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ABSTRACT:

Building footprints are a prerequisite for many tasks such as urban mapping and planning. Such structures are mostly derived using
airborne laser scanning which reveals rather roof structures than the underlying hidden footprint boundary. This paper introduces
an approach to extract a 2D building boundary from a 3D point cloud stemming from either terrestrial scanning or via close-range
sensing using a mobile platform, e.g. drone. To this end, a pipeline of methods including non-parametric kernel density estimation
(KDE) of an underlying probability density function, a solution of the Travelling Salesperson Problem (TSP), outlier elimination
and line segmentation are presented to extract the underlying building footprint. KDE turns out to be suitable to automatically
determine a horizontal cut in the point cloud. An ordering of the resulting points in this cut using a shortest possible tour based on
TSP allows for the application of existing line segmentation algorithms, otherwise dedicated to indoor segmentation. Outliers in
the resulting segments are removed using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The segments
are then generalized leading to the final footprint geometry. We applied our approach on real-world examples and achieved an IoU
between 0.930 and 0.998 assessed by ground truth footprints from both authoritative and volunteered geographic information (VGI)
data.

1. MOTIVATION AND CONTEXT

Building footprints represent an indispensable requirement for
a wide range of applications such as urban planning, monitoring
and disaster management. They are, in particular, a prerequisite
for the 3D reconstruction of building and city models (Henn
et al., 2013; Biljecki et al., 2015; Arroyo Ohori et al., 2015).
In this context, the automatic extraction of building footprints
from different remote sensing data such as high resolution ortho
photo images (2D Semantic Labeling Challenge, 2022), satel-
lite images (Shi et al., 2018) and airborne laser scans (Mongus
et al., 2014) gained more and more attention. Most of the exist-
ing approaches yield roof structures from the remotely sensed
data. However, the detailed geometry of the underlying foot-
prints which are often hidden by the roof surfaces is difficult to
extract. Moreover, the automatic detection of roof outlines itself
is even challenging in densely populated areas such as slums or
in presence of occluding objects like trees and power lines.

To achieve a more accurate and detailed extraction of build-
ing footprints, this paper introduces a novel approach which is
based on 3D point clouds covering the buildings’ walls. Such
point clouds could be acquired with terrestrial laser scanners or
laser scanners mounted on drones. Moreover, slant-angle laser
scanning from airplanes could be used. The first step towards
the 2D footprint is to determine an appropriate height in the
3D point cloud to extract a cross section preserving the geo-
metric footprint characteristics. This is a crucial and decisive
step which highly influences the quality of the final result. To
this end, we applied a non-parametric estimation of probability
density functions (PDF) without relying on any assumptions on
the a-priori unknown underlying distribution. Using a kernel
density estimation (Wang and Suter, 2004), the estimated PDF
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reflects the spatial behaviours of the underlying data and a suit-
able height to select. After an outlier detection and elimination
based on Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) (Ester et al., 1996), an instance of the well-
known Travelling Salesperson Problem (Dantzig et al., 1954;
Cormen et al., 2009) is solved to build the boundary of the ac-
quired cross section leading to an ordered segment sequence.
This gives access to existing line segmentation approaches of
2D structures. In particular, we used the algorithm of Peter et
al. (2017) which is originally dedicated to indoor scans. Our
method delivers a regularized footprint outline after a general-
ization step adjusting the segments from the previous stage.

To demonstrate the feasibility of our proposed method, we ap-
plied it on different real-world instances leading to highly de-
tailed footprint structures. Despite the presence of occluding
objects such as vegetation, the comparison with ground truth
based on authoritative as well as volunteered geographic infor-
mation (VGI) data states a high confidence in terms of geomet-
ric accuracy assessed by Intersection over Union (IoU) which
is often used as quality value for the area-based building out-
line extraction (Potůčková and Hofman, 2016). Our approach
could contribute to the update of as-planed states of building
footprints expanding them by an as-built assessment and in a
verification step within a change detection process.

The remainder of this paper is structured as follows: Section 2
shows an overview on the related work whereas Section 3 pre-
sents our methods pipeline for the generation of building foot-
prints from 3D point clouds. More specifically, the Subsec-
tions 3.1, 3.2, 3.3 and 3.4 deal with the consecutive prepro-
cessing, travelling salesperson, edge segmentation and post-
processing steps respectively. Section 4 demonstrates the feasi-
bility of our approach based on real-world examples. The paper
is discussed and concluded in Section 5.
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2. RELATED WORK

Automatic processing of 3D point clouds of buildings has been
an active field of research for years. This often involves the au-
tomatic identification and reconstruction of specific building el-
ements, such as windows and doors (Pu and Vosselman, 2007),
roofs (Dehbi et al., 2021), or extraction of the building’s floor-
plan (Gankhuyag and Han, 2020). Since our approach aims
at the automatic generation of the building footprints, we first
highlight recent work in this area.

Light detection and ranging (LiDAR) points are usually used
as the data basis for most building footprint recognition ap-
proaches. However, Weidner and Förstner (1995) have shown
that this can be also achieved with a digital terrain model. In
this terrain model, the heights of the buildings are incorporated
and used to detect the jumps in their values which allows for in-
ferring the according boundaries. However, the low resolution
leads to inaccurate results.

For the determination of footprints, terrestrial laser scans can
be used as well as airborne LiDAR data recorded from mobile
platforms, e.g. drones or airplanes. In the case of data acqui-
sition from the ground, i.e. terrestrial laser scanning and data
acquisition from vehicles, the collected data points lie primar-
ily on the facades of the buildings while these points are mainly
belonging to the roof surfaces in the case of airborne laser scan-
ning. Such resulting point clouds of roofs are used by Wei et al.
(2008) who present an approach based on α-shapes (Edelsbrun-
ner et al., 1983) to determine the preliminary points’ boundary
followed by a regularization step. Shen et al. (2011) follows
a comparable paradigm by using α-shapes as well and adding
height to reconstruct 3D shapes. However, both approaches use
merely points of the roof and therefore tend to oversize the foot-
print. In addition to using α-shapes, Duckham et al. (2008) pro-
posed χ-hulls as another generalization of convex hulls which
could be used for the reconstructing. This generalization is as
well achieved by shortest-path hulls by de Berg et al. (2011).
The difference of χ-hulls from α-shape is the lack of possibil-
ity to model holes inside the geometry. Zhang et al. (2006) pro-
posed an approach that first separates points on the ground and
buildings, eliminates vegetation and determines the direction of
the building based on the longest line segments. The proposed
approach of Mongus et al. (2014) follows a similar procedure
by focusing on the separation of building and ground points.
Afterwards, they compare the resulting areas to ground truth
data which shows outliers in regions of vegetation on top of the
roofs. These artifacts were tackled by Awrangjeb and Lu (2014)
by improving the schematization of airborne scanned buildings,
but the correct detection of the direction of the building turned
out to be a crucial task which can not be performed consistently.

Using terrestrial laser scans as data source and a Delaunay tri-
angulation of the according 3D point cloud, Pu and Vosselman
(2007) extracted geometries, e.g. windows and wall boundaries.
They used this information later on for the creation of building
outlines (Pu, 2008). However, the approach lacks the ability to
deal with occlusions and is primarily developed for facades. A
different approach was developed by Hammoudi et al. (2009)
using a Hough transform (Hough, 1962). Similar to our ap-
proach, they produce a 2D point cloud in a first step which is
subsequently used for the Hough transform and serving as in-
put for a KMeans (MacQueen et al., 1967) clustering step. This
setup can deal with larger structures of a building but strug-
gles with low point densities and finer details of a building. In

comparison, beyond dense point clouds our approach is able
to deal with lower point densities as well. As mentioned, a
Hough transform can be used to determine edges of such a 2D
point cloud (Hammoudi et al., 2009). Nguyen et al. (2005) used
additionally a Kalman-filter combined with Random Sampling
and Consensus (RANSAC) which, however, led to less reliable
results than using an Iterative End Point Fit. This is closely re-
lated to the approach of Peter et al. (2017) which uses a range
of residuals based on a 2D profile laser scanner and detect dif-
ferent wall segments of building interiors. In our context, we
use this algorithm for edge segmentation.

In this paper, we address the challenge of constructing a 2D
footprint by using terrestrial laser scans or a mobile platform.
Since we cannot always assume normal distributions we applied
a kernel density estimation (KDE) to retrieve the best horizontal
cut in the point cloud allowing for preserving the detailed struc-
ture of the sought footprint. This has been applied similarly by
Dehbi et al. (2016) who derived location and shape parameters
of building objects, e.g. windows, based on KDE. Before we
can apply the edge segmentation, we order the points according
to their appearance in a shortest path. This corresponds to the
well-known Travelling Salesperson Problem (TSP) (Dantzig et
al., 1954). Although it has been shown that the TSP can be
solved in nearly linear time (Arora, 1997), we make use of
Christofides’ algorithm (Christofides, 1975) which guarantees
a maximum path length of 50% over the optimal solution.

3. METHODOLOGY

In this section, we present our approach to extract a 2D footprint
of a building from its corresponding 3D point cloud. First, we
automatically select a cross section of the 3D point cloud lead-
ing to a 2D point cloud (Section 3.1) which is ordered using a
solution of the Travelling Salesperson Problem (Section 3.2).
A generalization of wall segments is then performed building
upon a point segmentation which delivers preliminary segments
(Section 3.3). In a post-processing step, the process is con-
cluded based on the segmented edges to create a schematic
building boundary (Section 3.4). Figure 1 summarises the whole
process of our approach which will be explained step by step in
the following sections.

3.1 Preprocessing

The input of our processing pipeline is a 3D point cloud P of
a given building where all facade walls have been surveyed (cf.
step 1⃝ of Figure 1). As the resulting building boundary is a 2D
geometry, we reduce the dimensionality of the underlying point
cloud cutting it horizontally at a specific height hc. A prerequi-
site for this cut is the alignment of the point cloud with the hor-
izontal plane. This can be done by leveling the terrestrial laser
scanner capturing the data or using additional sensors in mobile
applications. The selection of the suitable height hc of the cut is
a crucial step which influences the quality of the acquired result
later on (cf. step 2⃝). At heights with many windows there are
many gaps in the cross section. This is attributed to the under-
lying glass surfaces. Such gaps can be avoided setting the cross
section, for instance, on a height between two floors. We solve
this problem by using a non-parametric approach to estimate a
probability density function (PDF) to find a height that corre-
sponds to a high number of points. To this end, we apply kernel
density estimation (KDE) (Wang and Suter, 2004) exclusively
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Figure 1: Summary of the processing pipeline of our 
ap-proach which automatically extracts a 2D footprint 
from a 3D point cloud.

to the heights of the underlying n points as follows:

f̂K(z) =
1

nh

n∑
i=1

K

(
z − zi

h

)
(1)

where h stands for a bandwidth whereas K represents the used
kernel function placed on every data point. Such a non-paramet-
ric estimation does not require any knowledge about the under-
lying distribution of the input data. When estimating the kernel
density, it is important to keep in mind that flat surfaces such as
the ground around a building as well as terraces and balconies
are densely distributed along the horizontal plane. This causes
the distribution to peak at those locations. However, these hor-
izontal planes are not part of the building boundary. Such re-
gions correspond to the highest peaks as can be seen in Figure 2.
Hence, we ignore these narrow-band peaks for the determina-
tion of the cross-sectional height hc and rather aim to select
points directly below the terraces and balconies. Selecting such
kind of points has the advantage of being between two floors
and, hence, avoiding window levels. Furthermore, those areas
are less likely to be occluded by greenery, e.g. bushes and small
trees, in front of the building.

To address this task automatically, we first select the maximum
mpdf of the estimated kernel density function of the one-dimen-
sional point cloud. Second, we identify the local maximum
mpdf′ of the first derivative of the PDF around mpdf as de-
picted in Figure 2b (red cross). This height of the maximum
in the derivative splits best between an area with balconies and
windows which is therefore selected as the height hc.

After the selection of the cross-sectional height hc, we define a

buffer around the cut with a width wc (cf. step 3⃝). This allows
for obtaining more point candidates C for a subsequent segmen-
tation step. This parameter wc depends on the point density of
the point cloud P . For a high density point cloud, the parameter
wc can be lowered, while it has to be increased for low density
point clouds. We denote the resulting point cloud as

C = {p ∈ P |hc −
wc

2
≤ pz ≤ hc +

wc

2
}. (2)

The set of points C contains not only points belonging to the
building boundary but also those which passed the z-coordinate
filter of Equation 2, but however, are not part of the building,
e.g. through a window captured inside points or vegetation
outside points. An example of the extracted cross section can
be seen in Figure 2c with vegetation and points surrounded by
the red outlines. To filter such irrelevant points, we cluster the
points of the selected cross section using DBSCAN (Ester et al.,
1996). We then remove the outliers, i.e. all points that cannot
be assigned to a cluster (cf. step 4⃝ of Figure 1). For segment-
ing these remaining points, we want to adapt an approach orig-
inally developed for profile laser scanners (Peter et al., 2017).
This approach assumed that the points are ordered according to
the rotation of the profile scanner and are therefore in a sequen-
tial order. To meet such a requirement in our cross section, we
compute a shortest round trip through all points of the cross sec-
tion solving a Travelling Salesperson Problem instance which is
explained in the next section (cf. step 5⃝).

3.2 Travelling Salesperson Problem

At first sight, a solution yielding the building boundaries con-
sists in calculating a shortest path connecting all points of the
cross-sectional point set C. This corresponds to solving the
well-known Travelling Salesperson Problem (TSP). However,
this solution would incorporate all available points of C and,
therefore, undesired outliers with regard to the building bound-
ary. The preliminary TSP solution serves as input for a subse-
quent edge segmentation towards the final solution. For solving
the TSP, we use the approximation of Christofides (1975) which
results in a boundary which is at most 50% longer than the op-
timal boundary. This approximation algorithm has a polyno-
mial running time, which is crucial for large point clouds. Fig-
ure 3 summarises the whole process of Christofides’ algorithm
which will be explained step by step in the following. For the
computation of the shortest tour, we generate an edge-weighted
undirected graph G = (V,E) where the set of vertices V corre-
sponds to the points of the point cloud. An edge e ∈ E connects
two consecutive vertices weighted by an edge weight w(e). For
our task, we define the weight w(e) for the edge e = (vi, vj)
as the Euclidean distance between vi and vj . The edge set E is
initialised as empty set in the beginning.

The final goal of the algorithm of Christofides is the computa-
tion of a short Hamiltonian cycle. The Hamiltonian cycle is a
cycle which is visiting each vertex of the path exactly once. The
first step of this algorithm for finding such a cycle is a minimum
spanning tree (MST) (cf. step 1⃝ of Figure 3). For computing
the MST T , we use the algorithm of Prim (1957) and add the
edges ET which are part of T to our graph G. Adding an edge
e to G increases the degree, i.e. number of edges, of both nodes
of the edge by one. Since we want to achieve a round trip at the
end only even degrees are allowed for each node. Therefore,
we select the nodes V ′ ⊆ V of G which have an odd degree
(cf. step 2⃝) and compute a matching of minimum weight for
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Figure 2: Automatic determination of the suitable height for a cross section exemplified by the building ESTATE. 
Based on the 3D point cloud, a one-dimensional, z-directional, probability density function (PDF) is computed, 
provided by a kernel density estimator (KDE). This is used as a prior for the selection of a cross-section to be chosen. 
The red cross in the probability density function is the selected height of hc of our approach. The red outlines of the cross 
section highlight areas with many outliers as vegetation or points inside the building.
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Figure 3: Summary of Christoffides’ algorithm with an 
ad-ditional step of removing crossings.

the nodes V ′ (cf. step 3⃝). The matching results in new edges 
EM which minimize the Euclidean distance:

min
∑

e∈EM

w(e). (3)

The added edge set EM increases the degree of nodes V ′ to
be even. After adding both ET and EM to G (cf. step 4⃝),
we compute an Eulerian cycle (cf. step 5⃝). In this cycle, all
nodes can be visited at least once due to the underlying MST.
However, this cycle can contain nodes multiple times which un-
necessary increases the boundary length. By removing multiple
visits of the same node, we achieve a Hamiltonian cycle as re-
sult of Christofides’ algorithm (cf. step 6⃝).

However, a crossing-free resulting path is not guaranteed by
Christofides’ algorithm. Crossings contribute not only to an
increased path length but also lead to topologically incorrect

boundaries. Hence, we perform the k-Opt heuristic (Lin, 1965)
to remove the crossings (cf. step 7⃝). Although the k-Opt
heuristic can result in an exponential running time, we opt for
an early stop after a single pass of the algorithm which is suf-
ficient in the context of our task. Performing k-Opt once is
sufficient for our approach as we already solved the TSP and
apply the k-Opt heuristic for resolving crossings only. Hence,
this results in a running time of O(n2) in our use case rather
than the expected exponential running time.

3.3 Edge Segmentation

After the ordering of points according to the appearance in the
boundary, the task can be reduced to a 2D problem allowing
for the application of methods originally proposed for 2D laser
scans (cf. step 6⃝ of Figure 1). In this context, we make use of
an algorithm of Peter et al. (2017), originally dedicated to 2D
profile laser scans for indoor environments, to obtain a segmen-
tation of building boundaries. The edge segmentation is based
on estimating lines through n points incorporating mean resid-
ual values. This mean residual is expected to be σ/

√
n where σ

is referring to the sensors accuracy. When adding a new point
to a segment of n points, we check if the point’s mean residual
is less than 3σ/

√
n. If this holds, the point is added to the seg-

ment. Using 3σ as threshold corresponds to a 99.7% confidence
interval. In case the mean residual of the point is greater than
the specified threshold, the line is fitted through the segment
consisting of n points and added to the final list of lines. How-
ever, each segment has to fulfill a specified minimum segment
length. This aims at reducing small segments in cluttered and
noisy regions of the point cloud. Furthermore, the segments are
initialized with a minimum length N .

3.4 Postprocessing

The edge segmentation is prone to a cluttered result line set.
This is the result of finishing a segment when the next investi-
gated point has a distance to the line of more than 3σ/

√
n with

n being the number of points of the segment. To overcome
this small deviations in the building boundary, we perform a
schematization step (cf. step 7⃝). In this last step of the pro-
cessing pipeline, we estimate a line through every segment and
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Figure 4: Determination of the distance do between 
two nearly parallel consecutive line segments si and si+1 
based on the midpoint pm between the endpoints of the 
line seg-ments.

compare it to the subsequent lines. In case the direction change 
between consecutive lines is greater than a specified threshold, 
we keep both individual lines. If the angle between those two 
adjacent lines is below the threshold and the distance do be-
tween those line segments is below a distance threshold, we 
combine the points of both segments to a single segment and es-
timate a new line though the merged segment. With this process 
we are able to merge co-linear lines to schematize the footprint 
and create a single polygon without gaps. For our experiments, 
we set this angle threshold to 20o.

To calculate the distance do between the two line segments si
and si+1, we first create an orthogonal line for each of the line 
segments; see Figure 4. The average slope of these two line 
segments is used to create a new line segment so which has the 
same angle in comparison to si and si+1. Then we determine 
the midpoint pm between the end of the first segment and the 
beginning of the second segment, which together with the slope 
forms a new line segment so between the two given segments. 
The line segment so is limited by the intersections with the line 
segments si and si+1 while its length is used as the distance do. 
If the distance do is above the specified distance threshold, so
is added in between si and si+1. Using the combined lines, we 
estimate intersection points of consecutive lines and limit the 
lines to line segments between those intersections. In the end, 
the building boundary is created by the line segments between 
adjacent intersections.

4. EXPERIMENTS

For analyzing the results of our approach, we outline experi-
ments on two point clouds captured with a Leica HDS6100. 
As first building we execute our approach on a building which 
belong to the Campus of the University of Bonn in Germany. 
This building will be denoted as UNIVERSITY in the rest of this 
paper. UNIVERSITY consists of long, straight edges with all 
bends being nearly 90o, no balcony and very little occlusions; 
see Figure 5a. The point cloud consists of 106 points. In order 
to have an equally distributed point cloud, we opt to subsample 
beforehand. The subsampled point cloud has 527k points with 
a distance between points of at least 5 cm. The second building, 
which we call ESTATE, has a more complex shape and its point 
cloud consists of nearly 44 · 106 points which is sampled in the 
same manner as for UNIVERSITY to 511k points. The original 
point cloud of ESTATE is depicted in Figure 2a. As the origi-
nal resolution of the point cloud of ESTATE is higher in com-
parison to UNIVERSITY, the downsampling of the points for 
ESTATE is significantly h igher w ith r espect t o UNIVERSITY. 
Our aim is to demonstrate that a relatively sparse point cloud 
is also suitable to estimate the building boundary. Hence, we 
opt to sample points with pitch of 5cm which is also beneficial

in term of processing time and memory consumption. We ap-
plied a space-based sampling rather than a random sampling as
this results in a more uniformly distributed point cloud. This
space-based sampling over random sampling enables us to ex-
tract meaningful heights from the estimated probability density
function as this allows us to successfully detect the according
holes of windows in the data. If there is an increased point
density at an elevation where windows are present, this would
not be possible with our approach because no decrease or in-
crease would be detectable in the estimated probability density
function. However, there are enough points left to estimate the
building boundary. The decreased point density can also be a
side effect of faster scanning with lower resolution.

4.1 Selecting a cross section

The first step of our processing pipeline is the detection of a
height for a reasonable cross section. In order to do this, we de-
termine the PDF from both datasets as can be seen in the middle
of Figure 2 and Figure 5b. We reduce the points by the abso-
lute height so that the lowest point of the point cloud is at 0m.
This, however, only affects the height scale of the plot but does
not influence the resulting probability density function. Con-
sidering the KDE result of UNIVERSITY, three local maxima
at heights of 4.0m, 7.1m and 10.3m as well as local minima
at 1.8m, 6.0m and 9.3m are present. The local minima cor-
respond to the heights where windows are present, and thus,
fewer points are recorded. We can therefore conclude that the
building consists of three floors. In the case of the maxima, the
building outline is without major data gaps, which increases the
number of captured points. In order to select a cross section at
a window-free height, we apply the method described in Sec-
tion 3.1. This results in a height hc of 10.0m. With the selected
height hc at the top of the third floor it is not possible to de-
tect the entrance of the building. The entrance is only present
if a height hc at the top of the first floor has been selected. Un-
fortunately, in the underlying point cloud a large portion of the
wall in the lower right of the building is missing for the lower
two floors. For this reason, our approach does not select the
corresponding height. Our extracted cross section for UNIVER-
SITY is shown in Figure 5c. We perform a similar procedure for
ESTATE. The building has two terraces, which results in dense
clusters on the horizontal level accordingly. The challenge for
such a building is to select an area as high as possible below
the terraces; see Figure 7. Our approach turns out to be also
suitable for such circumstances. The horizontal planes of the
terraces lead to high probability density values at those heights.
Our approach is able to automatically select a cut in the shown
red corridor above the windows and below the ceiling. In this
case, the resulting parameter of our approach is hc = 6.08m
with the same wc = 0.15m; see Figure 2b. In both examples,
we choose the width of the cut wc = 0.15m which corresponds
to a typical thickness of ceilings in such building style. The
cross sections of the two buildings contain 12017 points in case
of UNIVERSITY and 6989 points for ESTATE respectively.

The selected cross section still reveals artifacts from the un-
derlying point cloud such as points within the building that
were captured through windows or vegetation present around
the building. For this reason we apply the DBSCAN which has
been executed with a radius of 1m and a cluster size of 15. In
both cases, ESTATE and UNIVERSITY, not all outliers can be
removed, however, the eliminated outliers turn out to be bene-
ficial for improving the quality of the building outlines.

The filtered cross section represents the input of the algorithm
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(a) Point cloud (b) KDE (c) Cross section

(d) TSP (e) Edge segmentation (f) Result as red dashed line

Figure 5: The pipeline of our approach demonstrated on the UNIVERSITY campus in Bonn/Germany. The skillfully 
selection of the cross section (c) based on a kernel density estimation (b), is a decisive prior to solve a travelling salesperson 
problem (d) followed by an edge segmentation (e) and leading to a final footprint (f) of high accuracy.

of Christofides. We focus on the result for ESTATE as this shows
the effects of the outliers; see Figure 6a. Based on this prelim-
inary result, it is obvious that simply connecting the points is
not sufficient to represent an outline of the building, since it
includes every point of the cross section. Nevertheless, the re-
trieved polygon is a simple polygon with no crossings.

4.2 Edge segmentation

The resulting TSP tour is the basis predefining the order of the
points for the subsequent edge segmentation. For σ, we choose
1.2mm for both buildings, which corresponds to the accuracy
of the laser scanner. We set 15 as the minimum number of
points per edge, while the segments are initialized with 8 points.
Both parameters, i.e. the minimum number of points per seg-
ment and number of points for initializing, have to be changed
for differing point densities accordingly. Applying this to UNI-
VERSITY, we obtain 56 segments, while for ESTATE we get 80
segments. However, the majority of those identified segments
belong to the same walls, while some wall segments are miss-
ing. The increased number of resulting segments is attributed
to the presence of outliers, i.e. lying further as 3σ/

√
n. Such

outliers trigger new segments accordingly. Those segments are
merged in the postprocessing and in case of parallel segments,
new line segments are added. We select 0.2m as the distance
threshold for merging parallel segments. For smaller distances,
we merge both segments to a single segment. By increasing this
threshold it is possible to increase the degree of generalization
of the building boundary. We select the angular threshold as
20o. This angular threshold is based on the angles of an octilin-
ear grid where all angles between line segments are multiples

of 45o. When schematizing to such a grid, it would be possi-
ble to merge all segments with angular deviations up to 22.5o.
However, since we are dealing with missing observations, mea-
surement uncertainties, and occluded segments, we reduce the
threshold to 20o.

4.3 Results

The line segment merging results in 8 line segments for UNI-
VERSITY and 24 line segments for ESTATE respectively; see
Figure 5f and Figure 6c. The result of our approach fits well to
the underlying structure of the cross section in case of UNIVER-
SITY. However, in case of ESTATE the result is not satisfactory
in the top left part. This is due to the presence of bushes in
front of the building occluding parts of the wall and responsi-
ble for additional undesirable points. Furthermore, our result
appears to be slightly rotated in comparison to the ground truth
data of OpenStreetMap (OSM) (OpenStreetMap contributors,
2022). This deviation results from the inaccurate registration
via GPS measurements, which causes a mismatch between the
underlying point cloud and the corresponding ground truth foot-
print.

We further quantify the deviations of our results in comparison
to footprints from OpenStreetMap and Geobasis NRW (2022)
of the state of North Rhine-Westphalia in Germany (Federal
Agency for Cartography and Geodesy, 2022) by computing the
Jaccard Index (Jaccard, 1901), also known as Intersection of
Union,

IoU =
Area(F1 ∩ F2)

Area(F1 ∪ F2)
(4)
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(a) TSP (b) Edge segmentation (c) Result as red dashed line

Figure 6: ESTATE building: Outliers, i.e. points not belonging to facade surfaces, present in the TSP solution 
highly influence the quality of the extracted footprint. Our approach can although deliver a satisfactory result.

Figure 7: The automatically identified cross section 
level (in red color) for ESTATE.

and discrete Hausdorff Distance

dH = max
v1∈V (F1)

{ min
v2∈V (F2)

{d(v1, v2)}}. (5)

In both equations, F1 and F2 denote the two compared footprint
polygons and V (F1) and V (F2) are their corresponding vertex
sets. To compute the distance d(v1, v2) between two vertices v1
and v2, the Euclidean distance has been used.

Comparing ESTATE to OpenStreetMap and footprints of Geoba-
sis NRWGeobasis NRW (2022), the results are very similar us-
ing IoU as quality measure with IoU = 0.9304 and IoU =
0.9305 respectively. The Hausdorff distance is dH = 1.161m
and dH = 1.173m accordingly. The same comparison for UNI-
VERSITY leads to IoU scores of 0.9620 and 0.9698 and Haus-
dorff distances of 4.852m and 4.782m. The higher Hausdorff
distance of UNIVERSITY is a consequence of the missing entry
of the building in the cross section and therefore in our result.
Comparing the remaining part of the footprint reveals, however,
higher IoU values. Using OpenStreetMap, we can compare the
result of UNIVERSITY to the ground truth without the entrance
which is given as a separate footprint. This obviously improves
both metrics to 0.9980 and 0.041m respectively. This fits well
to the accuracy of the ground truth, i.e. 0.03m and, hence, very
suitable for a wide variety of tasks such as cadastre related ap-
plications. In this context, our approach can, for instance, serve
for the update of the as-is state of footprints after an automatic

verification process.

5. CONCLUSION AND OUTLOOK

This paper introduced a novel approach for the automatic ex-
traction of 2D footprints from 3D laser scans. In contrast to
common approaches which use airborne point clouds, terres-
trial point clouds have been used allowing for a more accurate
detection of the footprint geometry which is otherwise occluded
by roof structures. We proposed a pipeline of methods starting
by an automatic and accurate determination of a height position
for a horizontal cross section based on a one-dimensional, i.e.
in z-direction, kernel density estimation (KDE). The acquired
points are ordered and connected solving a Travelling Sales-
person Problem (TSP) which opens up opportunities to apply
a segmentation algorithm previously used in the context of in-
door mapping. The resulting detailed footprint is acquired af-
ter an outlier elimination using DBSCAN and a generalisation
step which merges nearly parallel segments. Our approach has
been successfully applied on challenging real-world examples
and turns out to be suitable for the extraction of footprints with
a high accuracy assessed with regard to both authoritative and
VGI data. In an ongoing work, a wider range of case studies
will be performed to confirm the presented results so far.

Despite the presence of outliers, e.g. due to vegetation, our ap-
proach turns out to be a good mean for the footprint extraction
task. However, the TSP step could be expanded in order to deal
with such outliers and ignoring them in the preliminary TSP
result accordingly. Additionally, the segmentation is only able
to deal with line segments and could be expanded to segment
curved and non-linear footprint sections as well. Our method
has been demonstrated on terrestrial point clouds and can be
similarly applied on point clouds stemming from mobile plat-
forms, such as drones. The investigation of the transferability of
the approach can be studied for photogrammetric point clouds
which opens up the opportunity to reason on potential outliers
and eliminate them based on their line of sight with regard to
the capturing camera position.
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tal refinement o f f acade m odels w ith a ttribute g rammar from 
3d point clouds. Proc. XXIII ISPRS Congress, ISPRS Annals 
of Photogrammetry, Remote Sensing and Spatial Information 
Sciences, III-3, 311–316.

Duckham, M., Kulik, L., Worboys, M., Galton, A., 2008. Effi-
cient generation of simple polygons for characterizing the shape 
of a set of points in the plane. Pattern recognition, 41(10), 
3224–3236.

Edelsbrunner, H., Kirkpatrick, D., Seidel, R., 1983. On the 
shape of a set of points in the plane. IEEE Transactions on In-
formation Theory, 29(4), 551–559.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al., 1996. A 
density-based algorithm for discovering clusters in large spatial 
databases with noise. kdd, 96, 226–231.

Federal Agency for Cartography and Geodesy, 2022. https: 
//www.bkg.bund.de/EN/Home/home.html. Accessed: 2022-
07-05.

Gankhuyag, U., Han, J.-H., 2020. Automatic 2d floorplan cad 
generation from 3d point clouds. Applied Sciences, 10(8), 2817.

Geobasis NRW, 2022. Open data – digitale geobasisdaten nrw. 
https://www.opengeodata.nrw.de/produkte/. Accessed: 
2022-07-05.

Hammoudi, K., Dornaika, F., Paparoditis, N., 2009. Extracting 
building footprints from 3D point clouds using terrestrial laser 
scanning at street level. ISPRS/CMRT09, 38, 65–70.
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