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ABSTRACT:

Indoor navigation, indoor robotics, and other deep applications of interior space can be realized through semantic segmentation of 3D
point clouds. We propose a semantic segmentation method for point clouds that uses geometric features of point clouds and neural
networks to address the problem of incomplete and inconsistent segmentation objectives in existing semantic segmentation
methods. Using neural networks, semantic labels are extracted from indoor structural information as the first step. The paper
proposes a probabilistic model to cross-validate the initial segmentation results with the segmentation results of geometric features to
achieve joint optimization of the results for semantic segmentation. Three sets of indoor point clouds data from simple to complex
indoor scenes are used to test the accuracy and validity of the segmentation method proposed in this paper. The experimental results
demonstrate that the method proposed in this paper can effectively improve the semantic segmentation accuracy of indoor 3D point
clouds.

* Corresponding author

1. INTRODUCTION

As laser scanner equipment and depth sensors rapidly developed,
the acquisition of indoor high-precision 3D point clouds has
become more and more convenient, and it has gradually become
the key to supporting various indoor space-oriented applications
(Kang et al., 2020), including indoor navigation (Choi et al.,
2014), indoor robotics (Taira et al., 2018), and augmented
reality (Pomerleau et al., 2015). The raw point clouds lack
semantic information and cannot be directly applied in deep
indoor spatial applications (Bello et al., 2020). A major
challenge in this research area is how to achieve high-precision
semantic segmentation of indoor 3D point clouds.

In traditional 3D point cloud segmentation, geometric features
of the point clouds are used first, followed by architectural
features. To obtain accurate edge information about an object,
Bao-Shun et al., (2013) developed a rolling circle-based edge
detection model. Xu et al., (2009) proposed a method for
segmenting laser point clouds using graph theory and region
growth. Zhan et al., (2011) proposed a point segmentation
method based on normal vector estimation and color clustering,
which combines the advantages of geometric and color feature
segmentation, but is prone to over segmentation. Biosca and
Lerma, (2008) proposes an unsupervised file clustering method
based on a fuzzy method to achieve plane extraction from laser
scanned point clouds. There are two steps in this method:
surface growth and clustering, and it can be used effectively on
uneven terrain. There is, however, a risk of false planes being
extracted using this method. Traditional point clouds
segmentation methods can segment objects in specific
scenes. However, they lack semantic information and require a
large number of parameters.

Increasingly more scholars are using convolutional neural
networks on 3D point clouds as convolutional neural networks
have made significant progress on 2D images. Researchers used
indirect point clouds processing methods to segment point
clouds semantically in the past. The Squeeseseg (Wu et al.,
2017) method extracted features and semantic segments from
point clouds projected onto a two-dimensional plane, but it
compressed three-dimensional spatial information into two-
dimensional space, resulting in a loss of three-dimensional
spatial information. In O-CNN (Wang et al., 2020), the original
point cloud data was voxelized, and then the octree structure
was used to store the features on the leaf nodes. As a final step,
it performs a convolution and pooling operation to learn feature
information and segment the point clouds. The method does not
involve a local geometric structure and does not learn the
features of local point clouds. MVCNN (Feng et al., 2018) maps
3D objects into different view angles of 2D maps and uses CNN
to extract features. By using CNN on 2D images and
performing 3D recognition in real time, this method takes
advantage of the maturity of CNN on 2D images. PointNet (Qi
et al., 2017) uses spatial transformation, recurrent neural
networks, and symmetric functions to solve point cloud disorder,
pioneering semantic segmentation directly on point clouds. The
local features between points cannot be obtained since each
point's features are learned separately. To solve this problem,
PointNet++ (Qi et al., 2017) uses a hierarchical structure to
learn the features of point clouds based on PointNet to improve
the segmentation accuracy, but at the same time increase the
computational complexity. PointNet and PointNet++ use
farthest distance downsampling to reduce the data volume,
which preserves boundary information nicely, but the
computational efficiency increases as the number of point
clouds increases. The semantic segmentation methods based on
deep learning can effectively handle multiple segmentations, but
they lose point clouds feature information during data
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preprocessing and are dependent on sample data accuracy,
which is inefficient.

Using the above analysis, we can conclude: segmentation
methods based on geometric features can quickly and
effectively obtain the planar structure, while clustering
algorithms can accurately segment different types of
elements. These methods rely on geometric information only for
simple semantic segmentation, such as walls, floors, ceilings,
etc., and it is difficult to determine the complex structure of
tables and chairs. With deep learning, multiple types of
elements can be segmented based on a large number of
samples. Due to the limitations of training samples and feature
descriptions, generalizing a model trained in one region to
another is difficult. Based on the limitations and advantages of
the two methods, a jointly optimized indoor segmentation
method is proposed by integrating geometric features and neural
networks. In this method, point clouds are first semantically
labeled using neural networks and then segmented using point
cloud structural features. To optimize the semantic
segmentation results, the "semantic labels of point clouds" and
"precise segmentation results of point clouds" are used based on
the probabilistic model.

2. INDOOR POINT CLOUDS SEMANTIC
SEGMENTATION OPTIMIZATION METHOD

As shown in Figure 1, the method proposed in this paper can be
divided into three main parts : semantic segmentation module of
deep learning, point clouds segmentation module based on
geometric and color features, and joint semantic label
optimization module. In the semantic segmentation module, we
use a large sample deep learning method to extract semantic
information from the indoor structure initially; meanwhile, we
extract the interior structures using geometric and color features
extracted from the original point clouds. Finally, we examine
the advantages and disadvantages of the two types of
segmentation methods in terms of segmentation accuracy. To
optimize both outcomes simultaneously, we propose a
probabilistic model-based semantic labeling optimization
method， In order to complete the semantic association, we
use the K-nearest neighbor algorithm to identify geometric and
color features, and then find the deep learning label point cloud
corresponding to each point in the color cluster. Then the labels
of all point clouds in the cluster are reassigned to the label
category with the highest number of labels in each color cluster.

Figure 1. Workflow of our method.

2.1 Deep learning-based point clouds semantic
segmentation

In the portion of this paper that focuses on deep learning, we
adopt the RandLA-Net (Hu et al., 2020) framework as the basis
for initial segmentation of point clouds. RandLA-Net is a
lightweight neural network that is trained directly from point
clouds and incorporates downsampling to achieve efficient
processing of large-scale point clouds data in order to address
the issue of the high computational cost of downsampling
traditional neural networks, which does not apply to large-scale
point clouds. Meanwhile, to solve the problem of losing
geometric features of point clouds caused by random
downsampling, a local feature aggregation module with an
attention mechanism has been introduced in order to achieve
fast downsampling of point clouds while retaining all the
geometric features.

Random downsampling： Using the random sampling method,
it is obtained the set of downsampled points by sampling
uniformly k points from a total of N points to find the set of
downsampled points. There is no dependance on the number of
input points, but only a relation between the set of selected input
points K and the computational efficiency, as shown in
Equation 1.

� = �1, �2, �3… �� � ∈ � (1)

Local feature aggregation: It consists of three parts: local space
encoding, attention mechanism pooling, and dilated residual
block. Firstly, to improve efficiency, the nearest neighbor
algorithm based on euclidean distance is used to aggregate the
proximity points. For each nearest neighbor K points of the
centroid encode their relative positions Ai

k , as shown in
Equation 2, where Bi and Bi

k is the spatial position of the
point,⊕ is the cascade operation, ||.|| is the euclidean distance
between the centroid and the nearest neighbor.

��
� = ���(�� ⊕ ��

� ⊕ (�� − ��
�) ⊕ ||�� − ��

�||) (2)

Secondly, The second step is to connect the encoded relative
positions Ai

k to the features of each Bi
k , so that each point

covers the features of the surrounding K nearest neighbors,
resulting in data redundancy. In addition to that, an attention
mechanism is introduced, which is designed to automatically
learn the important local features so that the important feature
information is retained as much as possible throughout the
pooling process. Finally, a residual module is introduced to
increase the acceptance domain of each point to retain more
details of the point clouds during pooling.

We present an approach to train the RandLA-Net neural
network using a training dataset, as well as to semantically
segment the original data using the trained model to obtain
semantic labels for point clouds by using the trained model.
There are 13 categories in the segmentation result: ceiling, floor,
wall, beam, column, window, door, chair, sofa, bookcase, board,
and miscellaneous, as shown in Figure 2.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022 
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-305-2022 | © Author(s) 2022. CC BY 4.0 License.

 
306



Figure 2. Indoor component segmentation results based on deep
learning.

2.2 Point clouds segmentation based on geometric and color
features

2.2.1 Multi-level plane extraction: Due to the large
differences in shape and geometric characteristics of the interior
components of the building, two-component categories of
building main planes and the interior components of the
building are defined according to the similarity of geometric
characteristics of these components in this paper. The main
planes of the building includes the floor, ceiling, walls, and wall
attachments such as windows and blackboards. Interior
components are other objects that remove the main plane of the
building. For example, tables, chairs, miscellaneous objects, etc.
We first use the plane extraction method to extract the main
plane of the building. The traditional RANSAC plane
segmentation (Tarsha-Kurdi, 2007) can accurately extract the
planes in the point clouds data, but it is influenced by the
number of iterations, and it is easy to produce insufficient
iterations and poor model fitting for complex scenes. Therefore,
We design a multi-stage plane extraction method to extract the
main planes of indoor point clouds for the shortage of
traditional RANSAC plane extraction, which contains two parts:
Planar coarse extraction and Planar fine extraction.

Planar coarse extraction: Finding the maximum value Pmax and
minimum value Pmin of the original indoor point clouds
coordinates. Based on the original point clouds of the square
interior building, the building's main planes are close to the
outer edge of the rectangular enclosing box formed by Pmin
and Pmax . The six planes of the enclosing box are therefore
calculated, and the plane model is shown in Equation 3.

�� + �� + �� + � = 0 (3)

Following that, the point clouds empty set {a, b, c, d, e, f} of six
enclosing boxes are created. We traverse the original point
clouds data P, and for each point clouds Pi ∈ P in turn to the six
planes of the enclosing box to determine the distance. It is
assumed that the distance between Pi and the enclosing box
plane is less than the threshold value T, then the point clouds
that correspond to the enclosing box plane will be added to the
set of point clouds that correspond to the enclosing box plane,
thus completing the coarse extraction of the indoor point clouds
building the body planes. The distance judgment is shown in
Equation 4.

� =
�� + �� + �� + �

�2 + �2 + �2
(4)

Planar fine extraction: Three points {p1
t , p2

t , p3
t } are randomly

selected from each Si（Si ∈ {a, b, c, d, e, f}） to fit the planar
model Lt . As a result of this procedure, the distance between
the remaining points and the plane model in Si is calculated,
and the points that are smaller than the distance threshold σ are
used as the score. By iterating this step Z times, we will be
able to select the plane that has the highest score and complete
the extraction of the main building plane{S1,S2,S3,S4,S5,S6}
from the main building site. The multi-level plane extraction
process is shown in Figure 3.

Figure 3. Multi-level planar extraction process.

2.2.2 Indoor component clustering segmentation: In order to
compute the exact point clouds of the main planes of the
building, multi-level plane extraction is performed. In order for
the indoor component clustering to be free from interference
from the building’s main planes, the point clouds set of the
building’s main body planes {S1,S2,S3,S4,S5,S6} are first
eliminated from the original point clouds in order to make them
free of interference. Fiest of all, using the coordinates of each
pp ∈ {S1, S2, S3, S4, S5, S6} as the search center and the
euclidean distance as the unit of measure, the KNN algorithm is
used in order to search for the closest point in the original point
clouds to the search center. Following this, the nearest point
searched is deleted in order to obtain the point clouds of indoor
component. The distance calculation formula is shown in
Equation 5,v ∈ V.

� �, � = (�� − ��)2 + (�� − ��)2 + (�� − ��)2 (5)

When the main planes of the building are rejected, the interior
component point clouds are retained. An algorithm for coarse
segmentation of indoor component point clouds based on
euclidean clustering is used to extract the components of the
indoor component point clouds into separate clusters according
to their properties, as shown in Figure 4.

Figure 4. The process of indoor component clustering and
segmentation.

Euclidean distance-based cluster segmentation proceeds as
follows:

(1) Find any point W in the space, use the point as the
search center, and set the euclidean distance threshold.

(2) Find the nearest K points to the point W.
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(3) Iterate through each neighboring point and save those
whose distance from point W is less than the euclidean distance
threshold dth in cluster A.

(4) Select another point in the cluster except for point A.
The process of clustering will continue until the number of
points in cluster A no longer increases. Then the process of
clustering will be completed.

(5) Until all points are clustered, select the unclustered
points for the next clustering.

2.2.3 Color-based region growing segmentation: It is
important to note that multilevel planar segmentation and
Euclidean distance clustering are mainly based on spatial
geometric features for segmenting point clouds, and do not take
color information about the point clouds into account. When it
comes to complex indoor scenes, color plays an important role
in the segmentation of point clouds as a feature that is important
to it (Zhan et al., 2011b). Consequently, in this paper, using the
segmented point clouds of the building body plane and the
clustered point clouds of the interior parts of the building, the
point clouds are segmented again using the color-based region
growth method to obtain the final segmentation point set based
on geometric as well as color features in order to obtain the final
segmentation of the building, as shown in Figure 5.

Figure 5. Color region based growth segmentation process.

The color-based region growing algorithm flow is as follows.
(1) Pick a random point from each point cloud and set it as

the seed point n in the next step.
(2) For each seed point, query K nearest neighbors.
(3) Cluster A is formed by merging nearby points of

similar color. Re-select any point except A in the cluster and
repeat the above operation until all of the points are included in
the point cloud cluster.

(4) Combining clusters with similar colors, and merging
two neighboring clusters whose average color variability is
lower, will form clusters with similar colors.

(5) The total number of point clouds for each cluster
should be verified, and if the total number of point clouds is less
than the threshold K, then merge the current cluster with its
nearest neighbor cluster.

2.3 Semantic label optimization based on statistical
information

In this paper, point clouds with semantic information can be
obtained by using the deep learning semantic segmentation
method, and geometric segmentation point clouds without
semantic information can be obtained by using the geometric
and color feature segmentation method. It consists of using
statistical information to correlate two segmentation results, and
then by using a probabilistic model to cross-fuse the correlation
results, fine segmentation results can be obtained with semantic
information. A specific process involved in this process is that,

first of all, each point Psi in the geometric segmentation result
point clouds Ps is used as a query points, and the deep learning
segmentation result point clouds Pd is used as a search point,
which means that the semantic labels of the nearest points in Pd
to Psi can be obtained by using the K-nearest neighbor query
algorithm to obtain the corresponding semantic label set L.
Secondly, the statistical histogram of semantic labels in each
cluster in Ps is counted, and the percentage of each type of
label is calculated as Equation 6 shows.

�� =
��

�1 + �2 + … + ��
(6)

Li represents the total number of labels per category in L. K
represents the number of categories contained in L, and Ni is
the calculated percentage of each label. The point clouds
category with the largest label share Lmax is calculated. as
shown in Equation 7.

���� = ��� �1, �2, …�� (7)

It is determined based on the percentage value of semantic
labels in each cluster. The tags with Ni <K (K is the ratio
threshold) are reclassified as the tags with a maximum ratio
Lmax of the tags with K, as shown in Figure 6. The final
semantic coarse segmentation results are optimized and the high
precision semantic segmentation results are obtained by
optimizing the final semantic coarse segmentation results.

Figure 6. Schematic diagram of label resegmentation .

3. EXPERIMENT AND ANALYSIS

3.1 Experimental data and accuracy evaluation

S3DIS is an indoor 3D spatial dataset collected by Stanford
University using a patternport scanner in 2016. It contains 6
large-scale 3D spatial indoor scenes covering a total of about
6000 m2 that are labelled with 13 common semantic categories
of indoor (walls, tables, ceilings, chairs, etc.) that can be
directly used for semantic segmentation of point clouds. Three
indoor point clouds from indoor scenes are selected for
experimentation in order to verify the effectiveness of the
proposed method, as shown in Figure 7, which include an office,
a corridor, and a conference room. Scenes range from simple to
complex indoor scenes, which can be used to validate the
effectiveness and accuracy of the segmentation method.
Room_1 is a simple scene, containing the basic building body
plane; Room_2 is a fairly complex scene, containing cabinets,
tables, chairs, as well as other indoor parts of the building in
addition to the body plane of the building, all of which make up
the conference room; Compared to Room_2, Room_3 is a more
complex office scene, with a messy scene, and stacked items, as
well as some serious adhesion problems.
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Figure 7. Experimental data set.

We use the intersection and merging ratio (Iou) in conjunction
with the accuracy (Acc) in this paper to assess the accuracy of
point cloud segmentation based on intersection and merging
ratios. In this case, iou represents the ratio of the intersection
and merging of the true value FN of the segmentation of the
data and the predicted result FP as a result of it, as shown in
Equation 8.

��� =
�� ∩ ��
�� ∪ ��

(8)

The ratio of TP(�� ∩ �� ) to FP is called Acc, as shown in
Equation 9.

��� =
��
��

(9)

3.2 Experimental results and accuracy analysis

In the context of three groups of indoor scene point clouds with
different levels of complexity, the preliminary deep learning
segmentation point clouds were obtained by RandLA-Net, the
refined geometric segmentation point clouds were obtained
using geometric and color features, and finally both deep
learning segmentation point clouds and geometric segmentation
point clouds were cross-fused to achieve the overall
optimization of semantic segmentation point clouds. The
specific experimental results for the three groups of scenes are
presented in Figure 8, 9 and 10. Room_1 is clearly optimized
for misclassified walls, while room_2 is also optimized to
varying degrees for misclassified walls, slabs, and beams. There
are also different degrees of optimization for the interior

component point clouds in Room_3. The real labels represent
the semantic information of the real parts in each room, the deep
learning segmentation labels represent the preliminary
segmentation results of the RandLA-Net neural network, and
the optimization results represent the combined optimization
results of geometric features and neural networks.

Figure 8. Results of point clouds segmentation in room_1.

Figure 9. Results of point clouds segmentation in room_2.

Figure 10. Results of point clouds segmentation in room_3.

Based on Table 1, this table represents the iou of the RandLA-
Net method and our optimization method on 13 categories.
Using the optimization method proposed in this paper, the
semantic labels of the three sets of data can be corrected. There
is a 2%-10% improvement in accuracy for walls, doors, and
chairs. There is a 10% improvement in segmentation accuracy
for the categories with poor segmentation, and a 5% loss of
accuracy for the categories with higher segmentation accuracy,
such as floor and ceiling.

ceil. floor wall beam col. wind. door table chair sofa book. board clut.

Room_1
RandLA-Net 0.980 0.967 0.920 0.769 / / 0.935 0.690 0.826 / 0.301 0.931 0.771

Our methods 0.980 0.971 0.936 0.941 / / 0.954 0.793 0.839 / 0.598 0.872 0.707

Room_2
RandLA-Net 0.842 0.973 0.881 / / / 0.946 / / / / / 0.856

Our methods 0.837 0.972 0.945 / / / 0.964 / / / / / 0.830

Room_3

RandLA-Net 0.962 0.984 0.592 / 0.590 0.597 0.613 0.616 0.891 / 0.670 / 0.593

Our methods 0.967 0.969 0.642 / 0.692 0.595 0.668 0.613 0.926 / 0.664 / 0.589

Table 1. Evaluation of the accuracy of the segmentation results of deep learning and the segmentation results.

Using our optimization method, we will achieve a stable
improvement in overall accuracy for three sets of indoor scene
data of varying complexity, with Miou improvement of around
1.9% and mAcc improvement of around 1.6%.

mIou mAcc

Room_1
RandLA-Net 0.853 0.946

Our methods 0.891 0.953

Room_2
RandLA-Net 0.807 0.922

Our methods 0.811 0.954

Room_3
RandLA-Net 0.700 0.830

Our methods 0.717 0.839

Table 2. Overall accuracy evaluation of each component.

4. CONCLUSION

Based on the optimization of geometric features and neural
networks, a semantic segmentation method is proposed for
indoor 3D point clouds. First, the method obtains a preliminary
semantic labeling of the indoor components using deep learning
segmentation, and then geometric and color features are utilized
to segment the entire scene. By combining the results of the
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former and the latter, it is possible to improve segmentation
accuracy by combining the two results.

An experiment is conducted on the S3DIS using three different
sets of scenes with varying levels of complexity. We evaluate
the effectiveness and accuracy of the proposed method and
compare the experimental results with those of the original deep
learning methods. Experimental results demonstrate that the
proposed method can take full advantage of deep learning and
feature segmentation to improve the accuracy of semantic
segmentation. Segmentation accuracy is significantly improved
over the original deep learning method.

However, the method proposed in this paper has some
limitations, including inaccurate clustering in complex
structures and inconsistent parameters across scenes. As of now,
our method can only be applied to indoor scenes where the
room configuration is square. We will further investigate the
adaptive parameter setting during scene segmentation in our
future work and further enhance its robustness.
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