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ABSTRACT:

Recent years have seen a significant and rapid rise in the development and deployment of many urban digital twins worldwide. 
Urban digital twins provide a central platform for incorporating data and knowledge from different sources and fields, and can 
thus be used for many urban-related processes such as urban planning, analysis, monitoring and visualization. One of the key 
requirements of digital twins in general and urban digital twins in particular is the continuous, bidirectional data flow between the 
physical entity and its digital counterpart. Consequently, this requires the ability to both detect and understand changes between 
different temporal versions of the physical and digital entities. In the context of smart cities and semantic 3D city models however, 
only a few studies have addressed this so far. This is due to the facts that: (1) Semantic 3D city models (mostly encoded in CityGML) 
contain multifaceted information modelled in a complex inheritance hierarchy, which complicates their change detection process;
(2) As cities constantly evolve over time, matching their datasets often results in a large number of changes, which must be further 
analysed and processed to produce meaningful information; (3) Individual changes in the datasets are multi-layered as well as 
often correlated and cannot be fully understood without considering their context in the city model; and (4) Different types of 
changes are perceived and interpreted differently by different stakeholders, meaning that the outcome of the change detection and 
interpretation process must ultimately serve the human factor. Therefore, to address these challenges, this research proposes a 
Path-tracing Semantic Network (PSN) to interpret detected changes in semantic 3D city models. The framework represents the 
multidimensional nature of changes together with stakeholders in a semantic network, where their interrelations can be analysed 
explicitly using graph-based path-tracing methods.

1. INTRODUCTION

An increasing number of urban digital twins are being de-
veloped and deployed by many cities, districts and companies
worldwide. An urban digital twin can be thought of as a digital
representation of a physical city, including its assets, processes
and services. Urban digital twins provide a central platform
for incorporating information from heterogeneous sources, in-
cluding (real-time) Internet of Things (IoT) sensor readings, re-
mote sensing data, etc. Urban digital twins can therefore be de-
ployed for a wide range of applications, such as urban planning,
monitoring and visualization, allowing a risk-free virtual en-
vironment to simulate, experiment and evaluate future policies.
Alone the cost benefits of using urban digital twins for efficient
urban planning are expected to reach USD 280 billion by 2030,
according to (ABI Research, 2021).

Despite the still many definitions to date across various applic-
ation domains, the general consensus remains that one of the
key requirements of digital twins in general and urban digital
twins in particular is the continuous, bidirectional feedback
between the physical entity and its virtual counterpart (Fuller
et al., 2020). This synchronization of the different states of the
physical and digital entity is often called the twinning process,
which consists of two complementary halves as illustrated in
Figure 1: (1) Physical-Digital Twinning: Changes that oc-
curred in the real world (indicated by the blue arrow between
Physical and its changed state Physical′), such as by physical
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behaviours or processes, are reflected to the digital entity (in-
dicated by the blue arrow between Digital and the final state
Digital′); and (2) Digital-Physical Twinning: Changes that oc-
curred in the digital entity (indicated by the red arrow between
Digital and Digital′), such as products of simulation or planning
process, are also reflected back to the physical world (indicated
by the red arrow between Physical and the final state Physical′).

Physical Physical′

DigitalDigital′

(1) real changes

(2) twinning

(3) reflected changes

(A) model changes

(B) twinning

(C) reflected changes

Figure 1. Data flow of changes between a physical entity and its
digital counterpart in a digital twin.

Without identifying changes in step (1) and (A) shown in Fig-
ure 1, the twinning process would have to rebuild or replace the
physical and digital entity regularly respectively. In the con-
text of smart cities and urban digital twins, where semantic 3D
city models serve as the digital representation of cities, the ef-
fects of a lack of change detection capability become appar-
ent in use cases, where older city models are being replaced
entirely by newer ones. This not only wastes time and com-
putational resources but also removes meaningful information
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that can be used to analyse cities’ evolution over time. This
is due to the fact that changes cannot be simply considered as
pure deviations and differences in the datasets, they each also
have a meaning, a context as well as complex and implicit in-
terrelations with each other. Thus, acquiring the ability to both
detect and understand changes between different temporal ver-
sions of a city model will not only enable efficient identification
of changes in the digital datasets, but also provide useful in-
sights into the real changes that occurred in the physical world,
which is also an important application of urban digital twins
themselves. Thus, this research focuses on the steps (A) and (3)
shown in Figure 1, namely to help interpret changes of semantic
3D city models employed as digital representations of cities.

Although change detection is not new, only a few studies have
discussed this so far in the context of semantic 3D city mod-
els (mostly stored in CityGML, an open-standard data model
for storage and exchange of digital 3D city models and land-
scapes). Earlier studies include (Cobena et al., 2002), (Wang
et al., 2003) and (Redweik and Becker, 2015) and were used to
compare the XML tree representations of city models. How-
ever, due to the graph nature of CityGML, other studies such as
(Falkowski and Ebert, 2009) and (Agoub et al., 2016) showed
the potential and expressiveness of graphs as a representation
of CityGML documents. (Nguyen et al., 2017) then proposed
a new approach to comparing arbitrarily large CityGML data-
sets using a graph database. On the other hand, (Nguyen and
Kolbe, 2021) explained the importance and advantage of not
only identifying but also understanding and evaluating changes
with respect to different groups of stakeholders. In general, the
major problems of solving change detection and interpretation
in semantic 3D city models can be summarized as follows:

1. CityGML stores information from different aspects
(namely semantic, geometry, topology and appearance) to-
gether in one place using a highly structured inheritance
hierarchy and a number of syntactic rules, which allows
flexible ways to define city objects, but at the same time
complicates the change detection process;

2. Comparing two temporal versions of the city model of the
same city often results in a large number of changes, which
may quickly become unmanageable and incomprehensible
from a human perspective, especially if many of them are
located at the dataset level only and do not reflect any real
changes in the physical world;

3. Most studies consider changes as isolated deviations in the
data, they contain however (often hidden) multifaceted in-
formation and complex interrelations among each other,
and thus cannot be fully understood without also consider-
ing their semantic context in the city model;

4. The human factor plays the biggest role in interpreting
changes, since different stakeholders have different ex-
pectations and interests in different types of changes,
which are difficult to provide explicit quantifiable meas-
ures due to their multidimensionality, high implicitness
and variability over time.

Thus, to overcome the above-mentioned challenges, this re-
search proposes a framework called Path-tracing Semantic
Network (PSN) for interpreting changes in semantic 3D city
models. A multi-layered semantic network is used to model
and describe changes, stakeholders and their interrelations. A

graph-based path-tracing method is introduced to help analyse
and evaluate such relations. Section 2 provides an overview of
some studies related to this research. Section 3 explains the
concepts and structure of the proposed PSN, including its two
key components, namely the semantic network and the path-
tracing process. The framework’s application in interpreting
changes of semantic 3D city models is also explained. Section 4
concludes and summarizes this research.

2. RELATED WORK

Change detection or data comparison algorithms (whose applic-
ations are often called diff tools) such as (Wagner and Fisc-
her, 1974), (Hunt and Szymanski, 1977) and (Myers, 1986)
are well-established for unstructured plain text files. Despite
often also being available as text files, most semantic 3D city
models are however stored in CityGML (Gröger et al., 2012,
Kolbe et al., 2021), which is a Geography Markup Language
(GML) application schema, which, in turn, is a grammar of the
Extensible Markup Language (XML). Therefore, comparison
algorithms and methods designed specifically for more com-
plex exchange data formats such as XML are required. Since
XML documents are hierarchically structured and can thus be
considered as trees, (Cobena et al., 2002) presented a fast and
memory-efficient diff algorithm for XML data by matching un-
changed XML subtrees between the older and newer version.
(Wang et al., 2003) proposed X-Diff, an effective algorithm that
considers key XML characteristics using standard tree-to-tree
correction techniques. The authors argued that, despite being
substantially more difficult to execute compared to ordered tree
model, matching XML documents using their unordered tree
model generates more accurate results.

Utilizing the unordered tree model proposed by (Wang et al.,
2003), (Redweik and Becker, 2015) later extended their work
to better include some spatial and geometric information avail-
able in the tree representation of CityGML documents. How-
ever, their approach did not include the use of the XML Linking
Language (XLink), which is often utilized in CityGML to allow
the explicit reusing or linking of previously defined elements in
the same document, since including XLinks would form (undir-
ected) cycles in the tree representation of CityGML documents,
which would contradict the definition of trees themselves. This
means that, despite being XML-based, CityGML documents
are basically considered as graphs and cannot be limited to trees
only (Schade and Cox, 2010).

Early graph adaptations and representations of CityGML in-
clude (Falkowski and Ebert, 2009) that presented a graph-based
schema for storing, analysing and managing city objects. The
authors employed a TGraph, which is a directed graph, where
vertices and edges are typed, ordered and enriched with at-
tributes. The model schema integrated parts of the many in-
formation aspects of CityGML, namely geometry, topology, se-
mantic and appearance. Later, (Agoub et al., 2016) focused
on the potential of storing graph representations of complex
data models with well-defined objects, attributes and relations
like CityGML in a database. The authors discussed the dif-
ficulties of storing and managing such complex objects us-
ing Relational Database Management Systems (RDBMS) and
provided a lightweight method for mapping and storing ob-
jects of various Open Geospatial Consortium (OGC) stand-
ards (including CityGML) into the graph databases Neo4j and
ArangoDB. On the other hand, (Yao, 2020) discussed utiliz-
ing the expressiveness, flexibility and extendability of graphs
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(a) Forward path tracing starting from Layer 1
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(b) Backward path tracing starting from Layer n

Figure 2. An example of a bidirectional Path-tracing Semantic Network (PSN), where x
(k)
i indicates the weight of vertex v

(k)
i of layer

Lk and w
(Lk1

Lk2
)

ij indicates the weight of edge connecting vertices v(k1)
i and v

(k2)
j of layer Lk1 and Lk2 respectively.

to enhance the interoperability of CityGML Application Do-
main Extensions (ADEs) with existing spatial relational data-
bases, such as the 3D City Database (3DCityDB) (Yao et al.,
2018). The authors defined a set of graph transformation rules,
which can be dynamically applied to the graph representations
of the XML Schema Definition (XSD) files of CityGML ADEs.
The transformed graphs can then be converted to relational
database schemas in SQL. The above-mentioned studies show-
cased the potential and versatility of the graph representations
of CityGML, its underlying data model and its related data in
many different applications; they however did not explain how
CityGML documents can be matched using graphs.

Exact graph matching, or the graph isomorphism problem, is
the well-known computational problem of determining whether
two finite graphs G and H are isomorphic, meaning whether
there exists a bijective function f : V (G) → V (H) between
the vertex sets of G and H , such that for every pair of adjacent
vertices u and v of G, the resulting f (u) and f (v) of H are
also adjacent. This has been addressed in many prominent stud-
ies such as (Babai, 2015). Graph isomorphism is commonly
employed in computer vision, pattern recognition, etc., where
the number of vertices of both graphs are often kept the same.
Due to the nature of cities’ evolution however, change detection
between graph representations of city models aims not at find-
ing an exact match of the dataset, but rather at detecting where
changes did occur, since the number of vertices of such graph
representations are often not the same. Inexact graph matching,
or homomorphic graph matching, where f is injective instead of
bijective, searches for a match of a smaller graph within the big-
ger one (Bengoetxea, 2002). This is equivalent to the sub-graph
matching problem or the sub-graph isomorphism problem.

(Nguyen et al., 2017) introduced the use of graphs to store,
manage and compare CityGML documents in the graph data-
base Neo4j. The authors employed an R-Tree on top of build-
ing footprints, which can be utilized to find suitable sub-graphs
that are prime candidates for the sub-graph isomorphism prob-
lem. The research was one of the first to provide an actual
working implementation of the mapping and matching process
of arbitrarily large CityGML datasets using a graph database.
However, the study did not provide further instructions on how
to interpret the detected changes, especially in large numbers.
(Nguyen and Kolbe, 2020) presented a multi-perspective ap-

proach to understanding such changes with respect to different
groups of stakeholders by dividing changes into different cat-
egories. The relevance relations between changes and stake-
holders can then be expressed using a table. (Nguyen and
Kolbe, 2021) proposed a refined model of changes as well
as stakeholders in the context of urban digital twins with se-
mantic 3D city models as one of their key components. The
research further provided two mathematical ways to flexibly
model the varying relevance relations between different groups
of stakeholders and different types of changes, namely us-
ing the relevance matrix as well as the relevance graph. The
above-mentioned studies served as one of the first steps towards
achieving automatic and comprehensive change detection and
interpretation. They did not however further address the fact
that changes are also multifaceted, often correlated and cannot
be fully understood without considering their context in the city
model. Moreover, further instructions and mathematical meth-
ods are required to explicitly model and describe the implicit
interrelations between not only changes and stakeholders, but
also among changes and stakeholders themselves.

Therefore, to fill in these gaps, this research proposes a Path-
tracing Semantic Network (PSN) to provide a better and more
comprehensive view of changes, stakeholders as well as their
complex interrelations.

3. PATH-TRACING SEMANTIC NETWORK (PSN)

3.1 Definition

A Path-tracing Semantic Network (PSN) is a graph G = (V,E)
consists of a set V of vertices and a set E of edges. The ver-
tex set V is comprised of partitions Lk called layers. At least
two layers are required in a PSN, namely an input and output
layer. Layers are serially connected, meaning a layer Lk can
only have incoming connections from its previous layer Lk−1

and outgoing connections to its subsequent layer Lk+1. The in-
put layer L1 does not have incoming edges and the output layer
Ln does not have outgoing edges. Each vertex or node v

(k)
i of

layer Lk is assigned a weight x(k)
i ∈ R. An edge e

(LkLl)
ij is a

directed or an undirected connection from vertex v
(k)
i to vertex

v
(l)
j and is assigned a weight w(LkLl)

ij ∈ R. Figure 2 illustrates
an example of such network.
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A PSN is structurally similar to common Artificial Neural Net-
works (ANNs). This is an intended design choice to facilitate
the usage of PSN in future deep learning applications. However,
compared to common neural networks, a Path-tracing Semantic
Network is additionally characterized as follows:

1. A multi-layered semantic network with well-defined
rules for vertices and edges is used to model and capture
interrelations between concepts, where a vertex addition-
ally represents a concept or an object, while a connec-
tion between two vertices has a semantic meaning, typic-
ally representing the real-world or modelled relationships
between its incident vertices (as explained in Section 3.2);

2. Thus, a vertex v
(k)
i neither requires incoming edges from

all input vertices in the previous layer Lk−1, nor outgoing
edges to all output vertices in the subsequent layer Lk+1.
A connection is set only if it represents a meaningful rela-
tion between vertices;

3. A PSN employs graph-based path-tracing techniques
globally on the entire network to analyse the semantic
meaning of its components (as explained in Section 3.3).
In order to facilitate forward and backward path tracing
between the input and output layer, a connection between
two vertices must be bidirectionally traversable (i.e. by
using an undirected edge or two directed opposite edges);

4. In a PSN, a layer can be partitioned further into a set of
serial or parallel sub-layers to better model and process
semantic interrelations between concepts and objects.

Therefore, PSNs were designed to deal with models of data rich
in semantic information and complex interrelations. The use of
a connected multi-layered network provides not only an expli-
cit representation of often implicit interactions between objects,
but also an expressive and intuitive way to describe and capture
the complexity nature of objects and their relations.

3.2 Semantic Network for Changes and Stakeholders

A semantic network is the first key component of the framework
Path-tracing Semantic Network (PSN). In this section, one such
semantic network shall be used to represent changes, stakehold-
ers and their complex relations on multiple levels in an example
of a building, whose roofs have been vertically raised by an off-
set while keeping their original shape (see Figures 3 to 5).

Raised
roofs

Figure 3. An example of a building before (left) and after (right)
its roof surfaces have been raised without changing their form.

The semantic network comprises of five different layers,
namely the input Concept Layer L1, the Change Type Layer
L2, the Reasoning Layer L3, the Actor Role Layer L4 and the
output Stakeholder Layer L5, which shall be explained in the

following sections. In this network, all vertices and edges are
weighted with real numbers. These values represent the interest
and relevance levels between adjacent vertices. For instance,
in a directed network, a weight w(LkLl)

ij denotes the relevance
value of vertex v

(k)
i of layer Lk towards vertex v

(l)
j of layer

Ll, while in an undirected network, this weight applies for both
vertices in each direction. If w

(LkLl)
ij = 0, the edge e

(LkLl)
ij

can be omitted, meaning there exists no relation between ver-
tices v(k)i and v

(l)
j . In the network shown in Figure 5, edges are

undirected. The directed red and blue edges indicate the dir-
ection of the path-tracing process, which shall be explained in
Section 3.3. In case of different weights in each direction, it is
recommended to use directed edges instead. Alternatively, pos-
itive and negative weights can also be assigned to undirected
edges to appoint a consistent path-tracing direction over the en-
tire network. Infinite values can be used to explicitly prioritize
or bypass specific vertices and edges while traversing.

Point PointPoint Point

Ring Polygon

Roof-
Surface

Solid

Building

z-Pos
Change

z-Pos
Change

CONTEXT DESCRIPTOR
CURRENT: Polygon

CONTEXT STACK:
0× Interior, 1× Exterior
→ 1× Ring
→→ 4× Point moved (∆z)

GEO-PROCESSOR

AGGREGATOR

context projection
context propagation

Figure 4. The three components Context Descriptor,
Geo-processor and Aggregator for context extraction.

3.2.1 Context Layer (L1): The Context Layer L1 is the in-
put layer of the semantic network. It combines changes and
their context together in a graph structure. Since a change is
not simply an individual isolated deviation in the data, context
is needed to provide useful insights into the changes’ origin,
scope and their relations with other changes. In semantic 3D
city models, the context containing semantic and spatial inform-
ation of a change can be extracted from its parent and ancestor
elements stored in the dataset. Depending on the methods used
to represent city models, the context extraction process can be
implemented and applied correspondingly. For instance, by us-
ing graphs suggested by (Agoub et al., 2016) and (Nguyen et al.,
2017), the context of CityGML objects can be derived directly
from their graph representation. The context extraction process
consists of three main components: the context descriptor, the
geo-processor and the aggregator. These are illustrated in Fig-
ure 4 on the basis of a simplified graph representation of a roof
surface that has been raised vertically as shown in Figure 3.

Given a directed graph representation of a city model with a
single source vertex (i.e. a vertex with only outgoing edges),
the context extraction process starts with all sink vertices (i.e.
vertices with only incoming edges) at the bottom and iterates
upward for each parent of the current vertex until the source is
reached. In each iteration, the process searches for indicators
of a detected change at the current location. If this is the case,
the context of the current vertex is projected and collected by
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Figure 5. An example of a two-way Path-tracing Semantic Network (PSN) used to model and analyse changes, stakeholders and their
relations. A forward and backward path-tracing are shown in red and blue respectively.

the context descriptor. The context descriptor may store such
context information in a linked list (such as a queue or a stack)
to retain the order of its recorded contents. Depending on the
type of the current element, a geo-processor with its own well-
defined rules is applied to process the geometric information
collected by the context descriptor so far. Based on the results,
the aggregator determines whether the detected changes are se-
mantically and geometrically related. For instance, as shown in
Figure 4, based on the context collected so far from a polygon
object (i.e. composed of one exterior linear ring with four con-
trol points and no interiors) stored in the context descriptor, the
geo-processor is able to determine that all four control points of
the polygon were translated by the same ∆z along the Oz axis.
This indicates that the entire roof surface was moved vertic-
ally by ∆z without changing its form. The aggregator therefore
considers the changes in the four control points as one single
translation change of the roof surface. Moreover, the aggreg-
ator also regulates the context descriptor and the geo-processor
accordingly when a convergence or divergence in the directed
graph is encountered, such as between Polygon, RoofSurface
and Solid, as well as RoofSurface, Solid and Building. These
patterns are used to group semantically, geometrically and to-
pologically related changes in a bottom-up approach, thus con-
densing the number of detected changes significantly while re-
vealing their hidden correlations at the same time. The vertices
id, height, roofs and walls shown in the Context Layer L1 in
Figure 5 represent the aggregated results of the context extrac-
tion process.

3.2.2 Change Type Layer (L2): The context information
extracted and aggregated in previous layer L1 as explained in
Section 3.2.1 can be forwarded to the Change Type Layer L2

to further classify changes, provide scope and therefore poten-
tially identify local, clustered or global (systematic) changes in
the dataset. Conceptual models of changes that are compatible
with semantic 3D city models, such as proposed by (Nguyen
and Kolbe, 2021), can be used to populate the vertices in this
layer. The framework proposed in this research allows flexible
structuring of each layer, meaning that entire layers can be re-
organized into a corresponding graph representation of a class
inheritance hierarchy as long as they satisfy the requirements
of the network given in Section 3.1. The more fine-grained the
conceptual modelling is, the more types of changes this layer
can capture and classify. Graph representation of unassigned
(abstract) superclasses are considered local only to the current
layer and shall not be further forwarded to the subsequent lay-
ers. This can be achieved by marking or “colouring” all such
vertices and their corresponding edges as local to be filtered
out by the path-tracing process at a later stage. Alternatively,
(signed) infinite weights can be assigned to such vertices and
edges to achieve the same effects.

3.2.3 Reasoning Layer (L3): Real-world objects are often
interconnected by various logical and physical processes. A
change to an object may also cause changes to others, or a
single process can trigger changes to a number of connected
objects. In semantic 3D city models, the semantic, geometric
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and topological connections of city objects can be expressed
explicitly using e.g. CityGML. These information aspects are
however often lost or hidden after the change detection process
is complete. Thus, in this section, an additional layer called the
Reasoning Layer L3 is introduced to help capture and model
the implicit correlation and causal effects of changes of objects.

Each vertex of the Reasoning Layer represents an action that
caused detected changes in the datasets. Based on their ef-
fects, these actions can either be classified as changes of the
physical reality or modifications to the digital representations,
as shown in steps (1) and (A) of Figure 1. Similarly to the types
of changes in the Change Type Layer L2, a conceptual model
of such actions can be provided for layer L3. Then, the cor-
relation and causal relations between changes in layer L2 and
real-world actions in layer L3 can be expressed explicitly by
weighted edges in the semantic network. For instance, as shown
in Figure 5, in the direction from layer L2 to layer L3, a change
in the measured height of a building can be caused by an up-
date in the elevation of the entire city model, or raised roofs,
or raised walls. These actions are thus called correlated due to
the changed measured height being their common causal effect.
Vice versa, in the direction from layer L3 to layer L2, an ac-
tion to raise the roofs of a building (i.e. to lift the existing roof
surfaces up vertically without changing their form) may cause a
change in the measured height, a vertical change in the position
of roof surfaces as well as changed vertical size of wall sur-
faces. Therefore, these types of changes are called correlated
due to the action to raise the roofs being their common cause.

Formally, when traversing the network in a specific direction,
if outgoing edges from at least two vertices v

(k−1)
i and v

(k−1)
j

from layer Lk−1 converge into one single vertex v
(k)
p of layer

Lk, then there exists a correlation relation between vertices
v
(k−1)
i and v

(k−1)
j , and v

(k)
p is called their correlation effect.

Depending on the semantic meaning of layers Lk−1 and Lk, a
causal relation may additionally be implied, in which case the
vertex v

(k)
p is called either a common cause or a common causal

effect of both v
(k−1)
i and v

(k−1)
j depending on the interpretation

direction. This process can thus be applied in both traversing
directions if the network is bidirectional. Furthermore, if there
exists another vertex v

(k)
q of layer Lk, to which outgoing edges

of the same vertices v(k−1)
i and v

(k−1)
j of layer Lk−1 converge,

then both v
(k)
p and v

(k)
q are also considered correlated. Depend-

ing on the semantic meaning of such vertices, their relation may
be further refined as a causation. For example, both actions to
raise the roofs and walls of a building in layer L3 have connec-
tions to the same types of changes in layer L2. This indicates
a correlation relation between the two actions (denoted by a
dashed connection in Figure 5). Analysing their semantic role
further shows that the action to raise roofs causes the action to
raise all walls in a one-to-many causal relation. The conceptual
model of actions used in layer L3 can therefore be additionally
extended with such correlation relations between actions.

Moreover, the correlation and causal relations are not only lim-
ited to two neighbouring layers, the analysis can also be applied
to a number of serially connected layers. Note that the travers-
ing direction must be consistent across layers during the pro-
cess. The meaning of such correlation and causal relations is
interpreted based on the semantic meaning and models of the
traversed layers. If the correlation analysis is applied to the en-
tire network (i.e. including both the input and output layer),
then it is called the path-tracing process, which shall be ex-
plained in Section 3.3.

3.2.4 Actor Role Layer (L4) and Stakeholder Layer (L5):
Changes in layer L2 are caused by actions in layer L3, which
are in turn issued by humans. This section shows how the hu-
man factor can be represented as layers in the semantic net-
work. Past studies have shown the complexity of the relations
between stakeholders and different types of changes in semantic
3D city models. On one hand, like changes, the interest levels
vary over time. On the other hand, stakeholders may perceive
different types of changes differently depending on their current
professions, positions and roles in the process. Thus, to allow
meaningful analysis and interpretation of changes with respect
to stakeholders, two layers are proposed to represent stakehold-
ers, namely the Actor Role Layer L4 and the output Stakeholder
Layer L5 as shown in Figure 5.

By decoupling roles from stakeholders as a separate layer, the
network is able to build direct connections between actions in
layer L3 and their actors in layer L4. Roles are also a more ex-
pressive and robust way to describe the functional positions of
a stakeholder in the process, since a stakeholder can have many
different roles at the same time. The Stakeholder Layer L5 is
the last and output layer of the network. It represents stakehold-
ers based on their physical characteristics, e.g. as individual
beings (citizens), companies (private sectors) and organizations
(non-governmental and governmental organizations), etc. Sim-
ilarly to previous layers, a conceptual model for actors in layer
L4 and stakeholders in layer L5, such as proposed by (Nguyen
and Kolbe, 2021), can be employed to populate the network.

3.3 Graph-based Path-tracing Analysis

A Path-tracing Semantic Network (PSN) comprises of two key
components: a multi-layered semantic network (as described
in Section 3.2) and a path-tracing process, the latter of which
shall be discussed in this section. The name “path tracing” of
this framework is inspired by the technique path tracing in the
field of computer graphics, which simulates realistic global il-
lumination of a 3D scene by starting at the individual pixels
on the objects’ surface and following along the many light
rays bounced between objects until the light source is reached
(Kajiya, 1986). Light paths that did not reach the light source
shall be discarded. Thus, using similar terminology, the one-
way path tracing process of the framework PSN starts with the
input layer L1, then follows the many graph paths between lay-
ers until the output layer Ln is reached. Paths that did not reach
the target layer shall be discarded. The two-way version of the
path-tracing process can additionally start with the output layer
Ln first and arrive at the input layer L1. Path tracing in the
direction from the input layer L1 to output layer Ln is called
forward path tracing, while the version in the opposite direc-
tion is called backward path tracing. These are illustrated in
Figures 2a and 2b as well as in red and blue paths in Figure 5
respectively.

To ensure that the path-tracing process terminates, the network
must either be a directed acyclic graph in each tracing direc-
tion, or it can contain cycles that are only traversable for a finite
number of times. For bidirectional path tracing, the network
must either be undirected or traversable in both directions. In
the former case, edge weights are the same for both directions,
while in the latter case, different weights for each direction can
be assigned to the same connection between two vertices.

As one of its applications, the PSN can be employed to model,
analyse and interpret changes of semantic 3D city models
with respect to stakeholders. In contrast to local or clustered
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processes such as the correlation analysis introduced in Sec-
tion 3.2.3, the path-tracing process takes place on top of the en-
tire network. Based on the example of raised roofs of a building
shown in Figure 3 and the corresponding semantic network il-
lustrated in Figure 5, the path-tracing process is applied in the
following analyses:

1. Changes-Stakeholders Analysis: This process determ-
ines how relevant a change is to different actions, actors
and ultimately stakeholders. Forward path tracing is em-
ployed in this case. For instance, as shown in the red paths
in Figure 5, a detected change in the identifier of a building
may indicate an update in the dataset or a software change.
Consequently, this finding may be of interest to innovators
and data managers, who are represented as citizens and
mapping agencies. Thus, the results of this analysis are
useful when a number of changes have been detected and
need to be evaluated with respect to stakeholders;

2. Stakeholders-Changes Analysis: This process determ-
ines which roles, actions and ultimately types of changes
are relevant to a specific stakeholder. Backward path tra-
cing is employed in this case. For instance, as shown
in the blue paths in Figure 5, a city planning department
may have a role in urban construction, property manage-
ment and policy making. They may therefore be interested
in the changes indicating the raised roofs and walls of a
building. Thus, the results of this analysis are required
to provide stakeholders a better and human-readable over-
view of only interesting changes among many less relevant
others stored in a database.

Therefore, by employing forward and backward path tracing
in the semantic network, meaningful in-depth information and
insights of the often hidden relations between concepts and ob-
jects can be achieved. This is done by evaluating the accumu-
lated weights of all traced paths within the network in a spe-
cific direction. The accumulated weight wP of a traced path
P =

(
v
(1)
i1

, v
(2)
i2

, . . . , v
(n)
in

)
can be defined for forward path tra-

cing as follows:

wP =

n−1∑
k=1

x
(k)
ik

w
(LkLk+1)

ikik+1
(1)

where v
(k)
ik

is the ik-th vertex of layer Lk with weight x
(k)
ik

,
1 ≤ ik ≤ |Lk| with |Lk| as the number of employed vertices of
layer Lk, and w

(LkLk+1)

ikik+1
is the weight of the edge connecting

v
(k)
ik

with v
(k+1)
ik+1

. Note that the vertex weight x(n)
in

of the target
layer Ln is excluded from wP . This can be included if needed.

The path P has a maximum length of n − 1 edges, since the
network has n layers (excluding auxiliary vertices used locally
within layers to represent unused classes, etc. of the concep-
tual models). There exist at most

∏n
k=1 |Lk| such paths. If the

length of P is not exactly n−1, then this path is not fully traced,
meaning the target layer is not reachable. Otherwise, among
fully traced paths, a minimum or maximum value of their ac-
cumulated weights (depending on the use cases and weight val-
ues) can be calculated to determine the most fitting candidate
for further analyses. This corresponds to the shortest or longest
path problem respectively. However, it is often the case where
not only one but multiple candidate paths must be considered.
As a result, paths weighted below a certain threshold can be

ignored. The remaining candidate paths can then be sorted for
further analyses based on their weights. The value of the above-
mentioned threshold is determined depending on the specific
use cases. For example, for the Changes-Stakeholders as well as
Stakeholders-Changes analysis mentioned previously, weights
of vertices and edges are given as real (normalized) numbers to
represent the relevance values between changes and stakehold-
ers. The most fitting candidates are therefore the fully traced
paths that are weighted above a defined threshold ideally close
to the maximum value of all accumulated weights.

Given a directed network, since no edges between vertices
within the same layer exist (or can be neglected during the path-
tracing process), the adjacency properties of two layers Lk and
Lk+1 can be described using the following modified submatrix
Ak of their adjacency matrix:

Ak =

(
x
(k)
i w

(LkLk+1)
ij

)
∈ R|Lk|×|Lk+1| (2)

The adjacency matrix A of the entire network thus becomes:

A =



L1L1L1 L2L2L2 L3L3L3 ......... LnLnLn

L1L1L1 0 A1A1A1 0 . . . 0
L2L2L2 0 0 A2A2A2 . . . 0
...
...
...

. . .
Ln−1Ln−1Ln−1 0 0 0 . . . An−1An−1An−1

LnLnLn 0 0 0 . . . 0

 (3)

Then, the value ak
ij ∈ A◦fA◦f . . .◦fA = Ak corresponds to the

accumulated weights of a path of length k between vertices vi
and vj of the acyclic directed network, where ◦f is a modified
matrix multiplication such that for each matrix P = (pij) ∈
Rm×l and Q = (qij) ∈ Rl×s, P ◦f Q = (rij) ∈ Rm×s,
with rij = max (f (pit, qtj)) ∀t ∈ [1, l]. Depending on the
use cases, a minimum function may be preferred. The function
f is defined for each real value of x and y so that f (x, y) =
0 if xy = 0, or x + y otherwise. This ensures the weights
of each path can be accumulated correctly. Since layers are
serially connected, only the “diagonal” (A1A2 . . . An−k) of Ak

is populated with non-zero values. As k increases, the diagonal
moves upwards. Hence, all fully traced paths of length n − 1
can be found in the submatrix located in the top right corner
confined by the first |L1| rows and last |Ln| columns of An−1.
This can be utilized to reduce the size and computation of Ak.

L1L2L3

1

2

3

4

5
3

4

5

1

2

Figure 6. An example of a weighted and directed network.

For instance, the network illustrated in Figure 6 has the follow-
ing adjacency matrix according to Equation (3):

A2 =


0 0 3 4 0
0 0 0 10 0
0 0 0 0 3
0 0 0 0 8
0 0 0 0 0


2

=


0 0 0 0 12
0 0 0 0 18
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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4. CONCLUSION AND FUTURE WORK

This study proposes a Path-tracing Semantic Network (PSN),
a flexible framework for modelling, analysing and interpreting
changes of semantic 3D city models. A PSN consists of two key
components: a semantic network and a path-tracing process on
top. The semantic network is organized as layers to better cap-
ture and represent the multidimensional nature of changes and
their relations not only to stakeholders but also among them-
selves. Based on the vertex and edge weights given in the net-
work, the path-tracing process is employed to evaluate the mod-
elled layers and find changes that are most relevant to a specific
stakeholder or vice versa, find stakeholders that are most likely
interested in a specific type of change.

This framework provides both an intuitive and explicit way to
capture and describe complex interrelations between concepts
and objects that are often hidden or implicit and thus difficult
to observe and model. Due to its graph nature, a PSN can be
quickly realized and coupled with existing data in many graph
databases. Another advantage of a PSN is its scalability, in-
teroperability, full extendability and customization thanks to its
modular design. Additionally, the semantic network can be ap-
plied not only to express correlations between objects, but also
to provide a correlation check on their correctness, or to predict
correlated behaviours (such as a raised roof should also predict
a change in the measured height of a building and vice versa).
A PSN is compatible with common Artificial Neural Networks
(ANNs) and could be extended for future use cases.

In the near future, the proposed framework Path-tracing Se-
mantic Network (PSN) shall be applied and evaluated using
real-world scenarios, where a semantic network shall be de-
veloped to model, identify and interpret most common types of
changes with respect to stakeholders in semantic 3D city mod-
els. Furthermore, the framework could be employed to contrib-
ute to the ongoing efforts of realizing the automatic data flow
required in urban digital twins in the context of smart cities and
semantic 3D city models. However, a PSN can also be applied
in other application areas and use cases, where information is
multifaceted, often implicit, variable and highly interconnected.
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