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ABSTRACT: 

Harvesting usable and meaningful disaster-related, spatio-temporal data at a highly granular level poses major challenges in its cleaning 

and aggregation. This paper presents a strategy related to those challenges with respect to individual behavior near COVID-19 laden 

healthcare facilities. This is done to enable the visualizing of egress behavior data as interactive, three-dimensional (3D) scenes to 

investigate human behavior patterns regarding touch-based, disease transmission. Therefore, the aim is to demonstrate how this concept 

of 3D epidemiology may provide new mechanisms to understand the relative risk and exposure prevalence for data analysis. This paper 

demonstrates 3D enablement of disaster-related field data through use of first-hand observations of 1,936 individuals egressing New 

York City healthcare facilities during the onset of COVID-19 in the Spring of 2020. The observations capture egress behavior in terms 

of where people go (e.g. coffee shop, Subway) and how they physically interact with the surroundings (i.e. what they touch and how 

long they remain). This paper introduces a mechanism for automated extraction and 3D visualization of such data in Potree, an open-

source Web Graphics Library (WebGL) point cloud viewer. Distinctive vertex shaders are used to distinguish specific destination 

selection and behavioral patterns (e.g. personal protective equipment usage). Two-dimensional heatmaps are paired with 3D scenes to 

demonstrate the potential of using 3D visualization of spatio-temporal patterns for visualizing disease transmission potential.  

1. INTRODUCTION

For more than a decade, citizen science and crowd sourcing have 

selectively contributed to understanding major disaster-related 

events. These ranges from extremely centralized, national 

undertakings such as the CoCORAHS rain gage project that has 

more than 20,000 participants in North America (Reges et al. 

2016) to the third-party scraping of social media posts (Palen and 

Hughes, 2018). Furthermore, researchers such as Buytaert et al. 

(2016) have long-argued for the role that citizen science can play 

in understanding long-term, disaster-related events. While great 

strides have been made in identifying and scraping (or otherwise 

collecting) such data, usability remains challenging due to the ad 

hoc and highly variable nature of the reporting methods and their 

frequency and continuity, as well as the tremendous amount of 

noise in the data. These common characteristics of both Citizen 

Science data and, to an even greater extent, crowd-sourced data 

pose fundamental challenges in deriving meaningful and 

actionable information from such data in a timely manner. This 

paper demonstrates a workflow that was devised for overcoming 

some of these via the three-dimensional enablement of such a 

data set.  

2. BACKGROUND

The majority of the world’s population live and work in urban 

areas in densities of approximately 4,600 people per square 

kilometer (OECD 2020). Such high concentrations of people and 

activities make understanding their mobility and behavioral 

patterns important for the mitigation of natural and human 

disasters such COVID-19. Despite the availability of 

unprecedented levels of data in terms of footfall signals from cell 

phones and closed caption television footage, much remains 

unknown as to the trends in mobility and behavioral data that 

could inform public health and disaster response policy 

making.  Furthermore, the vast majority of work in this area has 

been confined to two-dimensional (2D) representations, despite 

the inherently three-dimensional (3D) nature of the activities. To 

help bridge this dimensionality gap, this paper introduces a 

mechanism for more nuanced understanding of individual and 

group behaviors by contextualizing those actions within real 3D 

spaces. Specifically, this paper enables the distinguishing of 

specific egress activities through in-situ, 3D scene visualization. 

This paper demonstrates means to visualize individual 

movement-based behaviors as a tool to improve understanding of 

human behavior in future disasters. 

The simulation of events has long assisted experts to prepare for 

events that are not fully knowable. For example, architects use 

the earthquake simulators to test the building design before 

starting the actual site work (Rodolfo et al., 2021) and space 

agencies use the simulators to adapt to the environment on 

planetary bodies (Mohanty et al.,2020). Similarly, many 

government agencies and businesses have started using 

predictions and simulations using historical data. Geographic 

information systems (GISs) have played an important role as a 

tool in the management of various disasters such as the 2013 

Ebola Outbreak (Selen et al., 2013), as well as Hurricanes Katrina 

and Rita in 2005 (Li Wei et al., 2008). Over the past decades, 

leading health organizations such as World Health Organization 

(WHO), Center for Disease Control and Prevention (CDC) have 

consistently relied on spatial analysis to manage disease 

outbreaks and to mitigate their after effects. Mapping events in 

real-time space enables unprecedented mean to analyze data. To 

date, this work has been predominantly 2D, despite the ready 

availability of 3D scene visualization software. This paper pushes 

the boundary of 3D epidemiology by demonstrating the emerging 

capabilities of simulating COVID-19 related behaviors at a 

hyper-local scale directly within the built environment.  

3. METHODOLOGY

Scope: This paper demonstrates the potential usefulness of a 

method to visualize distinctive spatial data of individuals and 

groups in a fully 3D context. Two-dimensional views hinder an 

individual's perception and do not support the experiential 

perception of walking through the city streets. In order to combat 

these limitations, recent advances in visualization techniques 

enable more interactivity using 3D environments. Three-

dimensional scenes help to blur the lines between the virtual and 

physical world, arguably increasing an individual's 

understanding of data. This is demonstrated using data affiliated 

with a group of five highly divergent New York City health care 

facilities. Specifically, this paper employs 1,936 firsthand  
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Figure 1. Flow chart of proposed methodology (Sections 2 and 4 adapted from Carey et al., 2021) 

 

observations recorded in the early weeks of COVID-19 in the 

Spring of 2020 and is a subset of a larger data set of 19 facilities 

(Laefer et al. 2020), as described in Section 3.1.  

 

The proposed methodology has five major steps (Fig. 1). Step 1 

focuses on extracting and standardizing the spatial data from the 

observational records (stored in a GIS format) [Fig. 1, Step 1]. 

Step 2 relates to the conversion of medium-density (~15 

points/m^2) aerial laser scan tiles obtained from a publicly 

accessible source (NYC DoITT GIS Unit, 2017) into an octree 

bin structure using a Potree converter for ultimate use in a Potree-

based dashboard [Fig. 1, Step 2]. Step 3 involves the data 

cleaning of tabular meta-data [Fig. 1, Step 3]. Step 4 describes 

data loading, data conversion, and attribute selection [Fig. 1, Step 

4]. Step 5 presents a pair of visualization options: 2D heatmaps 

to visualize the high-risk zones and 3D scene visualizations to 

demonstrate behavioral patterns of individuals [Fig. 1, Steps 5a 

and 5b]. 

 

3.1 Data 

3.1.1 Data inputs: The proposed methods employ 3 types of 

data sets: (1) spatial pathway data of 1,936 individuals egressing 

select New York City healthcare facilities obtained from 

firsthand observations and referred to herein as the National 

Science Foundation (NSF) DETER data (Laefer et al. 2020), (2) 

publicly available aerial point cloud data and (3) the affiliated 

anonymized details about individuals such as touch objects, 

origin-destination location names, and presenting gender in 2D 

tabular format.  

 

3.1.2 Details about data: The COVID-19 related egress data 

was collected from March 30, 2020 to May 7, 2020 at 19 

locations in 4 of New York City’s 5 boroughs with the intent of 

understanding how people behaved and where they went after 

leaving COVID-19 laden healthcare facilities (as described in 

Laefer et al., 2021). The goal was to collect perishable data that 

could provide insights into pandemic-period actions across dis- 
 

disparate communities and distinctive built environments. The 

resulting 5,065 complete records noted time, date, and location 

of the start of every record, presenting gender, touch behavior 

(including cell phone usage), transportation selection, and 

destination choices (interim and final). These records were 

collected by 16 unique observers. Out of these data, a subset of 

1,936 records were used in this research. Those records were 

collected at 3 locations in the Bronx (Montefiore Hospital, 

CityMD Pelham Parkway Urgent Care, Parkchester CityMD 

Urgent Care) and 2 locations in Brooklyn (Flatbush - CityMD 

Urgent Care, NYU Langone Hospital Brooklyn) [Table 1].  

Additionally, aerial point cloud data of ~15 points/ m^2 from a 

2017 flyover of NYC were downloaded from the NYC Open 

Data portal (NYC DoITT GIS Unit, 2017). 

 

Data Type Source 
Original 

format 
Format used 

for research 

Behavioral 

data 
Laefer et al. 

2020 
CSV file 

CSV file after 

data curation 

Spatial 

pathway data 
Laefer et al. 

2020 
KML file GeoJSON 

Ariel point 

cloud data 
NYC DoITT 

GIS Unit, 2017 
LAS file 

Octree Bin 

Structure 

Table 1. Data types and their sources 
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All of the original COVID-related data were collected via one of 

two smartphone apps (either DrawMaps or MyMaps). The 

observers traced the detailed paths taken by the subjects and 

marked stopping locations, as well as point of interest (POI) 

destinations and touch behaviors. The notes and timestamps of 

the records were manually scraped into a CSV file. The pathway 

records were then exported into KML or KMZ files and 

standardized (see Step 3). These were then reunited with the CSV 

files to generate a publicly accessible data set in a unified GIS 

format (Laefer et al. 2020). 

 
To depict the behavioral pattern around facilities, origin and 

destination points needed to be considered. However due to 

variations in recording styles and formats, of the 1,936 records 

considered, only 315 destination points were marked explicitly 

(using circles, ovals or stars). In all other cases, the observers 

implicitly noted these through the start and end of line segments. 

By using the extraction algorithm (Algorithm 1), the origin and 

destination points were extracted explicitly from pathways 

(lines). The newly formed spatial data resulted in a total of 3,385 

start and end location points (315 existing + 3,070 created). The 

newly identified start and end points were denoted in the 

metadata by adding the flag value (is_created = 1).  

 

 
 

The goal was to pair this with aerial Light Detection and Ranging 

(LiDAR) data. LiDAR data are collected using pulsed lasers to 

map a 3D environment. LiDAR's use of light allows it to map the 

environment accurately and more quickly than other approaches. 

Game development platforms like Unity mimic the real 

environment by creating virtual objects in games, but LiDAR 

data are captured from real neighborhoods and city streets. For 

viewing the LiDAR data, this study starts with the Potree viewer 

as it is a free, open-source, WebGL-based point cloud renderer. 

Potree viewer can be used to view billion-point data sets at a 

high-resolution and with high positional accuracy. The 

behavioral data (e.g. touch objects, origin-destination location 

names) and spatial pathway data were collected using mobile 

apps by drawing the lines of individual's movement (Laefer et al., 

2020). This study's aimed to create mechanism in which to better 

investigate hotspots of COVID 19 spread, with a focus on 

communal touch locations (e.g. touching the same door handle, 

hand rail, light pole etc.). From the spatial pathway data, only 

origin and destination points were extracted and used as hotspot 

areas for this current stage of the research, as described in the 

following subsections.   

 

3.1.3 Spatial data preparation: Because of the rapid nature of 

the COVID research deployment, some of the data collection 

details were decided on a per observer basis, which was further 

complicated by the fact that the preferred app was not available 

for iPhones. Consequently, the spatial data contained various 

markings with significantly different labels to mark pathways, as 

well as origin and destination points. To visualize the patterns 

and to compare the data across healthcare facilities, data was 

standardized. To standardize the spatial data, all the pathways 

(lines) and destination points were extracted and separate them 

from text and the various markers, as described in the data issues 

section.  

 

3.1.4. Spatial Data Issues:  Each marked point in the shape 

file is a polygon. The original shape file contained polygons 

corresponding to various shapes - stars, triangles, only lines 

without origin or destination points, circles of different radius, 

and text in the form of alphanumeric characters along with spatial 

data (Fig. 2). Additionally, the majority of records lacked explicit 

route starting and ending points.  

 

 
a) Inconsistent representations    b) Inconsistent line weight 

 
c) Missing hotspots           d) Text overlapping pathways 

 

Figure 2. Record inconsistencies 
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If only the original, cleanly marked points were used, there would 

have been insufficient data points for route mapping, so 

additional origin and destination points were created, as will be 

described below. 

 

The records had four major problems. The first was inconsistent 

origin and destination point marking, as described and clearly 

shown in Fig. 2a.  The second problem was inconsistent thickness 

of connecting paths in the data, as a direct result of different apps, 

disparate app settings, and distinctive screen pressure (even 

within a single record, as shown in Fig. 2b). Next was the 

problem of missing hotspots, for 1,936 individuals, only 315 

points were marked by observers, the rest of the data were not 

marked properly and only the individual's movement was 

registered using line shaped polygons (Fig. 2c). The final 

problem in data extraction was the presence of text in the shape 

file. Instead of using the separate text editor, some observers 

wrote the text directly in the shape file. In this case, each letter is 

considered as a polygon and interferes with useful spatial data. 

For example, during extraction, the letter ‘O’ was often confused 

with an origin or destination point (circular polygon) (see Fig. 

2d). 

 

3.1.5 Spatial data extraction algorithm: An extraction 

algorithm was required for making the data usable and consistent, 

as the size of the data set and its geospatial nature made manual 

extraction unfeasible. Specifically, there were nearly 2,000 

records, and the representation in the app was image-based, thus 

not inherently geospatial. So while the shapes indicating paths 

and destinations had implicit geospatial locations, such 

information was not available in an explicit way that could be 

directly derivable. The proposed algorithm followed the steps 

outlined below. 

 

First, each polygon in the shape file was decomposed into 

individual components that represent the movement path, origin-

destination point, and individual letters of text data marked in the 

shape file. Next, the shapes were classified. For this, each and 

every polygon (e.g each star, oval, line) was wrapped in a 

bounding polygon (Fig. 3). Bounding polygons were defined by 

using the lower and upper bound coordinates. This enabled their 

transformation into quadrilaterals (either square-like or elongated 

rectangles). The square-like shapes typically came from stars, 

circles, and ovals (Fig. 3a) and represented POIs, while the 

elongated rectangles were derived from lines of various 

thicknesses (Fig. 3b) and represented movement pathways. In 

Algorithm 1, there are two variances used to decide whether or 

not a shape is squarish more rectangular. Since perfect squares 

would obviously have a length to width ratio of 1, anything that 

outside of this by +/- 20% is considered to be more of a rectangle. 

As a secondary check, there is an area tolerance of +/- 36% of the 

anticipated area of just the length times the width. This secondary 

check informs as to the location assignment of start and end 

points. 

 
a) Rounded shapes      b) Elongated shapes   

Figure 3. Rounded shapes (length ~ width) for hotspots and 

elongated shapes for (length >> width) for movement trajectories  

 

These proposed tolerance thresholds were derived through 

experimentation on spatial data across the five, selected 

healthcare facilities. For irregular sized markings, the centroid of 

the square shaped bounding polygon was used to redraw a 

uniform shaped circle, which imposed consistency on all 

extracted hotspots. The center of the circle was used to demarcate 

the final POI location. In contrast, each elongated rectangle was 

marked as a line. Each line was the pathway followed by an 

individual to reach an interim or final destination. To mark the 

start and end points (origin-destination points), the shorter side of 

the bounding box was selected. The center points of both the 

shorter sides (width of bounding box) were marked with points 

which were then recognized as origin and destination points.  

 

After data cleaning and the imputation of origin-destination 

points, the usable data were extracted. First the polygon geometry 

was converted into multi-polygon geometry to visualize in Potree 

(as per Carey et al., 2021). In that approach, a polygon is a planar 

surface defined by 1 exterior boundary and 0 or more interior 

boundaries. Each interior boundary defines a hole in the polygon. 

A multi-polygon is a multi-surface whose elements are polygons. 

The Potree viewer works only on multi-polygon geometry (each 

origin-destination point is marked as a group of points), because 

Potree in itself is a point cloud format visualization tool.  

 

Potree is a WebGL based renderer, which is used to view point 

cloud data. Thus, in Potree a line consists of only a set of points, 

and each point in spatial data represented in form of polygon. For 

this study, origin- and destination- based data were used to view 

the hotspot areas rather than the movement paths of individuals.  

 

3.1.6.    Point cloud data preparation and extraction: The data 

POIs extracted from the algorithm were saved to a GeoJSON file. 

The Potree dashboard requires GeoJSON POI data and the 3D 

point cloud data to render the visualization. Aerial point cloud 

data of ~15 points/ m^2 from a 2017 flyover of NYC were 

downloaded from the NYC Open Data portal (NYC DoITT GIS 

Unit, 2017) [Table 2]. These were used to provide a 3D 

contextualization around the five, selected healthcare facilities.  

 

Health Care Facility 
Name 

Latitude, 
Longitude 

LiDAR Points 
(#) 

Montefiore Hospital 40.880, -73.879 10,086,975 

CityMD Pelham Pkwy UC 40.855, -73.867 9,989,032 

Parkchester CityMD UC 40.837, -73.860 9,634,714 

Flatbush - CityMD UC 40.636, -73.946 8,837,017 

NYU Langone Hosp. Bkyn 40.646, -74.020 17,067,742 

 

Table 2. Selected healthcare facilities and corresponding 

LiDAR (UC=Urgent Care) 

 

The tile encompassing each site’s location was selected using the 

provided web interface and downloaded in a LAS format. Each 

tile was 1000m x 1000m and ranged from 8 million to 15 million 

points. For the selected facilities, a maximum of 4 tiles were 

needed depending upon the facility’s location with respect to the 

position in the tile(s). The LAS file was then converted into a 

binary octree structure using the Potree-Converter tool for easy 

rendering in Potree Renderer (Potree Development Team, 2021). 

Based on the findings of Carey et al. (2021) a PC with an Intel 

i7-7700K 4.2 GHz CPU and Nvidia GeForce GTX 1080 Ti GPU 

was used for decreasing the input lag encountered during 

interactive navigation performance; improving algorithm 

performance for less performant machines is outside the scope of 

this research. To make the visualization sensible, the elevation of 

GeoJSON points were set according to the facility location 

elevation.  
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This study used a clustering technique to reveal the 

differentiation patterns in the large dataset like male/female or 

medical personnel/patients. The data are sliced and used 

corresponding to each facility to achieve the detailed view. As 

the focus of this paper is the enablement, limited illustrations and 

no formal analysis of the data provided.   

 

3.1.8 Loading the data and visualizations: After 

standardization and preparation of all three types of data 

(previously summarized in Table 1), all of the relevant data were 

loaded simultaneously into the Potree dashboard on a site-by-site 

basis. The Potree dashboard, which is used for viewing the 

GeoJSON file data and octree structure file data, is interactive 

and provides the flexibility to visualize the data in two formats, 

2D heat maps and 3D scene visualization.  

 

 
Figure 4. Univariate 3D scene visualization depicting individual 

egress behavior at a single healthcare facility 

 

In both types of depictions univariate representation is used for 

visualizing the variations of a single feature (Fig. 4), whereas the 

bivariate is used to compare the two attribute values across a 

feature [e.g. usage of personal protective equipment (PPE)]. In 

bivariate heatmaps (Fig. 5), two values across each feature are 

visualized by assigning a different color for each of the two 

values in the vertex shader. In order to make the plots more 

readable and for distinguishing between different entities, 

dynamic vertex color shading was implemented. 

 

The method used to visualize the 3D scenes was the cylindrical 

polygon plots which were created using three.js JavaScript 

library (Danchilla et al. 2012). Geometry used for defining the 

individuals was “Cylinder Geometry” in three.js library. The 3D 

scenes were visualized (Figs. 6-7) to know the actual locations of 

an individual's interactions with the outside environment after 

egressing a healthcare facility. In the 3D scene visualizations, the 

individuals were represented using vertical cylinders and were 

visualized either in univariate or bivariate formats. The univariate 

plot visualizes the overall view of individuals outside the 

healthcare facility in the 3D environment. In the bi-variate plots 

individuals of specific categories (e.g. men versus women; health 

care workers versus non-health care workers) are distinguished 

by color (e.g. in Fig. 6, the red cylinders represent the women and 

blue cylinders represent men). 

 

In each of the illustrations within Fig. 5, distinctive destination 

choices can be seen. To understand these fully, they need to be 

examined in detail and compared across all of the facilities within 

the study set. 

 

 

 
Figure 5. Hotspot heatmap for feature (a) “Gender” Male in blue 

and female in red (b) “PPE Usage” Individuals wearing PPE in 

green and not wearing PPE in orange (c) “Time Type” Working 

hour visitors in magenta and off-work hour visitors in cyan (d) 

“Medical Personnel” Medical personnel in green – others in red 

 

4. RESULTS 

This research paper proposed the method to create points 

representing the origin and destination of individuals which 

increased the scope of study to analyze the high-risk zones at five 

health care facilities in New York city (Table 1). The inclusion 

of multiple locations and 3,000+ data points led to high intensity 

heat maps across locations which made the comparative analysis 

possible. Arguably, the comparative analysis of egress behaviors 

of individuals at various health care facilities in New York City 

can lead to a better understanding of the spread of epidemic in 

urban areas.  
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Figure 6. A set of 3D view of individuals in 3D space for the 

NYU Langone Hospital, Brooklyn, USA. Females in red and 

males in blue (Displayed data for all 1,578 points) 

 

This research extended the prior work on 2D heatmap 

visualization proposed in Carey et al. (2021) through defining 

colors for every feature (e.g. time type, gender, medical 

Personnel, PPE usage) and specific color shading for attribute 

values within every feature. This was achieved using dynamic 

vertex color shading and through drop-down filters to select 

features of choice in the Potree dashboard. Color scale legend in 

the Potree dashboard updates automatically when a particular 

feature from the dropdown menu is selected. 

 

This research proposed a novel methodology to visualize the data 

in 3D space by annotating the individuals as cylindrical polygons 

instead of 2D point maps. The concentrated co-existence of 

multiple individuals in specific locations around a healthcare 

facility depicted the high-risk areas for spread of the COVID-19 

virus. These locations were labeled as interim and final 

destinations of observed individuals (e.g. coffee shop, subway 

stations) to highlight high risk points of interest. The 3D scene  

 
 

Figure 7. A set of 3D views of individuals in 3D space for NYU 

Langone Hospital, Brooklyn, USA. Medical personnel in green 

and others in pink (Displayed data for all 1578 points) 

 

visualizations provided the realistic depth to understand the 

individuals' location and also allowed the viewers to see into 

spaces by zooming and moving around the spaces. For example, 

(1) the gender feature was displayed using different colors to 

distinguish between the movement patterns among males and 

females (Fig 6). (2) the medical personnel feature was selected, 

and the implemented color shading represented the differences in 

proportion of healthcare workers from non-medical personnel 

(Fig 7). The high volume of non-medical individuals when 

compared with the limited number of healthcare workers 

illustrated the dire situation during the COVID-19 pandemic with 

all the healthcare workers strained for capacity. 

 

 

5. DISCUSSION 

Human behaviors can help determine outbreak trajectories of 

infectious diseases such as COVID-19. This fundamental 

relationship underlies why behavioral interventions near high-
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risk zones (i.e. health care facilities) are effective tools in 

outbreak management. To understand the human behavior 

patterns and disease transmissibility, this research visualized the 

most affected areas at the time of COVID-19. Apart from 

healthcare facilities, coffee shops, public transport stands, 

parking lots were observed as high interaction areas where 

individuals congregated.  To visualize the 3D point cloud data, 

point cloud tiles were rendered in Potree post-conversion in 

binary octree structure for managing the computation power. 

Millions of points in every point cloud tile put heavy load on the 

graphics memory of the system. Further application development 

could help optimize performance of Potree rendering by only 

loading necessary data in memory. For improving the 

visualizations, point cloud tiles can be sliced and merged with 

higher density, terrestrial scans, which may provide deeper 

insights and better system performance. During analysis, some 

healthcare facilities were found to be located on the edge of 

multiple point cloud tiles. To visualize these locations and 

understand individual behaviors, multiple files needed to be 

merged. Enhancing the visualization with additional information 

through text labels and feature overlays could help researchers 

further understand the data. As an alternative, the pathways could 

be treated as lines, instead of polygons, but that would lend itself 

to different exploration capabilities. 

 
NSF DETER data are quite detailed (Laefer et al., 2020) and 

provide information on a per person basis (Laefer et al., 2021). 

This dataset provides a lot of scope to extend the research work 

in various directions. The implementation plan can be extended 

to 3D visualization of individuals to get a clear glimpse of 

behaviors across the streets. This can lead to better understanding 

of an individual's touch patterns while coming out of a facility by 

analyzing behaviors such as a touch on railing or a doorknob. 

While extending the work in future to comparative analysis, this 

data can help to show the most vulnerable businesses across the 

health care facility streets. This epidemic has had a major impact 

on the lifestyle of people and by understanding the 

epidemiological patterns, future disasters can be prevented 

through ahead of time planning. This paper lays out the initial 

footsteps for 3D visualization of individuals in ariel LiDAR 

scene setting. The next step in this study would be to show the 

areas of actual touch (e.g. handrails, parking meters, bus stand 

poles, trash cans etc.) by individual’s around health care 

facilities. The research team will partner with colleagues in 

NYU’s Global Health Program to help translate such capabilities 

and affiliated insights into practice.   
 

6. CONCLUSIONS 

This paper presents a means to automatically clean, classify and 

enable citizen science data and to contextualize the data through 

its coupling with aerial laser scans in an interactive platform 

where users can investigate the gathering and trajectories of 

specific groups of subjects (e.g. men versus women). Such 

enablement also helps visualize potentially, high-risk areas 

around the healthcare facilities where individuals egressing 

COVID-19 laden facilities tended to congregate. In this paper, 

2D behavioral data is visualized in 3D point cloud space in 3D 

format by creating the cylindrical polygons to represent the 

individuals. The egress behavior of individuals in spatial context 

can be used to develop patterns for the spread of epidemic. 

Comparative analysis of visualizations of high-risk areas 

(COVID-19 facilities) can be used for the disease epidemiology 

and spread in the population. The research focused on bivariate 

features for analyzing egress behavior, however future work 

could incorporate gradient based color shading for multivariate 

features. 
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