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ABSTRACT:

Semantic 3D building models are widely available and used in numerous applications. Such 3D building models display rich
semantics but no façade openings, chiefly owing to their aerial acquisition techniques. Hence, refining models’ façades using dense,
street-level, terrestrial point clouds seems a promising strategy. In this paper, we propose a method of combining visibility analysis
and neural networks for enriching 3D models with window and door features. In the method, occupancy voxels are fused with
classified point clouds, which provides semantics to voxels. Voxels are also used to identify conflicts between laser observations
and 3D models. The semantic voxels and conflicts are combined in a Bayesian network to classify and delineate façade openings,
which are reconstructed using a 3D model library. Unaffected building semantics is preserved while the updated one is added,
thereby upgrading the building model to LoD3. Moreover, Bayesian network results are back-projected onto point clouds to
improve points’ classification accuracy. We tested our method on a municipal CityGML LoD2 repository and the open point cloud
datasets: TUM-MLS-2016 and TUM-FAÇADE. Validation results revealed that the method improves the accuracy of point cloud
semantic segmentation and upgrades buildings with façade elements. The method can be applied to enhance the accuracy of urban
simulations and facilitate the development of semantic segmentation algorithms.

1. INTRODUCTION

Semantic 3D building models at levels of detail (LoD)1 and 2
are widespread 1 and commonly applied in urban-related stud-
ies (Biljecki et al., 2015). Such 3D models are frequently
reconstructed using a combination of 2D building footprints
and multi-view stereo (MVS) or airborne laser scanning (ALS)
techniques, as in the example of more than eight million re-
constructed buildings in Bavaria, Germany (Roschlaub and
Batscheider, 2016). This reconstruction strategy enables de-
tailed modeling of roof surfaces but renders generalized façades
neglecting openings such as windows and doors, as shown in
Figure 1b.

Reconstructing façade elements becomes a key factor enabling
automatic 3D building modeling at LoD3, for which an increas-
ing demand has been expressed by numerous applications in-
cluding estimating heating demand (Nouvel et al., 2013), pre-
serving cultural heritage (Grilli and Remondino, 2019), calcu-
lating solar potential (Willenborg et al., 2018), and testing auto-
mated driving functions (Schwab and Kolbe, 2019).

Since point clouds are deemed as one of the best data sources
for 3D modeling, dense, street-level mobile laser scanning
(MLS) point clouds appear to be especially suitable for at-scale
façade reconstruction (Xu and Stilla, 2021). For this purpose,
however, point clouds require semantic classification, which
has been recently approached using machine and deep learn-
ing methods yielding promising results (Grilli and Remondino,
∗ Corresponding author
1 https://github.com/OloOcki/awesome-citygml

2020; Matrone et al., 2020). Yet, these methods can have
limited accuracy when classifying objects that are translucent
(e.g., windows) or have an inadequate amount of training data
(e.g., doors). On the other hand, points’ rays intersecting with
3D models can provide geometrical cues about possible façade
openings, but without differentiating between classes, such as
window, door, or underpass (Tuttas and Stilla, 2013).

Figure 1. Façade in a photo and a 3D building model: a) Oblique
image (Google Earth, 2022), b) semantic building model at

LoD2 (BayernAtlas, 2022).

In this paper, we present a strategy that combines both ray- and
region-based methods for conflict classification (Wysocki et al.,
2022a). This approach leads to refinement of both 3D building
models and segmented point clouds’ accuracy; our contribu-
tions are as follows:

• a CityGML-compliant strategy for upgrading LoD2 to
LoD3 models by model-driven 3D window and door re-
construction;

• a method classifying conflicts between laser observations
and 3D building models using deep learning networks;
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• a method improving the semantic segmentation results of
deep learning networks by analyzing ray-traced points and
3D building models.

2. RELATED WORK

The internationally used CityGML standard establishes the
LoD of semantic 3D city objects (Gröger et al., 2012). One of
the chief differences between LoD2 and LoD3 is the presence of
façade openings in the latter. In our case, we search for absent
façade elements in the input models using point clouds and then
carry out their reconstruction. Therefore, we deem methods as
related if they deal with detecting missing features (Section 2.1)
and façade reconstruction using point clouds (Section 2.2).

2.1 Visibility analysis using point clouds

Hebel et al. (2013) employ visibility analysis to detect changes
between different point cloud epochs. The method ad-
dresses the uncertainty of ALS measurements using the Demp-
ster–Shafer theory (DST). Ray tracing on a voxel grid is in-
troduced to identify occupied, empty, and unknown states per
epoch. Based on the epochs comparison, they distinguish: con-
sistent, disappeared, and appeared states.

Visibility analysis is utilized to remove dynamic objects from
point clouds, too (Gehrung et al., 2017). MLS observations’
rays are traced on an efficient octree grid structure introduced
by Hornung et al. (2013). Each traced ray provides occu-
pancy probabilities, which are accumulated per voxel using the
Bayesian approach. Moving objects are removed based on de-
creasing occupancy probability of ray-traversed voxels.

A multimodal approach to visibility analysis is proposed by
Tuttas et al. (2015). They investigate how to monitor the
progress of a construction site using photogrammetric point
clouds and building information modeling (BIM) models. The
Bayesian approach and the octree grid structure is employed
to analyze the points’ rays and vector models. The as-is
(point cloud) to as-planned (3D model) comparison differen-
tiates between potentially built, not visible, and not built model
parts.

In our previous work (Wysocki et al., 2022a), we introduced
visibility analysis to refine semantic 3D building models with
underpasses using MLS point clouds. The method compares
ray-traced points with building objects on an octree grid in a
probabilistic fashion. Contours of underpasses are identified
based on an analysis of conflicts between laser observations and
building models, supported by vector road features.

2.2 Façade openings reconstruction using point clouds

Substantial research effort has been devoted to methods using
images for façade segmentation (Szeliski, 2010). Nevertheless,
2D images require additional processing to enable semantic 3D
reconstruction. 3D point clouds, however, provide an immedi-
ate 3D environment representation, which makes them one of
the best datasets for urban mapping (Xu and Stilla, 2021).

When analyzing laser observations, openings are often assumed
to represent holes due to their translucent characteristic or face-
intruded position (Tuttas and Stilla, 2013; Fan et al., 2021).
For example, windows are detected based on building interior
points, which imply opening existence (Tuttas and Stilla, 2013).

Borders of openings are delineated based on the ray tracing of
interior points and the detected façade plane in point clouds.

Zolanvari et al. (2018) propose a slicing method to identify
openings using horizontal or vertical cross-sections. The
method finds façade planes using the RANSAC algorithm and
removes noisy points based on their deviations from the planes.
Gaps occurring in horizontal or vertical cross-sections delineate
possible openings.

Layout graphs are proposed by Fan et al. (2021) to identify
façade structures. Spatial relations among detected objects are
encoded and exploited by the Bayesian framework to deduce
the whole façade layout.

Recently, however, data-driven methods based on machine
and deep learning approaches have provided promising results
for classifying point clouds, especially when using the self-
attention mechanism (Zhao et al., 2021). These great strides
have influenced façade segmentation of point clouds, too (Grilli
and Remondino, 2020; Matrone et al., 2020). Modified ver-
sions of the DGCNN deep learning architecture are proposed to
classify façade elements in point clouds (Grilli and Remondino,
2020). The method employs features stemming from machine
learning approaches to improve deep learning network accur-
acy.

Little research attention has been given to investigating the
automatic upgrade of LoD2 to LoD3 building models us-
ing point clouds, except, to the best of our knowledge, our
previous works refining overall façade geometry (Wysocki et
al., 2021a,b) and reconstructing underpasses (Wysocki et al.,
2022a). However, related work is proposed by Hensel et al.
(2019) for detecting and reconstructing openings, not by point
clouds but by exploiting the textures of semantic city mod-
els. They apply the Faster R-CNN deep neural network to
identify the bounding boxes of windows and doors on textured
CityGML building models. To minimize inaccuracies in the
alignment of openings, they apply mixed-integer linear pro-
gramming. Then, bounding boxes serve as reconstructed open-
ing elements in LoD3 building models.

3. METHODOLOGY

In contrast to our previous work devoted to refining building
models with underpasses (Wysocki et al., 2022a), in this paper
we focus on detecting and reconstructing outstanding façade
openings, such as windows and doors. Moreover, our method
refines point cloud segmentation by back-projecting classified
conflicts onto the input point clouds.

As presented in Figure 2, the method evaluates and assigns un-
certainties to the input datasets (Section 3.1). While a neural
network is trained on points representing façade elements (Sec-
tion 3.2), the points ray tracing process performs probabilistic
classification of a scene into occupied, empty, and unknown
voxels (Section 3.3). Subsequently, labeled voxels are com-
pared to segmented points to derive static and remove dynamic
points in voxels (Section 3.5). The voxels are also compared to
vector 3D models to identify confirmed, empty, and unknown
voxel labels (Section 3.4). If conflicted and static features ex-
ist, probabilistic classification is carried out, where a Bayesian
network identifies unmodeled openings and other objects (Sec-
tion 3.6). These are back-projected to the point cloud, refin-
ing its segmentation accuracy. If the Bayesian network detects
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Figure 2. Workflow of the presented method

windows or doors, shape extraction is conducted (Section 3.7);
otherwise, another module can be triggered, such as the under-
pass reconstruction (Wysocki et al., 2022a). Opening shape ex-
traction is followed by shape generalization, which delineates
fitting borders for 3D reconstruction (Section 3.7). Window
and door 3D models are automatically fitted to shapes based on
the respective geometry and opening class (Section 3.9). Af-
terward, unchanged and new semantics are assigned to geomet-
ries, following the CityGML standard for LoD3 (Gröger et al.,
2012).

3.1 Data with uncertainties

Uncertainties in laser measurements and vector objects can
stem from various sources, such as imprecise metadata, data
transformations, and acquisition techniques. Uncertainties are
application-dependent, too. Therefore, the proposed façades re-
finement involves uncertainties concerning the global position-
ing accuracy of point clouds and building models. To quantify
these uncertainties, we introduce the confidence interval (CI),
which is estimated using the confidence level (CL), its associ-
ated z value (z), standard deviation (σ), and mean (µ).

Let σ1 be the location uncertainty of point clouds, and σ2 the
location uncertainty of 3D model walls. These are estimated
based on the assumed point cloud global registration error e1
and the global location error of 3D model walls e2. Then, the
façade’s CI is calculated based on σ =

√
σ2
1 + σ2

2 . The max-
imum upper and lower bounds are given by [µi−2σi, µi+2σi],
when assuming operating in the L1 norm and Gaussian distri-
bution (Suveg and Vosselman, 2000). CL1 and CL2 quantify
the operator’s confidence level in true-value deviations for laser
measurements and 3D model walls, respectively. Depend-
ing on the CL value, corresponding zi values are assumed.
The division of µi by zi estimates the standard deviation σi

value (Hazra, 2017).

3.2 Semantic segmentation

The goal of semantic segmentation is to divide a point cloud
into several subsets based on the semantics of the points. Fol-
lowing Wysocki et al. (2022b) and as shown in Figure 3, eight
relevant classes for façade segmentation and reconstruction
tasks are considered: arch (dark blue), column (red), mold-
ing (purple), floor (green), door (brown), window (blue), wall
(beige), and other (gray).

The segmentation is performed using a modified Point Trans-
former self-attention network (Zhao et al., 2021) extended by
the use of geometric features improving the network perform-
ance, such as height of the points, roughness, volume density,
verticality, omnivariance, planarity, and surface variation. The
last three mentioned features are based on the normalized ei-
genvalues λi (λ1 > λ2 > λ3), which are derived from the 3D
point coordinates within a considered spherical neighborhood
ri (Weinmann et al., 2013; Grilli and Remondino, 2020).

Finally, using a softmax output layer, we obtain an output vector
of probabilities for each predicted class, which becomes fun-
damental for running our conflict classification approach (Sec-
tion 3.5).

Figure 3. Semantic segmentation result for the façade in
Figure 1.

3.3 Ray tracing

Points ray tracing is performed to identify absent structures in
existing 3D building models (Figure 4). To enable comparison
between these modalities, we employ a 3D occupancy grid. The
grid adapts its size to the input data since it utilizes an octree
structure. 3D voxels are the octree structure’s leaves, and their
size vs is selected based on the relative accuracy of laser obser-
vations.

Every laser observation is traced from the sensor position si,
following the orientation vector ri, to the reflecting point pi =
si + ri. Voxels containing pi are labeled as occupied (blue),

Figure 4. Points ray tracing on a vector-populated octree grid
from the sensor position si to the hit point pi. Adapted

from (Wysocki et al., 2022a).
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those traversed by a ray as empty (pink), and the untraversed
ones as unknown (gray). The labels are assigned based on a
probability score that considers multiple laser observations zi,
which are updated using prior probability P(n) and previous
estimate L(n|z1:i−1). Final score is controlled using log-odd
values L(n) and clamping thresholds lmin and lmax (Hornung
et al., 2013; Tuttas et al., 2015):

L(n|z1:i) = max(min(L(n|z1:i−1) + L(n|zi), lmax), lmin)
(1)

where
L(n) = log[

Pn

1− P (n)
] (2)

The grid is vector-populated by inserting 3D model faces and
their quantified uncertainties (Section 3.1). Hence, each face
has an assigned façade’s maximal deviation range (upper CI)
and its confidence level (CL). Ultimately, the grid’s 3D voxels
include attributes such as location, size, as well as state probab-
ility stemming from laser observations and a building model.

3.4 Voxels to model comparison

As shown in Figure 4, each voxel is analyzed in relation to its
intersection with a façade: Occupied voxels that intersect with
façades are labeled as confirmed (green); empty voxels that in-
tersect with façades are labeled as conflicted (red); unknown
voxels hold their status, as they represent unmeasured space.
Voxels are projected onto the intersected façade, forming the

Figure 5. Texture representing confirmed, conflicted, and
unknown areas identified on a façade

model comparison texture map layer with the respective voxel
labels: confirmed, conflicted, and unknown (Figure 5). The cell
spacing of a texture map follows the projection of the voxel grid
to the plane.

3.5 Voxels to point cloud comparison

Ray tracing provides physical, per-voxel occupancy indicat-
ors, while semantic segmentation yields educated, per-point se-
mantic classes. Both of these sources provide their semantic
information with a probability measure. The fusion of voxels
and points is conducted to transfer per-point semantic classes
to occupancy voxels and suppress the impact of dynamic points
(Figure 6). The rationale behind this fusion is that static, occu-
pied voxels (yellow) are building-related; dynamic, unoccupied
voxels (gray) represent moving objects, such as pedestrians or
cars, and can be suppressed by multiple laser observations, as
shown by Gehrung et al. (2017) and in Figure 7.

Semantic points are inserted into the voxel grid to enable com-
parison between the two representations. Then, the median
probability score P (B) is derived from point classes within
each voxel. The occupancy probability P (A) and the me-
dian probability of each class P (B) are two dependent events,
for which the existence probability score Pex is calculated

Figure 6. Fusion of voxels with per-point semantic information
(yellow), while suppressing dynamic points (gray) using

probability score and measurements accumulation.

Pex(A ∩ B) = P (A) · P (B|A). Voxels are deemed as static
if the existence probability score Pex is greater than the static
threshold probability: Pex >= Pstatic; otherwise, voxels rep-
resent the dynamic state. Points within dynamic voxels are re-

Figure 7. Dynamic, noisy points (gray) separated from static,
building-related points (yellow).

labeled to the other class and are back-projected to the input
point cloud. The static voxels obtain the point class that scores
the greatest probability P (B) within a voxel (Figure 7).

Static voxels with semantics are projected onto the façade,
forming the points comparison texture map layer with labels
corresponding to the classes, as shown in the example of win-
dows (orange) in Figure 8. As in the model comparison layer
(Section 3.4), the cell spacing of a texture map follows the pro-
jection of the voxel grid to the plane.

Figure 8. Texture showing one of the static voxel
classes window on a façade

3.6 Probabilistic classification: the Bayesian approach

Model comparison and points comparison textures are utilized
to identify façade openings using a Bayesian network (BayNet).
The network estimations are also back-projected onto semantic
point clouds to enhance their segmentation accuracy.

As shown in Figure 9, the designed BayNet comprises: one
target (red), two input (yellow), one decision (blue), and two
output nodes (green). Each directed link represents a causal
relationship between the X and the Y nodes. The conditional
probability table (CPT) prescribes weights for each state and
node combination (gray). The target, opening state is calculated
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using the joint probability distribution P (X,Y ) and the CPT.
The marginalization process is used to calculate the probability
of the target node Y being in the opening state y. The process
sums conditional probabilities of the states x stemming from
parent nodes X (Stritih et al., 2020). Since the network con-

Figure 9. Input nodes (yellow) and CPT estimate the probability
of opening space (red) in BayNet: if (blue) the probability is

high, doors or windows are unmodeled; otherwise, areas indicate
other objects (green).

sists of texture layers with state probabilities, the data evidence
represents the so-called soft evidence (Stritih et al., 2020). In
an inference process, soft evidence is added to update the joint
probability distribution. This process provides the most likely
node states by estimating the posterior probability distribution
(PPD).

Pixel classes from the model comparison and points compar-
ison textures form clusters if they have a neighbor in any of the
eight directions of the pixel. The co-occurring conflicted, win-
dow, and door cluster classes, lead to a high probability of un-
modeled openings. This output is used for further opening 3D
modeling and is back-projected onto segmented point clouds
as either the window or door class. On the other hand, co-
occurring confirmed, window, and door clusters, lead to a low
probability of existing openings. These clusters are also back-
projected to improve the accuracy of semantically segmented
point clouds: either as the molding class, if close to an opening;
or otherwise as the wall class. The low probability Plow and the
high probability Phigh labels are assigned to clusters based on
the probability threshold Pt: Phigh > Pt >= Plow.

3.7 Openings shape extraction

The high probability clusters Phigh are extracted from a
Bayesian probability texture as opening shape candidates.
Adding to existing shape indices (Basaraner and Cetinkaya,
2017), we introduce the completeness index, which measures
the rcp ratio of outer shape area to inner-holes area. The can-
didates are rejected if their area is smaller than the chosen area
threshold value bs and if their completeness index score rcp is
smaller than rcpt .

3.8 Openings shape generalization

Yet, the extracted candidates can still display distorted, noisy
shapes. Morphological opening operation is applied to minim-
ize the effect of spiky and weakly connected contours. Sub-
sequently, these shapes are generalized to minimum bounding

boxes, for which a modified rectangularity index (Basaraner
and Cetinkaya, 2017) is calculated. The modification considers
relation of the bounding box sides a to b, where outliers are re-
jected based on the upper PEup and lower PElo percentiles of
the index score.

3.9 Model-driven 3D reconstruction

Identified bounding boxes are used as fitting boundaries for
window and door 3D models, which are loaded from a pre-
defined library. The opening models’ coordinate origin is
erased and then placed in the bottom left corner of a model. The
offset to global coordinates is calculated between the opening
model origin and the bottom left corner of the respective bound-
ing box. After the shift, the rotation is performed as a differ-
ence between the façade’s face orientation and opening model
orientation. Aligned 3D models are scaled to fit bounding box
boundaries, as presented in Figure 10 and in Figure 11.

Figure 10. Reconstructed 3D windows for façade A

Figure 11. Reconstructed 3D windows and doors for façade B

3.10 Semantic modeling

Since 3D solid libraries of openings are employed for 3D re-
construction, we opt to model them as solid geometries, too,
following the CityGML encoding recommendation (Special In-
terest Group 3D, 2020). Based on the identified opening class,
windows and doors are assigned to the respective CityGML
Window and Door classes; as such, they link to the building
entity (Gröger et al., 2012). The unchanged semantics of input
elements is preserved, except for the LoD which is upgraded to
LoD3.

4. EXPERIMENTS

4.1 Datasets

The method was tested using MLS point clouds and govern-
mental CityGML building models at LoD2 representing the
Technical University of Munich (TUM) main campus, Munich,
Germany.
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The acquired LoD2 building models were created using 2D
cadastre footprints and aerial measurements (Roschlaub and
Batscheider, 2016). LoD3 door and window models were ex-
tracted from the manually modeled, open LoD3 city model of
Ingolstadt, Germany 2. The open TUM-MLS-2016 dataset (Zhu
et al., 2020) was transformed into the global coordinate refer-
ence system (CRS) and used to perform point cloud ray tra-
cing. The TUM-FAÇADE dataset was deployed for training,
as it comprises façade-annotated point clouds (Wysocki et al.,
2022b). For computational reasons, we subsampled the original
dataset removing all the redundant points within a 5 cm dis-
tance. In this way, we compressed an initial dataset of about
118 million points to a still resolute but lightweight version of
about 10 million points. The subsampled point cloud was di-
vided into 70% training and 30% validation sets (Figure 12).
Additionally, 17 available classes were consolidated into seven

Figure 12. The TUM-FAÇADE benchmark divided into training
(blue) and validation (red) sets for the segmentation experiments.

representative façade classes: molding was merged with decor-
ation; wall included drainpipe, outer ceiling surface, and stairs;
floor comprised terrain and ground surface; other was merged
with interior and roof ; blinds were added to window; while
door remained intact.

4.2 Parameter settings

The uncertainties of the true façades location were estimated
considering the global registration error of MLS point clouds
and building models: For point clouds these were set to e1 =
0.3 m, µ = 0.15 m, CL1 = 90%, and z1 = 1.64; for building
models were set to e2 = 0.03 m, µ = 0.015 m, CL2 = 90%,
and z1 = 1.64. This yielded the façades’ upper CI score of 0.2
m and CL = 90%.

Ray casting was employed on a grid with the voxel size set to
vs = 0.1m considering: opening size, the point clouds density,
and their relative accuracy. The voxels were initialized with a
uniform prior probability of P = 0.5. Log-odd values were set
to locc = 0.85 for occupied and lemp = −0.4 for empty states,
corresponding to Pocc = 0.7 and Pemp = 0.4, respectively.
Clamping parameters were set to lmin = −2 and lmax = 3.5,
corresponding to Pmin = 0.12 and Pmax = 0.97, respectively,
following (Tuttas et al., 2015; Hornung et al., 2013); an ex-
emplary implementation is provided in our repository 3. For
the fusion of voxels and points, the static threshold was set to
Pstatic = 0.7, while the empty voxels occupancy probability
was fixed to 0.4 for processing acceleration.

As regards the semantic segmentation procedure, taking into
consideration the main characteristic of the buildings, the
classes to be detected, and following Grilli et al. (2019), we

2 https://github.com/savenow/lod3-road-space-models
3 https://github.com/OloOcki/conflict-mls-citygml-detection

identified 0.8 m as optimal neighborhood search radius ri for
the features roughness, volume density, omnivariance, planar-
ity, and surface variation, while 0.4 m for verticality.

The proposed BayNet has two input soft evidence layers: points
comparison and model comparison textures. These had associ-
ated confidence levels, which scored 70% and 90% for point
and model comparison layers, respectively. The opening state
probability was defined by the probability threshold: Pt = 0.7.

The opening candidates’ area threshold value bs was set to
0.3 m2, while completeness threshold score rcomt was set to
0.1, to suppress noisy, patchy clusters. The over-elongated
bounding boxes were suppressed by calculating the modified
rectangularity index, where the upper PEup and lower PElo

were set to the 95th and 5th percentile, respectively.

4.3 Validation of improved semantic segmentation

Semantic segmentation results were validated on unseen
ground-truth point clouds of the TUM-FAÇADE dataset. For
evaluation, we use the overall accuracy (OA); F1 score per
class; and average: precision (µP), recall (µR), F1 score (µF1),
and intersection over union (µIoU). The arch and column
classes were omitted in the validation, since they were absent
in the ground-truth building. As shown in Table 1, for the
baseline of the validation served the Point Transformer (PT)
network (Zhao et al., 2021). The presented feature-extended
version of the PT network (PT+Ft.) served as an input for the
proposed conflict classification (CC) method.

Method OA µP µR µF1 µIoU molding floor door window wall other
PT 63.4 58.5 53.2 53.8 41.4 48.2 84.8 1.5 48.7 81.5 58.4
PT+Ft. 72.6 66.4 66.7 63.3 52.0 68.3 92.9 5.1 54.6 86.6 72.7
CC 75.3 65.9 71.9 65.4 52.9 67.6 86.3 13.6 59.8 85.9 79.1

Table 1. Overall accuracy (OA), average recall (µR), average F1
(µF1), average intersection over union (µIoU), and F1 scores per

class, given in percents.

4.4 Validation of openings reconstruction

Reconstructed openings were validated using manually
modeled ground-truth building openings (Table 3). Detection
rate was calculated based on the on-site inspection of all ex-
isting façade openings (AO) and measured openings (MO) by
laser scanner (Table 2). The validation was performed for
façades A, B, and C, shown in Figure 10, Figure 11, and Fig-
ure 15, respectively.

Façade A B C Total
AO 66 17 20 101
MO 60 17 10 87
D 60 15 6 81
TP 60 15 5 80
FP 0 0 1 1
FN 6 2 12 21
DR-AO 90.1% 88.2% 27.8% 79.2%
FR-AO 0% 0% 16.7% 1.2%
DR-MO 100% 88.2% 50% 91.9%
FR-MO 0% 0% 16.7% 1.1%

Table 2. Detection rate for all openings (DR-AO) and measured
openings (DR-MO) and the respective false alarm rate (FR-AO
and FR-MO) for façades A, B, and C (D = detections, TP = true

positives, FP = false positives, FN = false negatives, for all
openings).
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Figure 13. Windows reconstructed using: a) only neural networks output, b) the proposed method.

Figure 14. Semantic segmentation based on: a) only a neural network, b) the proposed method.

Façade A B C Total
mIoU 88.4% 94.8% 97.2% 89.6%
µIoU 79.1% 83.4% 85.7% 80.3%

Table 3. Validation of reconstructed openings using median
(mIoU) and average intersection over union (µIoU).

Figure 15. Openings reconstruction for façade C in the presence
of occluding objects: a) Photo, b) refined façade.

5. DISCUSSION

Experiments revealed promising results for refining of both
building models and classified point clouds. As presented in
Table 2, façade openings were correctly detected with an estim-
ated 92% detection rate to total measured openings (DR-MO)
and 79% detection rate for all openings (DR-AO). Roughly 1%
false alarm rate for both measured (FR-MO) and all openings
(FR-AO) was noted.

The experiments corroborate that DR was dependent on the
density of measurements per façade: for the densely covered
façade A it estimated 90% DR-AO and detected 100% of meas-
ured openings (DR-MO); for the highly occluded side-façade C
it estimated 28% and 50%, respectively (see Table 2 and Fig-
ure 15).

The method improves significantly reconstruction performance
in comparison to the one conducted only on segmented point
clouds of the baseline PT architecture, as shown in Figure 13.
When compared to the ground-truth openings, the proposed re-
construction reached roughly 90% accuracy (Table 3); yet, the

method is limited when windows are partially measured (e.g.,
blinds before windows), as exemplified by several windows in
the third row in Figure 13b.

The back-projected, classified conflicts increased accuracy of
semantic point cloud segmentation by approximately 12%
(Table 1). Note that the precision and intersection over union
score for CC remained similar to the PT+Ft. score, while F1
score for floor dropped by about 6%. Remarkably, the proposed
CC method improves segmentation of window, door, and other
classes by approximately 11%, 12%, and 21%, respectively.

6. CONCLUSION

Our work has led us to the conclusion that refinement is a
promising alternative to a from-scratch reconstruction. The re-
finement preserves input semantics, minimizes model-specific
planarity issues, and enables consistent city model updates.
Moreover, existing LoD3 elements can be extracted and directly
employed as refinement features for buildings at lower LoDs.

The validation presents that the method reaches a high accur-
acy of 92% in detecting observable windows and a low false
alarm rate score of approximately 1%. Refined point clouds
also score low false negative rate, which is indicated by a high
recall score of 79%. This trait of our method could be of partic-
ular importance for feature-dependent applications, where ro-
bustness is favored over visualization, such as in simulations
of automated driving functions (Schwab and Kolbe, 2019). On
the other hand, façade occlusions and a laser range could limit
the method’s applicability for visualization-oriented purposes,
where a further prediction of unseen objects could be employed.

Experiments corroborate that combining visibility analysis with
a region-based approach improves segmentation accuracy. In
the future, we plan to embed occupancy information directly
into the training of the deep neural network. Furthermore, in-
cluding radial point cloud features (e.g., intensity) in training
datasets could facilitate detecting windows covered by blinds.

Tested façades presented challenging, varying measuring con-
ditions; for similar façade and opening styles, the method is
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expected to provide comparable results. Yet, testing sample
size implies that caution must be exercised. It is worth noting
that static objects, which do not contribute to façades elements
and are adjacent (e.g., traffic signs, bus shelters), can negat-
ively influence the semantic back-projection results. To further
our research, we plan to test the method on a higher number of
façades.
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façade reconstruction using laser point clouds. Geo-Spat. Inf. Sci.,
24(3), 403-421.

Gehrung, J., Hebel, M., Arens, M., Stilla, U., 2017. An approach to ex-
tract moving objects from MLS data using a volumetric background
representation. ISPRS - Int. Ann. Photogramm. Remote Sens. Spatial
Inf. Sci., IV-1/W1, 107–114.

Google Earth, 2022. Google Earth Pro, TUM Campus, Ther-
esienstr., Munich, Germany. 3D Buildings data layer.
http://www.google.com/earth/index.html. Accessed: 2022-01-25.

Grilli, E., Farella, E. M., Torresani, A., Remondino, F., 2019. Geometric
features analysis for the classification of cultural heritage point clouds.
ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-
2/W15, 541–548.

Grilli, E., Remondino, F., 2019. Classification of 3D digital heritage. Re-
mote Sens., 11(7), 847.

Grilli, E., Remondino, F., 2020. Machine learning generalisation across
different 3D architectural heritage. ISPRS Int. J. of Geo-Inf., 9(6), 379.

Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K.-H., 2012. OGC City Geo-
graphy Markup Language CityGML Encoding Standard. Open Geo-
spatial Consortium: Wayland, MA, USA, 2012.

Hazra, A., 2017. Using the confidence interval confidently. J. Thorac.
Dis., 9(10), 4125.

Hebel, M., Arens, M., Stilla, U., 2013. Change detection in urban areas
by object-based analysis and on-the-fly comparison of multi-view ALS
data. ISPRS J. Photogramm. Remote Sens., 86, 52–64.

Hensel, S., Goebbels, S., Kada, M., 2019. Facade reconstruction for
textured LoD2 CityGML models based on deep learning and mixed
integer linear programming. ISPRS - Int. Ann. Photogramm. Remote
Sens. Spatial Inf. Sci., IV-2/W5, 37–44.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., Burgard, W.,
2013. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robots, 34(3), 189–206.

Matrone, F., Grilli, E., Martini, M., Paolanti, M., Pierdicca, R., Re-
mondino, F., 2020. Comparing machine and deep learning methods
for large 3D heritage semantic segmentation. ISPRS Int. J. of Geo-Inf.,
9(9), 535.

Nouvel, R., Schulte, C., Eicker, U., Pietruschka, D., Coors, V., 2013.
CityGML-based 3D city model for energy diagnostics and urban en-
ergy policy support. IBPSA World, 2013, 1–7.

Roschlaub, R., Batscheider, J., 2016. An INSPIRE-conform 3D build-
ing model of Bavaria using cadastre information, LiDAR and image
matching. ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., XLI-B4, 747–754.

Schwab, B., Kolbe, T. H., 2019. Requirement analysis of 3D road space
models for automated driving. ISPRS - Int. Ann. Photogramm. Remote
Sens. Spatial Inf. Sci., IV-4/W8, 99–106.

Special Interest Group 3D, 2020. Modeling Guide for 3D Objects - Part
2: Modeling of Buildings (LoD1, LoD2, LoD3) - SIG3D Quality Wiki
EN. https://en.wiki.quality.sig3d.org/. Accessed: 2021-10-30.

Stritih, A., Rabe, S.-E., Robaina, O., Grêt-Regamey, A., Celio, E., 2020.
An online platform for spatial and iterative modelling with Bayesian
networks. Environ. Model. Softw., 127, 104658.

Suveg, I., Vosselman, G., 2000. 3D reconstruction of building models. IS-
PRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIII,
538–545.

Szeliski, R., 2010. Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

Tuttas, S., Stilla, U., 2013. Reconstruction of façades in point clouds
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