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ABSTRACT:

On a global scale, semantic 3D city models with Level of Detail 2 become more and more available. Automated generation of
higher Level of Detail models is an active field of research, but low coverage of dense LiDAR or photogrammetric point clouds is a
barrier. Therefore, this paper presents a novel approach for enriching semantic 3D city models with roof superstructures extracted
from aerial images using deep learning. The method maps and classifies superstructures in 2D and subsequently transforms them to
3D. Furthermore, we examine the benefit of the enriched model for solar potential analysis. The accuracy of solar potential analysis
is improved by avoiding invalid simplifications of slope, shadow and panel placement. The enriched model reduces overestimation
of accumulated solar potential by around 20% compared to an analysis based on aerial images only. The novel method contributes
to increasing the availability of Level of Detail 3 models for larger areas, while posing further research opportunities.

1. INTRODUCTION

Semantic 3D city models describe the geometric, visual, and
thematic aspects of the most important entities of cities by de-
composing and classifying them according to a semantic data
model. CityGML is an open data model and encoding stand-
ard for the representation and exchange of semantic 3D city
models (Kolbe, 2009; Open Geospatial Consortium, 2021). As
of today, city models according to the CityGML standard are
widely adopted for various use cases and application scenarios
ranging from purely visualization tasks to complex analytic sys-
tems and simulations (Biljecki et al., 2015). 3D city model data
has become available nationwide in Level of Detail 1 (LoD1)
and Level of Detail 2 (LoD2) in big parts of Europe, as well as
a number of countries in Asia and the Middle East, where map-
ping authorities create, update and maintain the models. Glob-
ally, there is also a growing number of CityGML models, of
which more and more are offered as open data (Wysocki et al.,
2022).

Currently, only LoD1 and LoD2 models can be generated with a
high degree of automation from LiDAR or dense image match-
ing point clouds and building footprints, e. g. from official ca-
dastre (Kada and McKinley, 2009; Haala and Kada, 2010; Mc-
Clune et al., 2016). Architectural details such as dormers, chim-
neys, or other roof superstructures (RSS) are usually not in-
cluded in the models. This lack of detail is a limiting factor
for many applications, as for instance, the estimation of solar
energy potentials on building roofs. Even though the quality
and availability of input data such as point clouds and aerial
images is increasing and the 3D reconstruction of buildings is
an active field of research, (see Section 2), to this date the prob-
lem of automatically deriving semantically classified RSS for
semantic 3D city models remains unsolved. In particular, the
∗ Corresponding author

combination of geometry and semantics is rarely seen, which is
a key feature making semantic 3D city models an attractive data
integration platform for a wide range of simulations and urban
analytic applications, compared to other 3D building represent-
ations such as 3D mesh models.

In recent years, researchers successfully applied deep learning-
based methods for automatic extraction of semantic, georefer-
enced information from aerial images. Building on these ad-
vances, this article explores a novel approach of enriching se-
mantic 3D city models with semantically classified RSS, making
use of the high degree of detail in high resolution aerial images
as well as deep learning methods for automatized mapping. To
investigate the effect of increased information in semantic 3D
city models on applications, the results are evaluated and dis-
cussed on the example of solar potential analysis.

2. RELATED WORK

2.1 Building and superstructure reconstruction

Building reconstruction is an active field of research in GIS,
computer vision, and photogrammetry. Conventional building
reconstruction methods can be classified into data-driven and
model-driven approaches. Data driven methods rely on the fit-
ting of individuals planes to reconstruct buildings, while model-
driven approaches operate by estimating the parameters of pre-
defined primitives Zhang et al. (2021). Due to rapid develop-
ments in airborne laser scanning and stereo photogrammetry, a
variety of algorithms have been proposed to generate 3D build-
ing models up to LoD2 from point clouds. However, according
to Wichmann and Kada (2016), few research has dealt with the
automated reconstruction of roof superstructures in semantic
3D city models. Stilla and Jurkiewicz (1999) present an early

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022 
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-161-2022 | © Author(s) 2022. CC BY 4.0 License.

 
161



reconstruction approach based on histograms from Digital El-
evation Model (DEM) to detect flat superstructures on flat build-
ings. Bredif et al. (2007) also use DEM and apply a model-based
approach to detect volumetric superstructures such as dormers
and chimneys. Wichmann and Kada (2016) propose a method
which uses superstructure symmetry to improve reconstruction
results for low-density LiDAR data. Meixner et al. (2011) com-
bine a Digital Surface Model (DSM) and orthophotos to map
dormers, chimneys and other volumetric superstructures. The
authors are able to detect flat superstructures (skylights) using
a template matching approach. Zhang et al. (2021) introduced
a reconstruction procedure to derive a CityGML LoD2 model
with superstructures modeled as building installation objects
from point clouds. For the reconstruction of complex roofs
a hierarchical procedure is presented to reconstruct the major
roof model and its superstructures sequentially based on prim-
itive parameterization and recognition. However, the number
of supported superstructure primitives is limited and flat super-
structures are not dealt with.

In recent years, deep learning methods have experienced in-
creasing research interest, due to their large potential of auto-
mated extraction of information from remote sensing data. Point
cloud data does not represent small or flat objects, therefore, a
number of researchers have used aerial images as an alternat-
ive source of input. For example, Yu et al. (2018) propose the
DeepSolar framework to map solar panels in the USA. Mayer et
al. (2020) apply the network to the German state North-Rhein-
Westphalia. In a subsequent study, Mayer et al. (2022) combine
the image recognition approach with semantic 3D city models
to improve the estimation of existing solar capacity, indicating
the potential synergies between the two data sources. Mainzer
et al. (2017) and Nelson and Grubesic (2020) apply classic com-
puter vision techniques to detect superstructures in aerial im-
ages Respectively, a study from Krapf et al. (2021) shows that
deep learning can be used for roof superstructure detection. A
major barrier for deep learning approaches is the requirement of
labeled training data. Therefore, Krapf et al. (2022) published
their data set for semantic segmentation for roof segments and
roof superstructures.

2.2 Models for simulation of solar potential

To support policy makers and to inform the public, researchers
have conducted rooftop solar potential analyses ranging from
city-scale to country-scale. Highly accurate solar analysis re-
quires a range of building and roof information such as geo-
graphic location, roof geometry, slope angle, azimuth angle and
shadowing effects of surrounding topography, and is therefore
an effective use case for evaluating the benefit of increasing
model Level of Detail (LoD). The publications of Freitas et al.
(2015); Gassar and Cha (2021) give a good overview on the ex-
isting approaches for modeling solar potential in an urban en-
vironment. Solar potential analysis can be structured according
to its input data based on statistical data, geo-spatial data, aerial
images or 3D data. 3D approaches use existing semantic 3D
city models (Willenborg et al., 2018; Romero Rodrı́guez et al.,
2017) or LiDAR data and are typically applied on city-scale,
for example Lisbon (Brito et al., 2017). Although 3D data is
becoming increasingly available, there is still no extensive cov-
erage on global scale, especially in more rural areas. There-
fore, researchers extrapolate the detailed analysis of regions
with 3D data to larger scales. Gagnon et al. (2018) statistic-
ally extended an analysis of 128 US cities from Margolis et al.
(2017) to the whole USA. Walch et al. (2020) apply machine

learning methods to expand the results from Geneva to Switzer-
land. Other publications combine LiDAR data and aerial im-
ages for automated extraction of roof segments to counteract
low LiDAR point resolution (Martı́n-Jiménez et al., 2020). Due
to higher spatial coverage of aerial images some publications
propose solar potential analysis based on aerial images only,
and capitalize on the emerging use of deep learning in the re-
mote sensing field as described in Section 2.1. Lee et al. (2019)
introduce a deep learning framework for extracting roof seg-
ments from images and assigning an azimuth class. Krapf et
al. (2021) extend this idea by proposing a Convolutional Neural
Network (CNN) for the task of roof superstructure segmenta-
tion, in addition to the CNN for roof segments.

2.3 Summary, Research Gap and Contributions

Reconstruction of roof superstructures remains an ongoing field
of research. While LiDAR data is used to create the building in-
formation of semantic 3D city models, it is not dense enough
to include small objects like chimneys and does not contain
flat objects like windows or existing solar modules. Therefore,
this paper explores a novel approach of extracting RSS from
aerial images with deep learning and enriching 3D city mod-
els with this information. The proposed method uses the se-
mantic information and structures of an existing LoD2 semantic
3D city models and extends the available information by integ-
rating geometry and semantics of RSS. Solar potential analyses
requires a high LoD for high accuracy. Therefore, we conduct
a solar case study to evaluate the benefits and challenges of our
method and enriched semantic 3D city models. The contribu-
tion of this paper are summarized as:

• A novel method for increasing semantic 3D city models
LOD with roof superstructures extracted from aerial im-
ages using deep learning

• An evaluation of the viability of our approach based on
solar potential analysis

• Accuracy improvements of solar potential analysis

Section 2 briefly introduced related work, derived the research
gap and presented our contributions. The rest of the paper is
structured as follows. Section 3 outlines the process of enrich-
ing semantic 3D city models with RSS in Section 3.4 and de-
scribes the steps of the solar potential analysis in Section 3.5.
The case study and data sets are presented in Section 4. Then,
Section 5 presents the results of the solar potential analysis
based on aerial images only, semantic 3D city models only and
the enriched semantic 3D city models. Benefits and limitations
of the method are discussed in Section 6.

3. METHOD

The core idea of this work is to enrich 3D city models with
geometries and semantic information gained from aerial images
using deep learning. It is important to note that the method
presented in the following section is being explored at the mo-
ment. The approach is currently only capable of reconstruct-
ing simplified RSS. However, the output can already be used to
increase the LoD of semantic 3D city models for subsequent
simulations and analysis applications, that do not necessarily
require an exact representation.
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Figure 1. Overview on the input data, model components of bringing information from 2D to 3D. CNN = Convolutional neural
network, RSS = Roof superstructures.

3.1 Overview on the proposed method

The core components of the proposed method and how they are
connected to each other, are illustrated in Figure 1. The first
part of the approach is based on 2D aerial images as input. Us-
ing two different deep learning networks, roof segments and
RSS are detected and classified. This information is used to ap-
ply an algorithm for placing solar panels in 2D on the building
roofs. In this paper, 2D solar potential analysis is performed
as a comparison to the enriched semantic 3D city models (see
Section 5.2). After panel placement, the 2D geometries are el-
evated to the third dimension and integrated into a semantic 3D
city models of the same area, which is the second input of the
method. Finally, a 3D solar potential analysis is performed with
the enriched semantic 3D city models.

3.2 Deep learning for 2D roof superstructures

Krapf et al. (2021) describe the deep learning approach of ex-
tracting roof segments and RSS from aerial images. In contrast,
this paper uses roof segment data from semantic 3D city models
instead of predictions by a CNN. For the task of semantic seg-
mentation of RSS from aerial images, we use a Feature Pyramid
Network (FPN) as implemented by Yakubovskiy (2019) based
on the design by Kirillov et al. (2019). The publication by Krapf
et al. (2022) provides detailed information regarding the train-
ing and evaluation of the CNNs for superstructure detection as
well as the respective training data set. While for this paper, a
larger ResNet-152 backbone was trained, the prediction accur-
acy did not change significantly. The network was initialized
with weights pretrained on the 2012 ILSVRC ImageNet data-
set. The model and training parameters are listed in Table 1.
The ground-truth dataset is described in Section 4.

The true positive predictions in the confusion matrix (Figure 2)
show that the model performed well when detecting the classes
relevant in the context of 3D RSS modeling: Dormers have a
true positive rate of 0.59 and chimneys 0.60. Only solar mod-
ules were predicted more accurately (0.75), as shown in Fig-
ure 2.

Parameter RSS CNN
Backbone ResNet-152
Training Epochs 40
Learning Rate 0.000 1
Optimizer Adam
Loss Function Focal + weighted Jaccard
Activation Sigmoid

Table 1. Model and training parameters of the used CNN.

3.3 Enriching 3D city models with roof superstructures

The predictions of 2D RSS (see Section 3.2) are used to cre-
ate 3D RSS in a CityGML model. The images used are roof
centered. Because of this, buildings that are close to one an-
other will appear in multiple images. Consequently, the RSS on
those roofs will be predicted multiple times by the CNN. To
avoid generating duplicate RSS in the CityGML model, over-
lapping RSS of the same type are unified into one geometry. If
RSS of differing types overlap, classes with more information
value for the 3D model are preferred in the following order:
unknown < ladder < window < pvmodule < chimney <
dormer
The predicted masks (raster data) are translated into vector data
by creating polygons from connected regions of the same class
using the GDAL library. The edges of these polygons follow the
pixel boundaries exactly, which results in very dense geomet-
ries with many points. Because of this, the polygons are sim-
plified using the Douglas-Peucker algorithm with a 0.1m toler-
ance. The extracted polygons lack a z-coordinate. To generate
a correct representation in the 3D model, their height values
must be calculated. For this, the polygons’ points are paired
to a roof of the LoD2 model using intersection. Then, roof
slope and orientation are derived from the roof’s normal vector.
With roof slope, orientation and one arbitrary point on the roof
known, the z-values of the intersecting points can be calculate.
In the case of flat RSS like solar modules, this z-value is then
increased by 0.1m to avoid clipping issues when viewing the
3D model. Volumetric RSS (chimney and dormer) are construc-
ted by extruding the previously generated flat polygons along
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Figure 2. Confusion matrix for the RSS detection CNN.

the z-axis. For chimneys, this extrusion lasts until all points of
the chimney’s top polygon are at least 1m above the roof sur-
face. Dormers are extruded until all points of the top polygon
are level with the highest point of the base polygon.

3.4 Automatic solar panel placement in 2D and 3D

To determine the solar potential of newly installed solar sys-
tems on roof area not obstructed by existing superstructures,
a module placement algorithm is required. First the algorithm
places modules on a 2D roof segment, then, the panels are trans-
formed and integrated into the semantic 3D city model. Based
on the roof segment polygon, modules are placed within the
polygon in parallel to the roof segment’s gutter starting at the
polygon’s origin (bottom-left corner). Module dimensions are
transformed to represent the projection of the module on the
plane. Panels that lie outside the roof segment or intersect with
superstructures are deleted. The algorithm computes horizontal
and vertical module orientation and chooses the configuration
with a greater number of modules. On flat roofs, modules can
be oriented south, east-west, or in alignment with the building.
Spacing between rows is added and the modules are pitched at
30◦. Finally, the modules are transformed to 3D with the same
method as described for the RSS in Section 3.3.

3.5 Solar potential estimation

This section describes the solar potential analysis based on aer-
ial images and deep learning and the 3D-data based analysis.
Both approaches function as reference cases to compare the be-
nefits of combining semantic 3D city models with superstruc-
tures extracted from aerial images. Solar potential can be as-
sessed in four different forms, as physical, geographic, tech-
nical or economic potential. In this paper, we compute geo-
graphic potential and define it as the sum of radiation on tilted
plane at a specific location in one year, in kWh

a
.

3.5.1 Calculation of solar potential in 2D based on aerial
images and AI The solar potential analysis based on aerial
images and deep learning is described in detail by Krapf et al.
(2021). In this section, we summarize the central steps of the
framework. First the radiation on horizontal plane is determ-
ined for one point in the entire study area using the Copernicus

Atmosphere Monitoring Service (ECMWF, 2021). Due to the
small size of the study area, the variance of the radiation is neg-
ligible. Next, RSS are extracted from aerial images with a deep
learning computer vision approach as described in Section 3.2.
The framework identifies all buildings in the study area based
on map data, e. g. OSM (OpenStreetMap contributors, 2017),
and obtains an aerial image for each building with the roof at
the center. The CNN outputs the RSS information as predictions
masks which are subsequently transformed from raster to vector
format. In the 2D case, the azimuth angle of the roof segments
is classified into 16 azimuth classes (e.g. South, South-South-
East, South-East, etc.) and one flat roof class. Aerial images do
not contain height information, so the roof slope is approxim-
ated by statistical data with a mean of 37◦ and standard devi-
ation of 15◦ as proposed by Mainzer et al. (2017). The shadow-
ing effect is included as constant factor of 15%. With this in-
formation we calculate the geographic potential as radiation on
tilted plane. It consists of direct, diffuse and ground-reflected
radiation. We apply the model by Perez et al. (1990) to calcu-
late the diffuse radiation component using pvlib (Holmgren et
al., 2018). Section 3.4 describes the solar module placement.

3.5.2 Solar potential analysis with 3D city models The
solar irradiation analysis tool presented by Willenborg et al.
(2018) used in this work, computes the direct and diffuse solar
irradiation and the SkyView-Factor (SVF) for roofs and facades
considering shadowing effects of buildings, a DSM, and other
features represented as CityGML objects, e. g. Vegetation,
or Bridge objects. The influence of reflected radiation is neg-
lected. For this work, the tool was extended to use the solar pan-
els as calculation basis to support the enriched 3D city model
derived with the method described in Section 3. The radiation
on the tilted plane is computed for each solar module with a
sampling point grid resolution of 0.15m. In addition to shad-
owing effects of surrounding buildings, the enriched semantic
3D city models integrates shading of RSS. To evaluate the bene-
fits of the enhanced model for this use case, we conduct a case
study in several different configurations, which is described in
Section 4.

4. CASE STUDY

To our knowledge, the Roof Information Dataset (RID) by Krapf
et al. (2022) is the only publicly available data set for semantic
segmentation of RSS. In this paper, we use this RSS data and
therefore, our case study area is limited to the data of RID. Krapf
et al. (2022) selected the rural German town Wartenberg as area
of interest because of its size of around 2 000 buildings and
the available high resolution areal images 10 cm

px
with simultan-

eously challenging image quality with respect to contrast, im-
age distortion and light conditions. Krapf et al. (2022) describe
the labeled data set in detail. The aerial images are from the
year 2018 and were retrieved from the Google Maps Static API.
Based on the images, the annotators manually labeled 12 359
superstructures on 1 880 buildings. For each annotated building
one image is downloaded with the building outline’s centroid at
the center of the image. Hence, images overlap and cover a total
area of 4.9 km2 with a uniquely covered area of 1.5 km2. Su-
perstructures are classified into eight classes, pvmodule for ex-
isting solar panels, dormer, window, ladder, chimney, shadow,
tree, and unknown to account for other unclassified superstruc-
tures. The superstructure classes shadow and tree do not pre-
vent the placement of solar panels and are therefore excluded
from potential assessment. Roof architectures and RSS are sub-
ject to great variance resulting in high class imbalance for both,
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Figure 3. Class balance of the superstructure dataset.

number of labels per class and area covered per label class, as
illustrated by Figure 3. While there are only 572 labeled poly-
gons of class pvmodule, they cover approximately 15 000m2.
In contrast, the largest number of annotations is from unknown,
covering only an area of around 6 000m2. In total, the projec-
ted area of superstructures is 38 500m2 making up 12.1% of
the roof area projection. To evaluate the presented method for
enriching 3D city models with RSS from aerial images, solar
potential analysis serves as an exemplary application. To this
end, we calculate the solar potential in multiple configurations,
explained in more detail in Section 5. Solar potential analysis
based on aerial images, only, and based on 3D city model without
RSS represent two baseline cases for comparison with the en-
riched model.

5. RESULTS

This section presents the results of modeling RSS predicted from
aerial images in semantic 3D city models for the study area.
Predicted RSS and solar panels are incorporated for the entire
study area, but we report the solar potential results only for
the buildings in the test set, to avoid inflated prediction results
from the training and validation set. First, we discuss the res-
ults qualitatively in Section 5.1. Then, we quantify the overall
solar potential in Section 5.2 to investigate the larger scale. Fig-
ure 4 shows the enriched semantic 3D city models for the study
area and displays the town center. This visualization shows the
ground truth labels of RSS instead of the predictions. On the left
of the figure, solar modules are automatically placed on avail-
able roof areas while the right part illustrates the roof segments
without superstructures only.

5.1 Qualitative results

The following qualitative analysis is conducted using an ex-
cerpt of five buildings within the test set as example (Figure 5).
Figure 5a shows the Google Maps aerial image. The selected
five buildings have roofs which are partly occupied by dormers,
chimneys, ladders windows and existing solar modules. The
next Figure 5b contains the 2D results, i.e. CNN prediction and
module placement, which are used to calculate the baseline 2D
solar potential. Figure 5c visualizes roof segments and their
solar potential solely based on semantic 3D city models and
the solar analysis described in Section 3.5.2. Each building
has one segment with high solar potential (orange or red) due
to the south-west or south-east orientation and a corresponding
north-facing opponent with lower solar potential. The semantic
3D city models base model contains already one dormer on the
left-most building. However, other dormers are not yet included
and are only visible in Figure 5d which appends ground truth la-
bels of the volumetric superstructures chimney and dormer. The

shadowing effect of these additional structures becomes appar-
ent as the solar potential decreases in close proximity. Next,
on the top right, Figure 5e portrays predictions as comparison
to ground truth labels. The network maps all volumetric super-
structures contained in the ground truth, but misclassifies two
windows and a ladder as chimneys leading to additional volu-
metric superstructures on the three buildings in the upper half.
Figure 5f shows an ortho-photo. While the Google image for
this extract is almost orthogonal as well, the image distortion
is high in some sections in the study area. Next, the panel
placement is modeled in 3D (Figure 5g). This scenario uses
ground truth data (segments and RSS) based on the ortho-photo
and the placement algorithm was allowed to plan modules also
on the area of existing panels. On the left segment of the bot-
tom left building, the algorithm placed 20 modules, whereas in
reality, 21 modules have been placed, but the modules appear
to be slightly smaller in the aerial image. The effect of miss-
ing roof overhang modeling in semantic 3D city models can
be observed by comparing Figure 5g and Figure 5h. The lat-
ter image’s panels are placed using manually labeled roof seg-
ments which are based on Google Maps images. Therefore, the
roof overhang is considered in contrast to all other 3D scen-
arios, where panels outside the semantic 3D city models’s roof
segments are discarded. The additional roof space leads to an
increased number of modules and a higher solar potential. For
example, 23 as opposed to 16 panels are assigned to the right
segment of the bottom-left building. However, due to the naive
placement and imprecise transformation between 2D and 3D,
some buildings display a higher number of modules in the scen-
ario without roof overhang, as can be seen on the south-facing
segment of the top-most building. Figure 5i examines the effect
of shade on solar panels. Especially on the top-most building,
some of the south-facing panels are subject to shadowing and
consequently, lower energy generation. In addition, the draw-
back of the simple modeling approach can be observed with
respect to the dormer on the left-most building, which casts an
intense shadow, even though the two small tilted planes actually
block the radiation marginally (orange color in Figure 5h). Fi-
nally, Figure 5j displays the resulting enriched semantic 3D city
models including RSS predicted by the CNN and solar panels.
This scenario represents a more realistic model for solar poten-
tial assessment in comparison to the 2D and semantic 3D city
models only approaches due to four aspects. Firstly, in com-
parison to using the whole roof segment area for solar potential
calculation (Figure 5c), the radiation on solar panels leads to a
decrease of the utilized roof area due to placement constraints.
In addition, RSS induce shading losses, but more importantly,
reduce the available roof area significantly (Figure 5i). Solar
panels and RSS represent information which can be extracted
from aerial images using deep learning to improve the analysis
based on semantic 3D city models. Inversely, semantic 3D city
models provide information for the 2D solar potential analysis
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Figure 4. Study area in Wartenberg: On the left panels with RSS and on the right solar potential on complete roof segments are shown.

which lacks slope information and shading effects, also from
the surrounding terrain. Roof slope is a critical value, because
it affects the solar radiation on the solar panel. Moreover, the ef-
fect of slope on solar potential through the panel placement can
be even more severe, especially for large tilt angles, because
panels are planned using the projected area on horizontal plane.
For example, considering two roof segments with the same ho-
rizontal projection, the roof segment tilted by 70◦ is more than
twice as large as the segment with 37◦ slope. Finally, surround-
ing buildings or RSS can block solar radiation and reduce en-
ergy generation. Figure 5d underlines, that the shading effect
can vary strongly between roof segments. In particular, smaller
adjoining auxiliary buildings such as garages are attractive roof
segments for residential solar systems, but are often subject to
higher degree of shading.

5.2 Total potential and segment specific potential

To investigate the difference between 2D, aerial image-based,
semantic 3D city models-based and the combined, enriched se-
mantic 3D city models, we calculate the geographical potential
for the study area. We focus on the test set due to over-fitting of
the CNN on training and validation set. We determine the geo-
graphical potential for each roof segment and then compute the
sum to derive the total potential. Figure 6 visualizes the results
as violin plots of specific geographical potential in kWh

m2 a
, i.e. the

potential per segment normalized by the segments area. Results
are presented for five configurations, referred to as C1 to C5
from left to right. They can be found as close-up view in Fig-
ures 5b, 5c, 5e, 5h and 5i, respectively. Segments without pan-
els are excluded from the violin plots C1, C4 and C5 reducing
the number of segments by 542 (41%). C1 constitutes the 2D
baseline using slope values from the LoD2 model and leads to
a total geographic potential of 18.32 GWh

a
. The maximum spe-

cific geographic potential is about 1 200 kWh
m2 a

, while the study
area’s theoretical maximum is about 1 400 kWh

m2 a
for a south-

facing roof segment (azimuth 4◦) and a slope of 37◦. Most
segments have specific potential of less than 800 kWh

m2 a
. In con-

trast, configurations C2 and C3 display a median specific po-
tential of more than 800 kWh

m2 a
and total potential of 45.30 GWh

a

and 42.62 GWh
a

. The difference between C2 and C3 stems from
shading effects on roof segments and amounts to 2.68 GWh

a
or

5.91% of C2. Furthermore, the violin plots of C2 and C3 show
small peaks around 1 100 kWh

m2 a
and 700 kWh

m2 a
indicating the typ-

ical south-north roof orientation. The effect of panel placement

can be observed by comparing C2 and C4. The geographical
potential’s decrease is 29.72 GWh

a
or 65.61% from C4 to C2,

highlighting the major difference between roof segment area
and total solar module area. The influence of RSS shading on
solar modules is lower than on the entire segment, as the po-
tential is only reduced by 0.3 GWh

a
or 1.93% of C4 when con-

sidering RSS in configuration C5. However, this resembles the
effect on geographical potential where modules are examined
individually. In reality, shading on one module can reduce the
energy generation of the entire PV system due to series con-
nection of modules. The impact of shading due to surrounding
buildings becomes visible through comparison of C1 and C4,
i.e. the 2D case and the 3D case without RSS. The shadow of
buildings causes potential reduction of around 2.76 GWh

a
. C1

and C4 assume the same number of modules and slope value
for the segments, excluding the influence of different number of
modules from the analysis. We also calculated the geographical
potential of the 2D case with random slope values. However, we
found only a small difference of 0.02 GWh

a
and slightly more

evenly distributed specific potential due to the random slope
values creation using a standard variance.

6. DISCUSSION

This paper explores enriching semantic 3D city models with
RSS information extracted from aerial images using deep learn-
ing. The enrichment of existing LoD2 models is preferable to a
complete recreation, because the existing models contain man-
ifold semantic information, which cannot be transferred eas-
ily. While first results indicate great potential, the presented
approach reveals several limitations. First of all, the study area
is a rural German town and scalability requires annotated RSS
from larger, more diverse regions. Furthermore, 3D objects are
modeled with great simplicity. A model-driven approach could
apply primitives according to RSS class type, but class types
are not detailed enough to model different types of dormers
(e. g. hip vs. shed) or chimneys (e. g. squared vs. round).
Another challenge is the geographical and temporal mismatch
of aerial image data and semantic 3D city models as well as
image distortion which can lead to erroneous locations of trans-
formed objects or missing newly constructed buildings. Further
types of artifacts can arise from the CNN’s limited prediction
quality. Additionally, a downside of the presented results is
the infeasible validation due to lack of 3D ground truth data of
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(a) 2D, Aerial image from
Google

(b) 2D, PV pipeline, with
RSS and additional panels

(c) 3D, LoD2 buildings (d) 3D, LoD2 with RSS from
training data

(e) 3D, LoD2 with RSS from
CNN prediction

(f) 2D, DOP from mapping
agency

(g) 3D, Panel placement
where existing panels are

not treated as RSS

(h) 3D, Panel placement and
RSS from training data based

on Google aerial images

(i) 3D, only panels placed
using training data based on

Google aerial images

(j) 3D, Panels and RSS
predictions based on Google

aerial images

Figure 5. Overview in the input datasets and experiments for the case study.

Figure 6. Specific geographical potential of roof segments in the study area.

RSS. Hence, results were only verified by visual inspection and
quantitative validation remains an open point for future work.
In our solar potential analysis, no solar panels were placed on
more than 40% of roof segments, which can partly be traced
back to the different data sources. In Figure 5 we illustrated the
option of keeping or dismissing roof overhangs, but either op-
tion poses unresolved challenges. Finally, with regard to solar
potential analysis, the effect of shaded modules is simplified.
In reality, a shaded module impacts other modules connected in
series, which needs to be considered to quantify the real impact
of RSS’s shadow on solar potential.

7. OUTLOOK

Automated generation of Level of Detail 3 (LoD3) models is
an active field of research, but low coverage of dense LiDAR
or photogrammetric point clouds is a barrier. Therefore, this
paper presented a novel approach for enriching semantic 3D
city models with RSS extracted from aerial images with deep
learning. We described the process of mapping and classifying

RSS in 2D and subsequent transformation to 3D. The benefit
of increased information was examined based on solar poten-
tial analysis. Results showed the viability of the approach and
revealed challenges and research opportunities. Furthermore,
the enriched model improves solar potential analysis by avoid-
ing invalid simplifications of slope, shadow and panel place-
ment. A comparative analysis in a small study area exhibited
that solar potential is overestimated by around 20% compared
to the 2D baseline case. Hence, the presented method con-
tributes to increase the availability of LoD3 models on larger
scale, while posing further research opportunities. Future work
should tackle three major aspects: First, the scalability of RSS
with deep learning needs to be expanded. Larger data sets in-
cluding urban areas and different geographic regions as well
as additional RSS classes are required. Second, modeling of
RSS in semantic 3D city models should be improved. For ex-
ample, a model-driven approach can be investigated based on
existing RSS semantics. Lastly, the effect of LoD3 on solar po-
tential should be examined in more detail, potentially requiring
more advanced modeling of solar systems under the influence
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of shadow and temperature.

Author contributions: Sebastian Krapf and Bruno Willenborg
contributed equally and share first a u thorship. Conceptualiza-
tion, SK, BW; methodology, SK, BW, KK, MB; software, SK,
BW, KK, MB; validation, SK, BW, KK, MB; formal analysis,
SK, BW, KK, MB; investigation, SK, BW, KK, MB; resources,
TK; data curation, SK, BW, KK, MB; writing—original draft
preparation, SK, BW; writing—review and editing, SK, BW,
MB, TK; visualization, SK, BW; supervision, SK, BW; project
administration, SK, BW; funding acquisition, TK. All authors
have read and agreed to the published version of the manuscript.

Acknowledgements: The authors thank Bayerisches Landes-
amt für Digitalisierung, Breitband und Vermessung for the pro-
vision of ortho-photos and CityGML LoD2 3D city models. Fur-
thermore, they thank Florian Faltermeier and Iréne Apra for
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