.e., meshes) as static allowing an octree to be 

generated and automatically cull objects that are not visible 

from a camera point of view (Figure 4). 

 

 
Figure 4. Occlusion culling of voxel blocks; upper image 

shows the rays send from the camera to see which components 

to turn off; lower image shows the corresponding camera view. 

 

Once a voxel-looking mesh is constructed, the first impression 

is that triangles belonging to one surface can be merged to 

reduce their number and improve the visualisation performance. 

After a thorough search of a suitable method, a library(9) 

utilising quadric mesh simplification is identified (Garland & 

Heckbert, 1998). However, the implemented method works well 

(i.e., keeps the voxel-looking structure intact) only when using 

large voxel sizes (e.g., >50 cm) and it requires fully enclosed 

meshes (Figure 5).  

 

 
(9)UnityMeshSimplifier.https://github.com/Whinarn/UnityMesh

Simplifier (accessed on 27 April 2022) 
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Figure 5. Mesh simplification of a voxelised model; upper 

image shows all triangles representing voxel visible faces; lower 

image shows simplified mesh. 

 

3.2.2 VFX voxels visualisation  

 

As explained previously VFX works with particles allowing 

users to directly work with the GPU performing simulations or 

other computations on them. Two approaches are assessed, 

where voxels are visualised as cubes and quads (i.e., faces) that 

are visible. To create voxels at specific locations their 

coordinates and all other information (e.g., colour, voxel size, 

etc.) should be transferred from CPU to GPU where the 

desirable objects will be instantiated. Figure 6 shows different 

representations of the voxels. The top image represents voxels 

visualised as cubes, but since there is no option to enable 

receiving shadow only the outline of the building voxelised 

model is visible. On the other hand, if quads are used visible 

voxels' faces can receive and cast a shadow. A graph used to 

achieve the quad visualisation is available in the appendix. 

 

 
Figure 6. Voxel visualisation using VFX graph; top image 

shows voxel visualisation using cubes for each voxel; the 

middle image shows voxel visualisation using only visible 

quads; bottom image shows voxels considering each object to 

which they belong. 

 

3.2.3 Point clouds voxel visualisation 

 

Another way of visualising voxels is to use point clouds 

techniques where every voxel is displayed as a point, which is 

very similar to visualising them as particles. To test this, the 

previously mentioned UnityPointCloudViewer plugin is used. 

Voxels can be grouped into blocks for quick load/unload. It 

allows random culling of voxels based on their distance from 

the camera. Although this might work nicely for point clouds 

allowing to render larger scenes, culling randomly voxels 

creates a discontinuity effect (Figure 7). 

  

 
Figure 7. Rendering voxels as point clouds; upper image shows 

all voxels as points; lower image shows some randomly culled 

voxels based on the distance to a camera 

 

3.2.4 SVO visualisation 

 

The implemented SVO in Unity is the one from Laine & Karras 

(2010). It allows visualising large voxel models without 

requiring a huge memory (Figure 8). Users can add voxels at 

different octree depth levels, and assign a colour and other 

attributes. On our computer, it is possible to render successfully 

a 4K3 size model. Out of all presented solutions, this one is the 

only one that is officially designed for voxels rendering and to 

some extent for management.  

 

 
Figure 8. Voxels rendering using SVO 

 

3.2.5 Methods comparison  

 
Several techniques are presented for voxels visualisation in the 

previous sections. They can be evaluated in a few aspects to 

better understand their strengths and weaknesses. 10 different 

scenarios are selected for testing (Table 3). The first 4 are 

related to mesh visualisation. After that, the next 4 are 

considering VFX graphs to visualise voxels. Scenario 9 is 

testing the usage of the point clouds visualiser, while the final 

scenario is related to SVO usage. 

 

As mentioned, URP is used for better performance reasons and 

compatibility with more platforms. Experiments are run on a 

computer with an Intel(R) Core(TM) i7-7600 CPU @ 2.80GHz 

using 16GB of RAM, Intel(R) HD Graphics 620, and running 

Windows 10. The project is available for download and 

contributions on GitHub(10). 

 

As a case study 3D model of Red Centre building at the UNSW 

is selected. The size of 3D model is 150x28x32 meters and 

contains 11457 objects, being a very complex model. Update 

rate and creation time to rendering are measured for 20 cm (i.e., 

2179434 cubes or 3032906 quads) and 50 cm (i.e., 267615 

cubes or 315244 quads) voxel sizes. The selection of these sizes 

is arbitrary, but they perfectly show the differences between the 

selected methods. SVO outperformed other methods in terms of 

achieved frame rate, while VFX approaches accomplished the 

lowest frame rate. Among mesh-based methods, the one 

reducing the number of triangles performed the best. The 

method that uses the occlusion culling method achieved a 

smaller frequency than without using it. However, this 

technique might perform better if the user is inside a building, 

 
(10) https://github.com/grid-unsw/Voxel-Management 
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and many objects ahead are easily occluded by walls. For the 

mesh using many colours, we create the same number of 

materials, which might not be the best strategy and the achieved 

frame rate is smaller than expected.  

 

In contrast, VFX achieved the quickest rendering creation time. 

SVO requires slightly more time for construction especially if 

the model is large. To create the occlusion culling octree several 

minutes are required. The mesh simplification approach is 

relatively quick, achieving ~10x reduction of triangles for 50 

cm voxel size (Figure 4). However, as mentioned previously it 

cannot handle models when the voxel size is small. The point 

clouds approach can be positioned somewhere in the middle 

regarding the creation time and update rate. It should be 

mentioned that the time to perform the binary voxelisation is not 

included in the calculations, where the voxelisation time for the 

20 and 50 cm size voxels is 3.8 and 0.4 seconds, respectively. 

 

 Voxel size 50 cm Voxel size 20 cm 

Update 

rate [fps] 

Creation 

time [s] 

Update 

rate [fps] 

Creation 

time [s] 

Mesh 102* 0.7 22.3** 7.3 

Mesh with 

colours 

47* 7.8 17.8** 20 

Occlusion 

culled mesh 

80* 198 22.4** 889 

Simplified 

mesh 

115 36 / / 

VFX-cube 60 1.1 12.2 1.7 

VFX-cube 

with colour 

59.2 1.4 12.1 4 

VFX-quad 68 0.2 13.1 1.6 

VFX-quad 

with colour 

67.8 0.7 13 3.8 

Point clouds 88 2.5 16.5 29 

SVO 128 0.9 53.1 9 

Table 3. Comparison of voxel visualisation approaches; * 323 

blocks used; ** 1283 blocks used.  

 

3.3 Voxels export 

There are several ways in which voxels can be exported. A 

common way is to export them as point clouds. Another option 

enabled is to distribute them to a spatial database over which 

various spatial analyses can be run. For the point clouds, only 

PTS is considered as an exporting option for now, whereas 

PostgreSQL with several PostGIS extensions is considered for 

exporting voxels to a database. Since Postgres does not provide 

support for any voxel data structure like octrees, users can 

export them as POINTs, pgPointcloud or Arrays (Li et al., 

2020). To export voxels, at the right location, an offset and 

coordinate reference system should be specified in Unity. Once 

the voxels are stored in PostgreSQL, they can be visualised in 

QGIS even in 3D (Figure 9) and perform many spatial analyses. 

 

 
Figure 9. Visualisation of 1m voxels in QGIS via Qgis2threejs 

plugin 

3.4 Voxels storage 

As presented in section 2.2 several options exist to store and 

manage voxels. Surprisingly all of them rely on octrees 

targeting different technologies including the use of single-

threaded CPUs, multi-core CPUs based on the DOTS 

technology as well as the GPU by using SVO. 

 

Once the voxels are created, users can store them in any of these 

octree-based data structures for any further voxel management 

purposes or simulations. Regarding semantics, the CPU-based 

approaches are created to support the storage of reference type 

objects which are perfect for OOP, while the SVO can store 

colour and integer type attributes.  

 

4. DISCUSSION AND CONCLUSION 

Several native and open-source solutions are explored in the 

first section showing the interest in voxelisation, voxel 

visualisation, management and export. The most interesting fact 

is that many different options exist to work with voxels. The 

native solutions mainly concentrate on bringing the technology 

to programmers allowing them to explore different options for 

the same problem. On the other hand, the open-source projects 

proceed further to create context-specific solutions. Various 

voxelisation strategies and voxel data structures are explored. 

Surface and solid voxelisation are mainly explored targeting 

different voxelisation properties such as connectivity and 

coverage. The main area that is not explored in the process is 

attention to the preservation of semantic information. In terms 

of voxel data structures, octree-related structures are 

predominantly used. However, the latest research has not been 

implemented, where many great data structures such as SPGrid, 

VDB, SVDAG and SSVDAG are yet to be explored how they 

perform for different scenarios. 

 

In section 3, voxelisation of large 3D models, 4 voxel 

visualisation techniques, as well as voxel storage and export are 

presented. Voxelising large 3D voxel models is possible to 

achieve in a matter of seconds. At the same time, the approach 

is extended to support the usage of any voxel size if the purpose 

is to deal with large scenes or small voxels. When it comes to 

voxel visualisation, several different techniques are 

investigated, where all techniques performed distinctively. 

Several methods are presented including chunking, mesh 

simplification and occlusion culling trying to improve the 

performance of using meshes in Unity. By splitting the mesh 

into smaller blocks, the possibility to construct large voxel-

based mesh models is achieved. Mesh simplification is partially 

explored, but the results seem promising since the number of 

triangles can be reduced significantly especially if not many 

materials are used and there are a lot of flat areas in the model. 

In contrast, the occlusion culling did not bring any performance 

improvement for the given scenario if the full model is to be 

visualised, and it can be expensive to construct, but it might be 

interesting to consider for indoor navigation where some parts 

will be culled out from the camera forward view. VFX 

performed the best in terms of the time needed to create the 

rendering of voxels. Voxels can be rendered as cubes or quads. 

For quads shadow casting and receiving is possible to enable, 

which is not the case with the cubes. We should mention that 

the creation of mesh on VFX is not explored which can increase 

the frame rate performance due to the reduction of mesh draw 

calls. Although VFX allows direct usage of GPU, the main 

issue is the lack of support for voxel data structures which will 

allow storage and management of voxels. The use of point 

clouds techniques to render voxels can be used, but most likely 
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it is not the best strategy to consider. The one that is explored 

here renders voxels as individual points, which might not be the 

best way if voxels are condensed in one place as in our 

example. Also, point clouds can use octrees to store and render 

many points, becoming similar to the SVO approach. Using 

SVO users can reliably render huge voxel models without 

taking a large portion of the computer’s memory. However, the 

construction time starts increasing with large models, which 

users should bear in mind if the intention is to consider dynamic 

scenarios where many voxels need position update within the 

octree. 

 

Regarding the storage and management of voxels in Unity, the 

underlying data structure needs to support the storage of 

reference type objects which can be updated via other scripts 

out of the data structure but still be reflected in the data 

structure itself. 

 

It is possible to export voxels as point clouds and to a 

PostgreSQL database, allowing to further process and work 

with voxels on other platforms. However, in both cases, voxels 

can be exported predominantly as points, which are not native 

containers for voxels storage. 

 

5. FUTURE RESEARCH 

At the moment conservative surface and solid voxelisation of 

3D models are explored, but it would be nice to provide support 

for all geometrical primitives including points, lines, curves, 

triangles, polygons, and solids with the intention of attribute 

preservation during the voxelisation process. Also, different 

voxelisations including 26- & 6-connected should be possible to 

achieve using not only GPU but also CPU. 

 

As mentioned previously, the available voxel data structures are 

not suitable if voxels move their positions as in simulations. 

Therefore, bringing the OpenVDB library for the processing 

and storage of voxels can bring another dimension to the 

platform. In the future, it would be nice to implement the other 

mentioned data structures to speed up the voxelisation to render 

process and consider the storage of voxels into different data 

structures directly on GPU (Schwarz & Seidel, 2010). 

 

Since the mesh simplification approach is not working with 

meshes constructed of small voxels and even does not simplify 

all possible triangles for some scenarios, we should explore 

using other methods which are based on quadtrees and 

rectangular decomposition to find per slice in 2D the minimal 

number of triangles (Suk et al., 2012). Of course, this can work 

well if the scene has many flat areas, not many colours and 

when small voxels are used. By having lighter models, 

applications can be more performant and models can be easily 

loaded on other software. 

 

For easier georeferencing of 3D models in Unity, without 

defining manually model’s offset, integration of the platform 

with some of the available GIS systems in Unity like ArcGIS or 

Mapbox can be suggested. Also, voxelisation of geospatial data 

stored in a database should be enabled to provide two 

directional integration with PostgreSQL. 

 

Although more testing is needed, the project uses URP and not 

many shaders are used which should be compatible with many 

platforms. Therefore, it should be determined exactly for each 

approach the compatibility with WebGL, Linux, Android, and 

so on. 
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6. APPENDIX 

 
Figure 10. VFX graph using quads for voxel visualisation 

 

 
Figure 11. Voxel management options 
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