
VIABILITY TESTING OF GAME ENGINE USAGE FOR VISUALIZATION OF 3D
GEOSPATIAL DATA WITH OGC STANDARDS

P. Würstle1∗, R. Padsala1, T. Santhanavanich1, V. Coors 1

1 Centre for Geodesy and Geoinformatics,
Stuttgart University of Applied Sciences (HFT Stuttgart), Schellingstraße 24, D-70174 Stuttgart, Germany

(patrick.wuerstle, rushikesh.padsala, thunyathep.santhanavanich, volker.coors)@hft-stuttgart.de

Commission IV, WG IV/9

KEY WORDS: Game Engine, OGC Standards, Visualization, Urban Digital Twins, 3D Tiles

ABSTRACT:

Urban digital twins have become an essential factor for cities and communities to visualize, simulate and analyze data. The
conventional geospatial standards work great with online platforms such as CesiumJS or ArcGIS API for JavaScript. However,
their usage in different platforms such as game engines has not been well established yet. Game engines provide an interesting
application case because they offer a different approach to visualizing large city models and provide a high graphical fidelity.
This paper aims to answer how the existing standards, such as the API standards GeoVolumes and SensorThings, as well as the 3D
model standards 3D Tiles and Esri Indexed 3D Scene Layer (I3S), can interact with game engines. For this purpose, three use-cases
were selected and have been used to build applications. These focus on using sensor data in AR and different city development
scenarios in a digital environment.
This study shows that different geospatial standard formats such as 3D Tiles, I3S, and GL Transmission Format (glTF) can be used
in game engines, either directly or over a GeoVolumes Server. Their implementation makes it possible to use the advantages of
game engines with real-world datasets.

1. INTRODUCTION

Game engines are quickly becoming more than just their use in
developing computer games. Nowadays, game engines are con-
sidered a major catalyst for innovation and creativity, serving
various industries. Some key elements that differentiate game
engines from commonly used web technologies are real-time
rendering engines, the capability to use a variety of input hard-
ware for handling 3D scenes, and physics engines to digital rep-
licate real-world physical laws of gravity, collisions, fluidity,
reflex, and more, audio engines for immersive sound effects,
artificial intelligence to model complex in-game behaviors, net-
working ability to connect with different users over internet and
much richer graphical user interface for users interactivity and
experience. Its recently found interface with the geospatial do-
main, particularly with the urban digital twins, has used the
world of data interactivity and visualization beyond simple and
commonly used web programming languages. The use cases of
working with urban digital twins within game engines are lim-
ited and constantly evolving. Thus, exploring the Open Geospa-
tial Consortium (OGC) FAIR (Findable, Accessible, Interoper-
able, and Reusable) initiative becomes interesting, particularly
the interoperability of different OGC standards with the game
engines. This is because urban digital twins are often seen as
a medial point where other data-driven technologies can be in-
tegrated, managed, and simulated. Its interactivity with high
fidelity visualization in-game engines has a game-changing po-
tential as a part of critical software infrastructure for the devel-
opment of smart, sustainable, and resilient cities.

An urban digital twin is a 3D model replica of a real-world
city integrated with static and dynamic information, providing
methods for analyzing and optimizing the built environment.
∗ Corresponding author.

Similar to the digital twin technologies used in automobile in-
dustries to inform manufacturers on how products work and will
react in the future, the urban digital twins are widely used to
calculate various urban informatics with which multiple “what-
if” scenarios can be simulated to understand its future before it
gets constructed in the real-world environment. A significant
emerging trend sought to be a game-changer in the urban di-
gital twin domain is its interface with game engines. Though
initially focused on developing computer games, engines such
as the Unreal Engine and the Unity Engine have demonstrated
the unique ability to visualize all the elements of a built envir-
onment in real-time and with collaborative interaction. This is
due to the fact that such software products can turn urban di-
gital twins into immersive 3D simulations that users can freely
explore and understand from different perspectives. The re-
cent implementation of Unreal Engine plugins for Cesium web
globe, as well as the Unreal and Unity plugins for Esri’s web
globe, have opened up new doors to combining the 3D geo-
spatial capabilities with the rendering power of game engines.
Due to its recent implementation, the use cases showing its
capabilities are still limited and continuously evolving. With
this background, this paper focuses on testing different Open
Geospatial Consortium (OGC) standards such as 3D Tiles, Esri
Indexed 3D Scene Layer (I3S), SensorThings, and the Geo-
Volumes API with the Unreal and Unity Engines along with
Cesium and Esri’s web globe. The later part of this paper fo-
cuses on showcasing the use of OGC standards with game en-
gines in real-world use cases under different themes such as
its use in Augmented Reality/Virtual Reality, city development
planning, city acoustic analysis, and open-world navigation.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

281

2. STATE OF THE ART

Game engines, primarily used for developing video games, have
used digital twins, though mostly fictitious, for a long time. For
example, New York City in Marvel Spider-man, Los Angeles in
Grand Theft Auto, Dubai in Hitman, and the entire world in Mi-
crosoft’s Flight Simulator. Putting an actual city in a computer
game sounds very interesting. Yet, the game developers rely
on fictitious cities to replicate the real world in a digital envir-
onment. Historically, besides the costs required to capture the
digital twins of the entire computer game scene, the availability
of 3D city models has always been a cause of concern.

However, due to the evolution of geospatial technologies to
capture and present real-world city objects virtually with ac-
curacy, the connection between game engines and geospatial
technologies is gathering pace in the simulation and visualiz-
ation of urban digital twins. Urban digital twins are attract-
ing attention as a technology that can address challenges re-
lated to the smart, sustainable development of the built envir-
onment. A three-dimensional geospatial platform is a vital part
of a digital twin city. It allows visualizing and analyzing city
objects such as terrains, buildings, vegetation, roads, bridges,
and other physical structures (Kolbe et al., 2005). Such datasets
can be used to study various urban phenomena from multiple
perspectives. Web-based geospatial platforms have provided
excellent user accessibility and convenience for content shar-
ing. For example, Cesium, Mapbox, and JavaScript for Ar-
cGIS allow users to upload their 3D geospatial data and de-
velop an interactive web application that is accessible without
installing additional plugins. However, they are limited in their
ability to provide functionality that the web platform does not
support. In addition, the execution environment has perform-
ance constraints as a web browser. This is where game engines
become essential. They can provide far better realistic visual-
izations and pave the ideal foundation for photo-realistic, im-
mersive simulations of the real world. (Lee et al., 2020) pro-
posed a planetary-scale geospatial open platform developed in
Unity3D. Their results provided a geospatial data visualization
to the user, which spanned over 30 TB and 71.5 billion tiles.
Their platform was developed for the purpose of tiling-based
static geospatial data management for rendering on a planetary
scale. However, they missed integrating dynamic datasets like
that of sensors or moving objects, focusing only on the visualiz-
ation of static city objects. (Buyuksalih et al., 2017) visualized
3D city models based on Unity3D and also estimated potential
solar energy on buildings for Istanbul City. Other use cases are
still limited and evolving, (Sihombing and Coors, 2018, Mat-
thys et al., 2021, Edwards et al., 2015, Andaru et al., 2019) have
already shown how 3D city models captured using geospatial
technologies can be used with game engines for visualization of
city objects, use of AR for city development, storytelling/pub-
lic participation, AEC industry, preservation and visualization
of heritage buildings. Such research shows the potential of 3D
Unity visualization and game engine for 3D GIS visualization.
However, some common issues discussed in the majority of the
related research links to issues with coordinate transformation,
general interoperability with geospatial datasets, integration of
dynamic datasets like sensors, support of databases, and Ap-
plication Programming Interface (API). Furthermore, no stud-
ies have yet tested the use of different frameworks related to
the delivery of geospatial datasets developed by the OGC with
game engines.

Thus, through different use cases, the present study focuses on
answering: How to consume OGC frameworks of 3D Tiles,

I3S, SensorThings API, and GeoVolumes API within Unreal
and Unity game engines for its use in developing initial proto-
types for AR/VR, Mobility, acoustic and city development use
cases? In the process, this paper also documents our experi-
ence, and the challenges faced while testing the usage of the
OGC frameworks as mentioned above in the recently released
Cesium (Cesium, 2020) and Esri (Esri, 2020) plugins for popu-
lar game engines Unity3D and Unreal Engine.

3. ARCHITECTURE

Figure 1. Architecture

The Architecture is separated into three workflows which are
marked in Figure 1. The workflows describe how to use Sensor
data, 3D Building data, and 3D Models, respectively. The fourth
part describes the usage of the game engine in this research.

① Sensor Workflow The rapid development of the Internet
of Things (IoT) has become a foundation for the urban digital
twins concept, where the interconnection among these devices
not only represents the sensor data from the physical world
but also realizes the controllable intelligent system (Lv et al.,
2021). The SensorThings API (STA) (Liang et al., 2016) is an
open-source standard based on the OGC SWE standards, which
copes with the interoperability challenge of heterogeneous IoT
devices. STA uses JSON as the data encoding and supports
REST-like application programming interface (API) via Hyper-
text Transfer Protocol (HTTP) and Message Queuing Telemetry
Transport (MQTT) protocol technologies. Several cities such as
Nantes (France), Hamburg (Germany), and Helsinki (Finland)
(Fischer et al., 2021, Hernández et al., 2020) have been using
STA, including the European Union INSPIRE (Kotsev et al.,
2018) which serves thousands of public sector data providers
has considered using STA as part of their spatial data infrastruc-
tures (SDI).

② 3D Building Workflow Different 3D formats are utilized
for this research and fill different roles in the development pro-
cess. The base data of the 3D city model is stored in the CityGML
format. It is an OGC standard to store and exchange city model
information. The most recent version is 3.0, although most
of the currently available models still utilize the CityGML 2.0
standard. The CityGML 3.0 standard has been adopted in Septem-
ber 2021 (Kolbe et al., 2021). The missing 3D building datasets
are filled in by converting 3D building models from ArcGIS
CityEngine to CityGML (Padsala et al., 2020).

3D Tiles is an OGC (Open Geospatial Consortium) standard
for 3D geospatial data. It is mainly used for visualization pur-
poses in web applications such as CesiumJS. In accordance

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

282

with its name, it uses a tiling method that creates a hierarchical
structure. 3D Tiles are built on the glTF format (Cozzi et al.,
2019). Another format for streaming developed by ESRI is the
I3S format. I3S is an OGC standard for 3D objects, integrated
meshes, point features, and point clouds (Reed and Belayneh,
2021).

The 3D GeoVolumes API is a geospatial 3D content specifica-
tion described by an enclosing bounding volume. This specific-
ation was developed during the 3D Data Container, and Tiles
API Pilot (Miller et al., 2020). In this specification, the data or-
ganization of the geospatial data in 3D GeoVolumes is flexible
and adjustable according to the provider’s needs. Each con-
tainer in the 3D GeoVolumes may have one or more children
containers whose extents are completely contained in the parent
volume, and each container contains one particular dataset but
may consist of links to the dataset in different formats, e.g., 3D
Tiles or I3S, as shown in Figure 2. Later, the 3D GeoVolumes
API was successfully deployed and served 3D geospatial con-
tents in various research projects (Interoperable Simulation and
Gaming Sprint Engineering Report, 2020, Daly and Phillips,
2021, Deininger et al., 2020). In the ”Simple service-based use
of 3D data” project by the Runder Tisch GIS, the GeoVolumes
technology is used in cooperation with the state departments of
Bayern and Baden-Württemberg, Germany. The states provide
their 3D building model data for participating regions in 3D
Tiles and I3S format via a 3D GeoVolumes server. Later, the
participants can use this data to populate their applications.

③ 3D Model Workflow Game engines support a variety of
3D data formats. Amongst them are FBX (Filmbox), OBJ
(Wavefront file format specification), and glTF (open GL Trans-
mission Format). In a study from 2019 by (Nam et al., 2019).
comparing the different formats, it is shown that glTF has the
fastest loading times, just ahead of FBX (Nam et al., 2019).
Therefore, most of the models used for the development are in
either the glTF or the FBX file format.

Figure 2. An exemplary hierarchical resource architecture of the
3D GeoVolumes API

④ Game Engines Game engines provide a different visual-
ization platform to more common tools in the geoinformation
field l ike CesiumJS and ArcGIS for JavaScript for the web or
traditional GIS software. One of the essential features that
game engines provide is collisions between the controlled pawn
and the environment (Torres-Ferreyros et al., 2016). There is a

range of different game engines that provide different features
and functionalities. A few of the most common ones are Un-
real Engine, Unity, and Cry Engine. There are a few compar-
ative studies that focus on these game engines (Barczak and
Woźniak, 2020), (Vohera et al., 2021). They conclude that the
engines have advantages in different fields. Unity, for example,
is well suited for beginners because of its good documentation
and vast user base but only has basic functionalities in regard
to animation. According to (Vohera et al., 2021), The Unreal
Engine has a higher learning curve but excellent visual output.

For the development in this paper, there are a few special con-
ditions that influence the decision on which game engine to use
significantly. There is a need to visualize large building mod-
els. In the OGC Interoperable Simulation and Gaming Sprint
(Daly and Phillips, 2021) these requirements have been tested,
and it has been shown that the Unreal Engine and the Unity
Engine provide the functionality to visualize building datasets.
The process is described in more detail in Section 3.1.

The Unreal Engine uses C++ as its programming language, but
it also provides a blueprint system that does not require pro-
gramming knowledge (Vohera et al., 2021). The Unreal Engine
is currently (since April 2022) on Version 5.0, but the develop-
ment was done with Version 4.27.

The Unity Engine is based on the C# and C++ program-
ming languages, but also supports scripts in C# and JavaS-
cript(Vohera et al., 2021). It supports different 3D formats such
as .FBX and .OBJ (Megha et al., 2018).

There is a solution to include I3S and 3D Tiles into the Un-
real Engine. The solution from Esri is called ”ArcGIS Maps
SDK for Unreal Engine” and is currently still in beta. Cesium
provides a plugin called ”Cesium for Unreal” which allows the
use of 3D Tiles in developments with the Unreal Engine. The
Unity game engine has a similar plugin to include I3S layers
into the Game Engine, but is currently missing an implementa-
tion for Cesium 3D Tiles (Daly and Phillips, 2021).

3.1 Implementation

Three different data sources are used for this development with
a game engine. They consist of sensor data, 3D building data,
and other 3D models. These workflows are implemented in
the following section and are evaluated based on if they can
be visualized in general, if there is any loss in information such
as metadata and if the performance is acceptable.

3.1.1 Sensor Data The sensor data that is used for
this project comes from the Sensor.Community. The
Sensor.Community has around 14,000 sensors worldwide.
These sensors measure PM2.5, PM10, and recently also noise.
These sensors measurements can be accessed through an API.
The API only provides real-time measurements, whereas the
historical data must be accessed over files. For this reason, a
SensorThings server is used in this development. The Sensor-
Things server used in this project is based on the FROST im-
plementation. It is set up with a docker container where the
settings are defined inside a YAML file. It directly collects the
data via a Python script from the Sensor.Community API by an
HTTP Post and stores it. This allows applications to request his-
torical data through the SensorThings server with the filtering
functionalities of SensorThings.

The implementation of SensorThings into the Unity Engine still
needs to be investigated but should, in theory, be possible.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

283

Figure 3. SensorThings access via Unreal Engine

The Unreal Engine does not natively provide the functional-
ity to access the SensorThings server. Since the central part
of the development was done with blueprints and not C++, the
simplest way to connect to the SensorThings API is with the
VaRest plugin. The plugin works by making a request to the
SensorThings server. It allows for Get, Post, Delete, and cus-
tom requests, and it requires a URL input. The URL has to
be constructed with the IP address or domain and the Sensor-
Things standard query. In the request in figure 3, the URL will
only collect the latest data point. This calls an event (RestCall-
back) which contains the result and can then be handled like a
regular JSON object. The plugin also provides some blueprint
nodes that can be used to manipulate the retrieved data. In the
workflow s hown i n fi gure 3, th e re sulting ob ject is retrieved,
and the array field with the value name is e xtracted. The value
field c ontains c ommon i nformation l ike “phenomenonTime”,
”resultTime”, and “result”. To get only the result value of the
sensor, the node GetNumber field i s u sed. This value i s then
able to be displayed in the game engine application. The tools
available from the VaRest plugin and the Unreal Engine allow
retrieving and displaying the sensor measurements. During the
retrieving process, no data is lost. There is also no noticeable
performance drop compared to a web application that accesses
the same SensorThings server.

3.1.2 3D City Models The 3D city models used in this
research come from different sources. This research project
already has access to 3D models of the city of Stuttgart. Ad-
ditionally for the missing parts, 3D city models were generated
for this research using ArcGIS CityEngine. Generation of 3D
city models using software like CityEngine usually happens by
importing vector datasets such as building footprint polygons,
road network line geometries, land use parcels, and vegetation
points. Additionally, with the CityEngine, the user can proced-
urally generate these vector datasets and other related attributes
such as building height, Floor Area Ratios, and Window to Wall
ratio based on local zoning laws using its inbuilt Computer Gen-
erated Architecture (CGA) shape grammar programming tech-
nique ((Reitz and Schubiger, 2014)). This has been used to
generate a generic texture for an existing 3D city model used in
the game engine. 3D city models can be visualized in different
formats, but in this research, the focus is set on the formats of
3D Tiles and I3S. To get these formats from a city engine work-
flow, they must be converted. To generate I3S, ArcGIS Pro has
been used, and to generate a 3D Tiles dataset, FME has been
used. A high-level workflow explaining CityEngine to 3DTiles
and I3S conversion is shown in figure 4.

The Unreal Engine provides different methods to include 3D
building models in the project. To use the 3D Tiles format with

Figure 4. ArcGIS CityEngine to 3DTiles/I3S

the Unreal Engine, the ”Cesium for Unreal” plugin can be used.
Cesium Ion provides a worldwide 3D Tiles building dataset and
a terrain model that can be used. The plugin also allows the pos-
sibility to include other 3D Tiles models. This can be done in
multiple ways. Building models can be uploaded to Cesium Ion
and streamed to the Unreal Engine development. They can also
be loaded from a local directory via the ”file:///” prefix before
the file p ath. Another possibility is to connect the 3D building
model to the Unreal Engine via a URL. In this research, the
tilesets are connected via URL. In this case, the URL points to
a GeoVolumes server that hosts a 3D tileset of the area of in-
terest. The 3D Tiles model has to have a specific format to be
able to be displayed at the correct position on the globe (Daly
and Phillips, 2021).

The properties of the 3D Tiles building, like building age, can
be accessed through the game engine. Loading the tileset
through the GeoVolumes server causes delays in the visualiz-
ation. This results in missing buildings and terrain immediately
after loading the level. If pawns that require collision are placed
in the level, this delay can cause them to drop below the ground
level and fall endlessly. To fix this performance issue, either a
delay has to be built in to let all the datasets load before pla-
cing the pawns in the environment, or platform assets have to
be placed below the pawns.
3D building models can also be used in the I3S format. Esri
developed plugins for the Unreal Engine called ”ArcGIS Maps
SDK for Unreal Engine”. The plugin is currently still in de-
velopment and not directly available through the Unreal mar-
ketplace but has to be downloaded from the Esri Early Adopter
website. The plugin is created for C++ projects and cannot be
used directly from blueprint projects. However, the tool also
offers a GUI that can be used to add layers from files or URLs.
Trying to stream I3S directly from a GeoVolumes server into
the Unreal Engine resulted in an error. As of now, this prob-
lem has not been fixed; therefore, it is only possible to use local
data or data hosted on the ArcGIS Enterprise Portal. The Ar-
cGIS Maps SDK for Unreal Engine has been updated to work
with Unreal Engine 5 1. The”ArcGIS Maps SDK” implementa-
tion for the Unity Engine is similar to the plugin for the Unreal
Engine. The installation also requires access to the Esri Early
Adopter website. The plugin GUI is also very similar and al-
lows for the same data sources, local and by URL. However, it is
not possible to stream I3S from an OGC API - 3D GeoVolumes
server.

3.1.3 3D Models The other 3D models are in the glTF or
the FBX format. The Unreal Engine provides its own tools to
integrate data in these formats into the game world. In the cur-
rent state, the models have to be loaded from a local source. By
importing the data in this way, many different settings are avail-
able. Importantly, many models have single parts; by importing

1 https://developers.arcgis.com/unreal-engine-sdk/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

284

them, the user has to choose if they want to import them separ-
ately or as one. Web applications, for example, CesiumJS, can
load glTF models from an OGC API - 3D GeoVolumes server
and display them. Using this approach for the Unreal Engine
has been unsuccessful so far. Implementing an OGC API - 3D
GeoVolumes server to serve glTF to a Unity project has not yet
been tested. Since the models are loaded locally, they don’t
have performance issues like those loaded from a server. Dur-
ing the import process, it occasionally happens that materials
lose their connections. This can be rebuilt by hand without neg-
atively impacting the final model.

4. USE CASES

Three different use cases were developed based on the imple-
mentation from Section 3.1. The resulting prototypical applic-
ations aim to support participation processes in specific ways.
The first use-case uses AR to visualize sensor readings and ad-
ditional information about the sensor. The created application
uses sensors from previous research projects as an example. It
can be generally extended to information in the real world and
given to citizens so they can walk around an area of interest
and inform themselves about the local conditions. The second
use case details the creation of an application that supports di-
gital participation processes. It focuses on an area where cit-
izens want to experience their quarter car-free. The resulting
application focuses on the noise level in the quarter with and
without cars. It was developed as a small game to make it more
attractive to participants. The third use case focuses on city de-
velopment. It demonstrates the use of a 3D gaming world to
visualize different building scenarios as an alternative to more
widely used 3D web globes.

4.1 AR

Game engines provide a good base for AR/VR applications. In
the Unreal Engine, the frameworks of Google (ARCore) and
Apple (ARKit) are available to develop AR applications for
their respective mobile platforms. This application utilizes AR-
Core as a base framework. For the testing and the later us-
age, an Android smartphone is used. The simplest way to con-
nect a sensor from a physical location to the sensor data from
a SensorThings server is via a candidate image. The candid-
ate image is a reference image of the physical sensor that is
stored in the application and compared with the images from
the phone’s camera. If the images match, the sensor reading is
shown with additional metadata such as the location and date
of the measurement (Figure 5). The measurements are loaded
from the SensorThings server via the VaRest plugins HTTP Get
request (Figure 1).

Additionally, a model of the building or location can be dis-
played to show the user the current placement (Figure 5). This
is done by loading a glTF model and placing it in the environ-
ment. The AR applications can detect surfaces and place the
model accordingly. The application developed in this use case
can be used to retrieve the data of a specific air quality sensor
that is measuring the CO2 level inside the rooms of the univer-
sity building. The application is a prototype and is used as proof
of concept.

Additionally, a model of the building or location can be dis-
played to show the user the current placement (Figure 6). This
is done by loading a glTF model and placing it in the environ-
ment. The AR applications can detect surfaces and place the
model accordingly.

Figure 5. AR Application for Sensor reading

Figure 6. AR Application for Building Placement

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

285

Figure 7. Bird hidden in the Environment

Figure 8. Car Traffic

4.2 Mobility and Acoustic

Game engine technology can be used to aid city development
efforts and public participation processes. This application uses
a 3rd-Person perspective to portray the city and move around it.
The created application incorporates multiple approaches to al-
low for different gaming scenarios in one area. The selected
area is home to multiple research topics. The subjects of these
research topics regard mobility and the acoustic in a city plan-
ning environment. The goal of the acoustic and mobility topic
is to provide an insight into a car-free quarter and show the dif-
ference in the soundscape. For this purpose, a small game was
developed where the player has to collect birds in the environ-
ment of the research area.

The area is reproduced in the game engine using the architec-
ture proposed in Section 3. The environment is built up of the
Cesium terrain from Cesium Ion and their orthophoto data. The
buildings come from different sources. One is Cesium Ion, and
the other is a OGC API - 3D GeoVolumes hosting 3D Tiles
of the Stuttgart region. Models of cars and flora are placed in
the game to add a more life-like feeling to the development.
The standard pawns that the user can control are replaced with
more realistic models. These assets are free to use or procured
through the Unreal Engine marketplace.

The game is structured through different menus. The player
must select the game mode and the character they want to con-
trol. In the game itself, the player needs to talk to an NPC (non-
player character) to get the quest of finding four different birds
in the environment (Figure 7). The quest information can al-
ways be found in the quest menu. This is set up, like all menus,
as a widget.

The player can navigate freely through the environment and has
to listen to the sound. The scenario has three different sounds

coming from the quest birds, other birds, and cars. The cars
drive around the area on a set route and make engine noises
(Figure 8). The car noises make it more difficult for the player
to find the birds based on their chirps. The car noises can be
turned off, and the cars can be removed from the scenario to
emphasize the difference between a car-free quarter and one
with cars. This application will give the participant a look into
the differences without the need to prohibit cars from entering
the area in the real world.

4.3 City Development

This use case aims to support the city development process.
The application utilizes a character that can be controlled and
moved around different city development scenarios. The user
can switch between a first and third-person perspective and use
different transportation modes such as walking, driving in a car,
or flying with a drone. These modes of transport are included
to give the user different ways to explore the area of interest.

The central part of this use case is that different 3D building
models can be visualized and switched between with a button
press. The 3D models can be from different sources and are
streamed to the final application. This allows for storing and
managing the 3D building models in a central place. The ad-
vantage of this method is that the 3D building models can be
replaced or improved at a singular location, and the deployed
applications will stream the new dataset.

Switching between the building models should give the user a
sense of the differences between the building models and give a
better sense of the scale and design. This could help in particip-
ation processes by allowing participants to get an impression of
newly planned buildings compared to the existing ones. It is es-
pecially useful to experience different shadow casts of different
height buildings.

Figure 9. Area with to be developed Buildings

Figure 10. Area with existing buildings

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

286

The 3D models are from an area in Canada and procedurally
generated as CityGML and later converted to 3D Tiles. The tile-
sets are hosted on an OGC API - 3D GeoVolumes Server. The
newly planned concept contains higher buildings and a bridge
between two buildings (figure 9), whereas the original buildings
(figure 10) are relatively low.

5. CONCLUSION

The methods presented in this research can be instrumental in
developing applications using urban digital twins, for example,
in public participation and planning processes, where it is es-
sential to give the participants an understanding of the projects
that are as detailed and realistic as possible. The algorithm
of CityEngine can be used to support realism by automatic-
ally generating building textures. This is especially useful since
many of the available 3D city models don’t have a texture cre-
ated through image flights. The automatically created textures
provide a much richer view of the surrounding buildings than
the standard gray or white models. A realistic digital envir-
onment can be beneficial if it is combined with processes that
are already in use, like a digital participation platform and in-
person participation.

On the technical side, there are still a lot of improvements pos-
sible, mainly since the technology to stream 3D city models
into game engines is still very young. More generally, there are
some questions still to be resolved. One such question is the
inclusion of the terrain in formats like quantized-mesh into the
Unreal Engine, which has not been tested yet. Another remain-
ing question is how a building in a 3D tileset can be treated as a
singular entity. This is necessary to visualize building-specific
information on the fly. Cesium for Unreal has added function-
ality to get metadata for each building by intersecting the line
of sight with the buildings. This can provide more additional
information that can be used and shown to the user. This also
allows applying a style to the tileset. In use cases where it is
necessary to switch the color code of buildings based on simu-
lated data like heat demand or photovoltaic potential on the fly,
the values of the predefined material have to be changed. There
is also the alternative of applying a style to the tileset before
integrating it into the game engines. On the I3S side of the de-
velopment, the first question that needs to be answered is how
to provide I3S datasets through an OGC API - 3D GeoVolumes
server to Unity and the Unreal Engine.

Using the OGC API – 3D GeoVolumes to provide a tileset, spe-
cifically 3D Tiles, to the game engine comes with limitations.
The simulated physics in the game engine that is used for colli-
sion calculations between different in-game assets causes some
issues when the tileset is not loaded immediately. The assets
don’t have a surface on which they can rest and start falling.
Adding additional surfaces below the terrain that is streamed
can circumvent this. These have to be lined up correctly to be
below the terrain so as not to be seen in the application and
high enough so the assets don’t clip through the terrain once it
is loaded.

These issues vary based on the internet connection. The loading
times also appear to be longer than when loading the tileset in
a simple web viewer. If this impression can be confirmed will
have to be tested in future work. To further develop the use case
described in Section 4.2 and gain a better understanding of its
practicality, it will be tested with students and voluntary parti-
cipants.

In conclusion, the research presented in this paper realizes a
method to visualize realistic city models with different OGC
standards in game engines. The consumption of geospatial
datasets in-game engines has become much easier than be-
fore. However, some limitations still apply that affect the final
product in a negative way.

ACKNOWLEDGEMENTS

The M4 LAB project on which this article is based was funded
by the Federal Ministry of Education and Research under the
number 03IHS032A. The responsibility for the content of this
publication remains with the authors.

REFERENCES

Andaru, R., Cahyono, B., Riyadi, G., Ramadhan, G., Tun-
tas, S., 2019. The Combination of Terrestrial LIDAR and
UAV Photogrammetry for Interactive Architectural Heritage
VIsualisation Using UNITY 3D Game Engine. ISPRS -
International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLII-2/W17, 39-44.

Barczak, A., Woźniak, H., 2020. Comparative study on game
engines. Siedlce University of Natural Sciences and Humanit-
ies, 5–24.

Buyuksalih, I., Bayburt, S., Buyuksalih, G., Baskaraca, A.,
Karim, H., Rahman, A., 2017. 3D Modelling and Visualisation
Based on the UNITY Game Engine – Advantages and
Challenges. ISPRS Annals of Pho-togrammetry, Remote
Sensing and Spatial Information Sci-ences, IV-4/W4,
161-166.

Cesium, 2020. Cesium for unreal.
https://cesium.com/platform/cesium-for-unreal/.

Cozzi, P., Lilley, S., Getz, G. (eds), 2019. 3D Tiles Specification
1.0. Open Geospatial Consortium, Wayland, MA, USA.

Daly, L., Phillips, R. (eds), 2021. Interoperable Simulation and
Gaming Sprint Year 2 Engineering Report. Open Geospatial
Consortium, Wayland, MA, USA.

Deininger, M. E., von der Grün, M., Piepereit, R.,
Schneider, S., Santhanavanich, T., Coors, V., Voß, U.,
2020. A Continuous, Semi-Automated Workflow: F rom 3D
City Models with Geometric Optimization and CFD Sim-
ulations to Visualization of Wind in an Urban Environ-
ment. ISPRS International Journal of Geo-Information, 9(11).
https://www.mdpi.com/2220-9964/9/11/657.

Edwards, G., Li, H., Wang, B., 2015. BIM based collaborative
and interactive design process using computer game engine for
general end-users. Visualization in Engineering, 3.

Esri, 2020. Arcgis maps sdk for unreal en-
gine. https://developers.arcgis.com/unreal-engine-
sdk/reference/release-notes/prior-releases/0.1.0/.

Fischer, M., Gras, P., Löwa, S., Schuhart, S., 2021. Urban Data
Platform Hamburg: Integration von Echtzeit IoT-Daten mittels
SensorThings API. ZfV-Zeitschrift für Geodäsie, Geoinforma-
tion und Landmanagement (zfv 1/2021).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

287

Hernández, J. L., Garcı́a, R., Schonowski, J., Atlan, D.,
Chanson, G., Ruohomäki, T., 2020. Interoperable Open Spe-
cifications Framework for the Implementation of Standardized
Urban Platforms. Sensors, 20(8). https://www.mdpi.com/1424-
8220/20/8/2402.

Interoperable Simulation and Gaming Sprint Engineering Re-
port, 2020. Interoperable Simulation and Gaming Sprint Engin-
eering Report. http://docs.ogc.org/per/20-087.html.

Kolbe, T., Gröger, G., Plümer, L. (eds), 2005. CityGML: Inter-
operable Access to 3D City Models. Open Geospatial Consor-
tium, Wayland, MA, USA.

Kolbe, T., Kutzner, T., Smyth, C., Nagel, C., Roensdorf, C.,
Heazel, C. (eds), 2021. OGC City Geography Markup Lan-
guage (CityGML) Part 1: Conceptual Model Standard. Open
Geospatial Consortium, Wayland, MA, USA.

Kotsev, A., Schleidt, K., Liang, S., Van der Schaaf, H., Khalaf-
beigi, T., Grellet, S., Lutz, M., Jirka, S., Beaufils, M., 2018.
Extending INSPIRE to the Internet of Things through Sensor-
Things API. Geosciences, 8(6). https://www.mdpi.com/2076-
3263/8/6/221.

Lee, A., Chang, Y.-S., Jang, I., 2020. Planetary-Scale Geo-
spatial Open Platform Based on the Unity3D Environment.
Sensors, 20, 5967.

Liang, S., Huang, C.-Y., Khalafbeigi, T., 2016. OGC Sensor-
Things API Part 1: Sensing, Version 1.0.

Lv, Z., Lou, R., Li, J., Singh, A. K., Song, H., 2021. Big Data
Analytics for 6G-Enabled Massive Internet of Things. IEEE In-
ternet of Things Journal, 8(7), 5350-5359.

Matthys, M., De Cock, L., Vermaut, J., Van de Weghe, N.,
De Maeyer, P., 2021. An ”Animated Spatial Time Machine”
in Co-Creation: Reconstructing History Using Gamification
Integrated into 3D City Modelling, 4D Web and Transmedia
Storytelling. International Journal of Geo-Information, 10.

Megha, P., Nachammai, L., Senthil Ganesan, T., 2018. 3d game
development using unity game engine. International Journal of
Scientific & Engineering Research, 9, 1354–1356.

Miller, T., Trenum, G., Lieberman, J., 2020. 3D Data Container
Engineering Report.

Nam, D., Lee, D., Lee, S., Kwon, S., 2019. Performance Com-
parison of 3D File Formats on a Mobile Web Browser. Interna-
tional Journal of Internet, Broadcasting and Communication,
11(2), 31–42.

Padsala, R., Fink, T., Peters-Anders, J., Gebetsroither-Geringer,
E., Coors, V., 2020. From urban design to energy simulation - a
data conversion process bridging the gap between two domains.

Reed, C., Belayneh, T. (eds), 2021. OGC Indexed 3d Scene
Layer (I3S) and Scene Layer Package (*.slpk) Format Com-
munity Standard Version 1.2. Open Geospatial Consortium,
Wayland, MA, USA.

Reitz, T., Schubiger, S., 2014. The Esri 3D city information
model. IOP Conference Series: Earth and Environmental Sci-
ence, 18.

Sihombing, R., Coors, V., 2018. Object-Based Mobile Aug-
mented Reality for a 3D Model. 646-655.

Torres-Ferreyros, C. M., Festini-Wendorff, M. A., Shiguihara-
Juárez, P. N., 2016. Developing a videogame using unreal en-
gine based on a four stages methodology. 2016 IEEE AN-
DESCON, 1–4.

Vohera, C., Chheda, H., Chouhan, D., Desai, A., Jain, V., 2021.
Game engine architecture and comparative study of different
game engines. 2021 12th International Conference on Comput-
ing Communication and Networking Technologies (ICCCNT),
1–6.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-281-2022 | © Author(s) 2022. CC BY 4.0 License.

288

