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ABSTRACT:

In recent years, the concept of Digital Twin (DT) for cities is increasingly at the core of most smart city initiatives, as it has been 
identified as a critical tool for tackling the challenges of this c entury. A robust city modelling framework is essential if local, state 
and national governments are to move towards sustainable built environments and work together across complex multi-sectoral 
problems to drive impacts that improve urban liveability and climate adaptability. Furthermore, the level of collaboration and 
interoperability required to address these cannot be achieved without proper standardisation of DT components. The aim of this 
project is to develop a demonstration DT that integrates existing data using a standardised 3D format based on CityGML and that 
embeds analytics, such as sun exposure and tree coverage, to assess liveability within a 3D city modelling framework. Common 
urban features such as buildings, roads, railways, vegetation and water bodies are also processed and incorporated. Additionally, 
IoT sensors are integrated into the model and all processes are performed using open-source tools to improve accessibility and 
repeatability. Details of the workflow, including the storage of the city features in a 3D City Database (3DCityDB), the 3D upgrading 
of urban features commonly available as 2D data as well as a few use cases are illustrated and discussed in this paper.

1. INTRODUCTION

While the DT concept is commonly seen to have its roots in the 
manufacturing industry (Grieves, 2014), it is becoming increas-
ingly valuable in a range of different domains. Typically a DT 
is built for a specific purpose (e.g. analysis that can help under-
standing and predicting) and different purposes require differ-
ent data. A DT is generally agreed to be a virtual representation 
connected to its physical counterpart through established con-
nection mechanisms (Tao et al., 2018) that, some would argue, 
need to be real-time enabled. DTs of cities have the potential to 
transform the design, management and performance of the built 
environment. They are expected to play a critical role in tack-
ling the big challenges that cities are facing by enabling smarter 
urban planning, energy management, transportation, liveability, 
and many other aspects (Ivanov et al., 2020).

Interoperability between different systems has improved to the 
point where it has become technically feasible to assemble a 
set of technologies that combine to form near-real-time rep-
resentations of the world. In the field of Geographic Inform-
ation Sciences (GIS), the concept of 3D city modelling that has 
been trending for over two decades (Förstner, 1999, Kolbe et al., 
2005, Emgård et al 2007, Billen et al 2014, Biljecki et al., 
2015) fits well to the DT concept. How-ever, just as for the 
Architecture, Engineering and Construction (AEC) sector and 
its Building Information Modelling (BIM) paradigm (Boje et 
al., 2020), advanced geometric and semantic representations 
are good for virtualisation of physical assets but not enough to 
be categorized as a DT (Wright and Davidson, 2020). It is 
therefore natural for DTs of cities to adopt 3D city models as 
their virtual representations, while other necessary 
components such as the 3D analysis and real-time information 
integration are still being investigated (Francisco et al., 2020).
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Many DT initiatives have been documented in the recent liter-
ature. The Helsinki 3D (Finland) project is discussed in (Ruo-
homäki et al., 2018) with an emphasis on the history and the
different components that led to its current status from its earli-
est 3D model initiative in the 1980’s until nowadays. Other
critical aspects such as open data and privacy issues are also
mentioned. The DT of the city of Zurich (Switzerland) and its
different components are introduced in (Schrotter and Hürzeler,
2020). The emphasis is put on the openness of the data used
to build the DT and the different applications implemented in
order to support efficient urban planning. Another public and
open DT is the Docklands area in Dublin (Ireland), discussed
in (White et al., 2021), with most of the focus put on the pos-
sibility for the citizens to interact with the DT and bring their
feedback to urban planning projects. More recently, the first
steps towards a DT of Sofia city (Bulgaria) is introduced in
(Dimitrov and Petrova-Antonova, 2021). The paper mainly dis-
cusses the creation of the 3D model of the city with a framework
that leverage existing data. All of these previously cited DTs,
along with many other renowned ones (e.g. Virtual Singapore,
i-URBAN in Japan, etc.) (Gobeawan et al., 2018, Akahoshi et
al., 2020) have in common the use of an international 3D city
model standard, namely CityGML (Kolbe et al., 2005). With
its recently released third version (Kutzner et al., 2020), it is
the most advanced standard available for the virtual representa-
tion component of DT of cities. In fact, the level of collabora-
tion and interoperability expected from a DT cannot be reached
without a proper standardisation of DT components.

This paper presents a project exploring the process of build-
ing a full-stack DT using primarily open-source components.
The processes covered by the project includes ingesting ex-
isting three-dimensional (3D) geospatial data into a database
(3DCityDB/PostGIS), connecting to Internet-of-Things (IoT)
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Figure 1. Workflow adopted for the implementation of WP1.

Application Programming Interface (API) services, enabling 
semantic mark-up/update and deploying to both standard GIS 
desktop software for further processing/analysis (QGIS) and 
also visualisation in 3D web-based interactive environments 
(CesiumJS). The main contribution is the demonstration that a 
functioning digital twin can be built using already existing data 
and open-source technologies. For this purpose, the Liverpool 
precinct in Western Sydney was chosen as a case-study area, 
and three use-cases identified: (1) 3D shadowing analysis for 
events planning, (2) canopy planning based on shadowing from 
existing trees and (3) real time visualisation of sensor feeds.

2. WORKFLOW AND DATA SETS

The project comprises 3 main parts organised as working pack-
ages (WP):

• WP1: Building of DT (based on standards);

• WP2: Use of DT;

• WP3: Update of DT.

WP1 involves the collection and integration of the input data
sets in a standardised way, their storage and access manage-
ment, as well as their visualization in several interfaces. For
WP2, use cases related to thermal comfort has been selected
for implementation on the created DT, including the shadow
computation and analysis with respect to available sensor and
vegetation data. WP3 is dedicated to the investigation and im-
plementation of proper mechanisms for the update of the DT
data from the front-end (this is current work in progress that
will not be included in this publication).

Figure 1 illustrates the workflow that has been adopted for im-
plementing WP1, which is the basis of the whole project. At the
core of the workflow, the 3D City Database (3DCityDB) was
chosen as a geo database to store, represent, and manage the
data based on a standard spatial relational database (Yao et al.,
2018). Its database schema implements the CityGML standard
with semantically rich and multi-scale urban objects. Its im-
plementation is based on PostgreSQL/PostGIS (Hsu and Obe,
2021) giving thereby access to powerful queries and analysis
tools directly on the stored data. It is also well supported and
documented, and offers convenient tools to import and export

Data set Geometry type Format

Buildings MultiPolygonZ GDB

Roads
MultiLineStringZ

MultiPolygon
GDB & SHP

Railways MultiLineStringZ GDB

Water bodies
MultiLineStringZ

MultiPolygon
GDB & SHP

Vegetation
MultiPolygon

PointZ
GDB & SHP

Terrain (DEM) Raster (grid) GeoTIFF

IoT Sensors Point GeoJSON

Table 1. List of data sets collected and used in the project.

data in different formats. In terms of interfaces for visualisa-
tion of the data, QGIS (QGIS Development Team, 2022) and 
Cesium (Cesium GS, 2022) were chosen. The choice of QGIS 
is motivated by its direct compatibility with Postgres/PostGIS 
data along with its wide range of powerful tools allowing ma-
nipulation and analysis. However the 3D visualisation capab-
ilities of QGIS are still very limited, which is the reason why 
Cesium is also used for more advanced visualisation and front-
end interactions. Because Cesium cannot directly communicate 
with the database, we established an API between PostgreSQL 
and Cesium using the python library Flask.

At the beginning of the project, we were provided with many 
spatial data sets of the test area. They all have different data 
structure, objects and descriptions. Therefore, a critical task 
for the integration and storage of the data consisted in map-
ping their classes and attributes to those of CityGML for im-
porting them in 3DCityDB. Focus was put on the data listed 
in Table 1 that represent the main features of a 3D city model. 
The data sets are a mix of 2D (geometries of type MultiPoly-
gon or Point) and 3D (geometries of type MultiPolygonZ, Mul-
tiLineStringZ or PointZ) vector data and raster for the Digital 
Elevation Model (DEM). They are representative of common 
data that local councils, municipalities and governmental spa-
tial services would possess.

However, not all these data sets are directly suitable for our 
CityGML based 3D DT. Further processing is required to up-
grade some of them into 3D data and map them suitably to 
3DCityDB. For this purpose, we developed custom Python and 
SQL scripts to complete the processing, including the gener-
ation of a 3D Triangle Irregular Network (TIN) of the terrain 
taking into account all the other city features sitting on it. We 
discuss the mapping of the data sets to classes of 3DCityDB in 
the following section.

3. TRANSFORMATION AND STORAGE OF THE
DATA INTO 3DCITYDB

3.1 Buildings

This data set describes 3D geometries of building throughout
the city of Liverpool. They are comparable to the Level of De-
tail (LoD) 2 of the CityGML standard. Features of the data set
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contain 51 attributes in total, plus their geometric information.
3D Buildings are a direct fit to the building model of CityGML,
which is in turn characterised by 34 attributes (including geo-
metry). However, direct matching between attributes of the data
set and CityGML is pretty limited as only 3 CityGML attributes
were identified as having a direct match (if we ignore mapping
of the IDs):

• roofType

• measuredHeight

• lod2MultiSurface

This small number of matches should be contrasted with the
fact that about 20 CityGML building attributes are dedicated to
different LoD representations while our data has only one of
them. Furthermore, all attributes without direct match can still
be stored within the standard via the genericAttributes mod-
ules.

Another limitation of the building data set is its lack of semantic
information related to the building components. Such missing
information would result in a poor CityGML model, as one of
the main strengths of that standard lies on its support of se-
mantic data. Because it is an LoD2 model, the faces of the
buildings need to be classified in 3 main CityGML semantic
classes: RoofSurface, GroundSurface and WallSurface. We per-
form the classification based on a face orientation approach:
vertical faces are considered as walls; the rest are considered as
roofs if they lie above the centre of gravity of the building, and
ground otherwise. This gives us a richer data set where com-
ponent such as roofs can be specifically queried, which could
be useful for applications such as solar exposure estimation on
roofs.

Finally, the processed data is stored in the corresponding tables
of our 3DCityDB instance in PostgreSQL. For the building
data set, 5 tables of 3DCityDB needed to be filled: CITYOB-
JECT, BUILDING, CITYOBJECT GENERICATTRIB, THEM-
ATIC SURFACE and, SURFACE GEOMETRY. The CITYOB-
JECT table is the main table of 3DCityDB, and every feature
of the model needs to be registered in it. For the rest, the
building table is the one specific to the building classes and
that will take the matched attributes (id, roofType and meas-
uredHeight) but not the geometry. The latter goes to the SUR-
FACE GEOMETRY table where each face is stored as a sep-
arate entry (polygon) along with its specificities. The THEM-
ATIC SURFACE is the table allowing to make the link between
the classified surfaces and their corresponding buildings. Fi-
nally, the CITYOBJECT GENERICATTRIB is the table where
all the attributes that did not find a direct match go, while main-
taining a reference to the building that they belong to (through
building id). A few more tables would have been considered if
our input data had texture information (e.g. SURFACE DATA,
APPEARANCE, etc.).

3.2 Roads and Railways

Both the roads and railways datasets correspond to the
transportation model of CityGML/3DCityDB. In the stand-
ard, the transportation schema is defined by a superclass
TransformationObject which can aggregate three other classes:

• TransportationComplex,

3DcityDB table Data set

BUILDING Buildings

CITYOBJECT All data

CITYOBJECT GENERICATTRIB All data

GENERIC CITYOBJECT IoT Sensors

SURFACE GEOMETRY Buildings

THEMATIC SURFACE Buildings

TRANSPORTATION COMPLEX
Railways

Roads

WATERBODY Water bodies

Table 2. List of 3DCityDB tables altered based on 
corresponding data sets.

• TrafficArea, and

• AuxiliaryTrafficArea.

TransportationComplex is the main class to represent roads,
tracks, railways, squares, etc. It is composed of the parts Traffi-
cArea and AuxiliaryTrafficArea. In our case, the initial 3D road
and railway features are represented by line geometries (Mul-
tiLineStringZ), which means they do not provide enough details
to be classified into TrafficArea and AuxiliaryTrafficArea. The
other road data that we have is 2D (MultiPolygon), and needs to
be upgraded to 3D. This, as well as the upgrade of the railways,
is discussed in Section 3.5 as the upgrading process relies on
the 3D terrain. Consequently, we only consider the class Trans-
portationComplex and its attributes at this stage. Transporta-
tionComplex has 10 attributes (13 in 3DCityDB) while both our
3D road and railway data sets contain 35 attributes in total. Here
again, apart from the geometry and potentially the IDs no dir-
ect matching can be identified between the attributes. Thus, we
used the generic attributes to not lose any information.

Three tables are altered: CITYOBJECT, TRANSPORTA-
TION COMPLEX and, CITYOBJECT GENERICATTRIB. The
CITYOBJECT table takes entries for the same reason as ex-
plained in Section 3.1. Value entries to the TRANSPORTA-
TION COMPLEX table are dedicated to the columns id, ob-
jectclass id (which is 44 for roads and 45 for railways) and
lod0 network for the geometry data. Additional considera-
tion was taken with respect to the road dataset and its attrib-
utes such as functionhierarchy, classsubtype, etc. which al-
lows us to distinguish between the types of road (e.g. path-
way, local road, etc.). We could thereby categorise pathways as
tracks in CityGML/3DCityDB (objectclass id = 43). The com-
plete list of values for the objectclass id attribute is provided
in the documentation of 3DCityDB. All the other attributes
that did not find a direct match are stored in the CITYOB-
JECT GENERICATTRIB table.

3.3 Water bodies

Another input data set describes the water bodies traversing the
city. Such kind of data corresponds best to the Waterbody class
of CityGML. Water bodies can be described with a lot of detail
thanks to other classes for surface information, such as Water-
Surface, WaterClosureSurface or WaterGroundSurface. How-
ever, similarly to the transportation data sets, the water bodies
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data set only describe basic geometries (lines) of the water bod-
ies in question. Therefore, the class Waterbody is the only one
that can handle them as it provides possibilities to store Multi-
Curve geometries. In terms of attribute, the scenario is similar
to the transportation objects, with 12 attributes of WaterBody
that do not directly match with the 23 attributes of our dataset,
except for the geometry.

Here again, no further processing or enrichment of the data
is necessary. The information is inserted in the database
as is in three following tables: CITYOBJECT, WATERBODY
and, CITYOBJECT GENERICATTRIB. Every water entity is
registered in the CITYOBJECT table, like any other features
of the model. Then the id, objectclass id and lod0 multi curve
columns of the WATERBODY table are updated accordingly.
Again, all the attributes that did not find a direct match are
stored in the CITYOBJECT GENERICATTRIB table.

3.4 Vegetation and IoT

The vegetation data set is also a basic one providing only tree
locations in 3D (PointZ, with the Z coordinate corresponding to
the elevation of the tree), and their height. The data was pro-
duced from classified LiDAR and the SolitaryVegetationObject
class of the Vegetation model of CityGML is its best fit because
it represents individual trees rather than coverage. Regarding
the geometry, the SolitaryVegetationObject class is associated
with a geometry class representing an arbitrary GML geometry
or an implicit geometry, and may have a different geometry in
each LoD. Also, height is one of its default attributes, there-
fore our data populates the following two 3DCityDB tables:
CITYOBJECT and, SOLITARY VEGETAT OBJECT. The trees
are registered in the CITYOBJECT table with an objectclass id.
The geometric data is stored in the lod1 other geom column
and the height in the column of the same name.

A wide range of IoT sensors is already deployed and functional
in the test site of the project, covering different themes (e.g. en-
vironment, transport, etc.) and accessible through an open data
portal API. While the sensed data themselves do not need to
be explicitly stored in our DT database, unless necessary (e.g.,
very resource consuming analysis), only the sensors (physical
location) and their metadata need to be integrated in our city
model. This enables management of explicit information about
the sensor devices, their properties and spatial location, which
allows efficient spatial analysis with the sensed data. Unfortu-
nately, there is no class that provides direct compatibility with
IoT sensors as features in CityGML 2.0, which is used in our
project. This is expected to be possible in the newly released
version 3.0 where they might be considered as City Furniture
instances, but we have not investigated this further. Meanwhile,
one workaround that we adopted is to use GenericCityObject
class (generic city object concept). Similar to the generic attrib-
utes, this concept allows for the storage and exchange of 3D ob-
jects which are not covered by any explicitly modelled thematic
class within CityGML 2.0 or which require attributes not rep-
resented in CityGML. In 3DCityDB, the sensors’ information
is inserted in the three following tables: CITYOBJECT, GEN-
ERIC CITYOBJECT and, CITYOBJECT GENERICATTRIB.

Every sensor device gets registered in the CITYOBJECT table
and is provided with a unique cityobject id. The same city-
object id is used as id in the GENERIC CITYOBJECT table,
where an objectclass id (= 5) is also recorded and where
a Point geometry is in the lod0 other geom columns using
the longitude and latitude values of the sensor. Because the

(a) (b)

Figure 2. (a) Coloured DEM (blue is the lowest elevation and 
red the highest). (b) Derived raw TIN.

height values of the sensors are missing in the datasets, an 
altitude of 0 is temporarily used as the Z coordinate of the 
points. Later on, we are aiming to update this information as 
it will be relevant for the planned spatial analysis. Finally, all 
the other metadata of the sensors are stored in the CITYOB-
JECT GENERICATTRIB table.

3.5 Terrain

The original terrain data is a DEM of area of interest, which is 
in the form of a 1m × 1m raster GRID, obtained from the Elvis 
platform of the Foundation Spatial Data (FSDF - Elevation and 
Depth). However, such raster data is not suitable for a polygon-
based approaches such as the 3D shadow estimation discussed 
in Section 5. Therefore, we generated a 3D TIN directly from 
the raw DEM in an approach similar to (Yan et al., 2019b).

The TIN in Figure 2(b) considered the footprints of the build-
ings only. The other features that can be distinguished are due 
to their contrast in elevation with the rest of the terrain (e.g. 
between the ground and the water bodies), but they were not 
explicitly included. Despite the higher resolution, this TIN that 
contains approximately 5.8 million triangles is not efficient to 
work with and most applications do not require that much de-
tail. We therefore decided to generate a simpler TIN that would 
minimise the number of polygons while including all the fea-
tures of importance (buildings, roads, railways, and water bod-
ies). As previously mentioned, all these features are available 
and already stored in the database, however, apart from the 
building data, all of them need to be upgraded to 3D to fit to 
the purpose. First, an integrated TIN is created based on the 3D 
boundaries of the other features (meaning MultiLineStringZ is 
created from their 2D polygonal shapes), and then their full 3D 
polygonal shapes (MultiPolygonZ) are recovered from the gen-
erated TIN. All the processes described here were performed 
with QGIS and PostGIS.

3.5.1 Roads, railways and water bodies 3D boundaries 
generation Besides the 3D lines with attributes discussed in 
Section 3.2, the 2D road polygons extracted from a Pavement 
Management System (PMS) were provided to us by the local 
council of the study area. The data describes complex shapes 
excluding the pavements on the sides and in-between lanes. 
It was preferred to another data set describing road cadastre 
because it allows the discrimination between pedestrian and 
vehicle spaces. Figure 3(a) illustrates the road polygons in their 
2D states and their boundary vertices (in red). All the bound-
aries were converted to 3D by a DEM-based sampling of their 
vertices to recover their elevation (z coordinate).

Similarly to the road data set, the railways originally come in 
the form of 3D lines. However, unlike the roads, it is not ne-
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(a) (b)

(c) (d)

Figure 3. (a) Road polygons (grey) and their boundary vertices 
(red) sampled against the DEM. (b) Railway polygons (dark 
grey) obtained by buffering their lines to the local standard 

width (1.435m). (c) Satellite image of some water bodies and (d) 
their corresponding polygons.

cessary to seek a polygonal version as this can be fairly derived 
from the line, assuming a regular width for the feature. We 
therefore produced polygons using the buffering tool of QGIS 
with a standard width of a 1.435m (4 ft 81/2 in), as specified by 
the Australian Bureau of Infrastructure and Transport Research 
Economics (BITRE, 2022) (Fig. 3(b)).

3D lines of water bodies cannot just be dilated with a buffer 
like the railways. Therefore, we looked for other data sources 
and found an accurate hydrology polygon dataset of the region 
provided by GeoScience Australia, via the AURIN Portal (Sin-
nott et al., 2015) (Fig. 3(c) and (d)). But unlike the 3D lines 
data, creeks and other temporary water bodies were not repres-
ented in the data. We therefore decided to exclude the creeks 
and dealt only with parts described as polygons. The same pro-
cess of elevation sampling from the DEM is performed and the 
3D boundaries of the inner and outer rings were extracted.

3.5.2 Generation of the Integrated TIN With all the fea-
tures ready (building footprints, roads, railways, and water bod-
ies), we proceeded to the generation of a TIN that integrates 
them all. We used the 3D constrained Delaunay triangulation 
implementation of PostGIS. For this, we provided as input the 
3D boundary lines of the features as constraints for the triangu-
lation. The resulting TIN which can be seen in Figure 4 counts 
28K polygons. It is more densely triangulated in areas with 
many features, making it suitable for an efficient use in spatial 
analysis while preserving a good elevation information for all 
the features. Since we have the information of all the inputs, 
we could augment the final TIN by associating a label attribute 
to each triangle based on its corresponding feature. Based on 
this information, the full 3D polygonal shapes of all the roads, 
railways and water bodies are finally r econstructed a nd their 
corresponding database classes augmented accordingly.

Figure 4. Final TIN integrating all the features: building 
footprints (red), ground (brown), roads (light grey), railways 

(dark grey) and water bodies (blue).

Figure 5. All the data sets visualised in QGIS (with 
the Qgis2threejs plugin).

4. VISUALISATION IN QGIS AND CESIUMJS

4.1 QGIS

The format adopted for our DT storage (3DCityDB/PostGIS)
enables the direct access and visualization of the data in QGIS,
from which the database can be directly connected to and
the geometry directly queried and visualized, as illustrated in
Figure 5. The native 3D capabilities of QGIS are still lim-
ited though, thus we used the Qgis2threejs plugin. It offers
smoother 3D visualisation but the memory handling is still a
challenge for large scale models.

4.2 CesiumJS

Another platform for visualising DT data on the web is Cesium
(Cesium GS, 2022). Cesium supports a wide range of spatial
data (GIS, BIM, photogrammetry, etc.) in various formats, in-
cluding CityGML. 3D contents are all converted to 3D Tiles, an
open specification format that optimises the streaming of large
3D data through the Cesium viewer. To access to such format,
one must use the dedicated web app by creating a Cesium ion
account (which is the proprietary version of Cesium, not to con-
fuse with CesiumJS, the open-source version) and uploading
the data for them to be converted to 3D Tiles and become ac-
cessible through a RestAPI. Once the tiles are created, they can
be streamed to CesiumJS. Besides 3D Tiles, CesiumJS supports
several other formats (KML, GeoJSON, OBJ, etc.).
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Figure 6. Diagram of the API requests established between 
Cesium and 3DCityDB through Flask.

Figure 7. Data queried from 3DCityDB through a custom API 
and fed to CesiumJS as GeoJSON. Attributes of the features are 
also queried along their geometries, as shown by the description 

of a selected sensor on the scene.

However, all these approaches imply file-based processes 
between the data custodians and Cesium Ion. This is not con-
venient for dynamic databases where information is often up-
dated, as one would expect for the database of a city’s DT. Since 
there is no official support of Web Feature Service (WFS) for 
Cesium, we opted for implementing a custom API for accessing 
3DCityDB data. As a web interface based on JavaScript, Cesi-
umJS can send and receive HTTP requests to servers. There-
fore, with the support of GeoJSON files, an ad-hoc workaround 
to the file issue is to send to CesiumJS results of database quer-
ies formatted as JSON through an API. We adopted this ap-
proach and used Flask, a Python library to set up a REST API. 
Flask communicates with 3DCityDB via SQL queries (using 
the psycopg Python package). Figure 5 illustrates the commu-
nication established between the client (CesiumJS) and server 
side containing the database (3DCityDB) and the API (Flask).

The queries sent to 3DCityDB through Flask should return valid 
GeoJSON data to be readable by Cesium. To produce such out-
puts, we rely on PostGIS’ ST AsGeoJSON function that formats 
the results of the queries. A useful new feature of PostGIS 
(from v3.0.0) allows to create GeoJSON from a full database 
record, meaning a row containing geometry and other attrib-
utes. From the Cesium side, a simple call to the API request 
needs to be performed to obtain GeoJSON data. The latter is 
then injected in the viewer resulting in visualisations as illus-
trated in Fig. 7.

5. USE CASES

With WP1 completed (see Section 2), we can use the features of 
the built DT database to perform some analysis. Three related 
use cases have been explored: (1) a 3D shadowing analysis for 
events planning, (2) canopy planning based on shadowing and 
existing trees and (3) real time visualisation of sensor feeds.

(a) (b)

Figure 8. (a) Shadowed and sun-exposed ground polygons. (b) 
Building features causing the shadows.

The goal of the first use case is to perform shadow analysis on 
selected locations to determine their potential sunlight exposure 
during a planned event and see how this can be mitigated (e.g., 
by placing temporary shade). To achieve this, a shadow compu-
tation algorithm was developed and the CesiumJS user interface 
(UI) modified to allow a user to pick a specific location for an 
event. Additionally, the user has to pick a start and end date to 
run the analysis; for every hour within that range, we compute 
three outputs:

• the non-ground shadowed polygons,

• the shadowed polygons on the ground, and

• the sun-exposed polygons on the ground.

This distinction in different types of outputs is made to facilitate
further analysis relying on them. Furthermore, the outputs are
currently saved as GeoJSON files to allow their storage, shar-
ing and import in common GIS tools such as QGIS, as shown in
Fig. 8. The categorisation of the TIN based on the labels from
the features helped improve the shadow analysis by allowing
focus on specific features. Thereby, the ground polygons pro-
duced specifically correspond to areas accessible to pedestrians.
It remains possible to control this and include other features like
roads for example, when necessary. Based on the same gener-
ated data, but with additional functionalities, this use case can
be extended with pedestrian routing that allows the use of the
shadowed parts of the streets. Advanced indoor/outdoor navig-
ation as described in (Yan et al., 2019a), could also be envisaged
but that would require adding models with indoor details (e.g.
BIM) to the DT.

For the second use case, we checked the unshaded areas against
the canopy/vegetation data available to us. Unfortunately, the
data is just a point layer describing tree locations and with their
height and elevation. Since this is not enough to guess the
amount of shadow that they cast, we applied a heat map of the
trees assuming an approximate area around the trees that we
consider as shadowed (see Fig. 9). It is visible that the studied
area is under-covered in terms of trees and would benefit from
more trees that would bring more shadow. Although most of
the exposed zones are open parking areas and private gardens,
the main streets are still not covered enough. The block at the
bottom right side of the image reflects an area where no 3D
building data were available.

Finally, we developed a visualisation interface for the IoT
sensors available in area of study as a third use case. While
the data and some dashboards can be found on the city’s open
data portal, visualising the feed on a 3D map gives a better
spatial context to the information. Figure 10 shows the feed
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Figure 9. Unshaded areas (orange) vs. Tree coverage (green).

of few counting devices running at the time of the visualisa-
tion. The user can select the type of counting device to visu-
alise (people, bicycle, vehicle or all of them simultaneously) 
and the latest feeds available will be queried and the scene up-
dated accordingly. Options to hide or display the feed are also 
proposed, as well as the possibility to enable/disable the live 
updating (which occurs every 10 min, according to the pace 
of the sensors). We have chosen to use cylinders of the same 
radius since the sensors’ roles are localised and provide only
1-dimensional value. The colour opacity and height of the cyl-
inder are used to express the quantity counted (more opaque
colours and higher means more counted entities). . Finally, the
records obtained from the API queries are collected and dis-
played as attributes of the visualised feeds (see Fig. 10). Fur-
thermore, to leverage the 3D capabilities of the DT, we also im-
plemented a simulated camera view of selected CCTV to offer
a contextual view of the pedestrian, bicycle and vehicle flows at
a street level (Fig. 10(b)). Grounds (green) and road polygons
(orange) are thereby coloured respectively according to the re-
ceived pedestrian and vehicle feeds. A real picture from the
simulated CCTVs along with corresponding feed values is also
provided for reference.

6. CONCLUSION

This project demonstrates that a functioning digital twin can
be built using already existing data and open-source technolo-
gies that can not only represent the contemporary environment
across a range of detail, but also relay IoT data feeds directly
via API, approaching a real-time representation. This informa-
tion is visualised as a 3D immersive environment via accessible
web-based tools, so no great technical hurdles or specialised
training need be anticipated for a lay-user once the system is
deployed. Notably, the formats employed in this demonstration
are congruent with W3C and OGC standards, such as XML-
based CityGML, GeoJSON and REST API. Having constructed
this extensible foundation using web-enabled open-source re-
sources, the potential for access, intuitive operation, sharing and
update is maximised, while extended facilities are also avail-
able for implementation, such as facilitating secure/authorised
access.

During the data procurement process, however, acquiring non-
open data was difficult, even with formal data sharing agree-
ments. For instance, any existing BIM data was usually kept
with 3rd parties and unavailable. Similarly, pedestrian counters

(a)

(b)

Figure 10. (a) Visualisation of the feed from the people (green) 
counting devices. (b) Simulated camera view of a selected 

CCTV device with the road and pavement coloured according to 
people (green) and vehicle (orange) feeds.

on video surveillance cameras designedly reduced input data 
to a simple number/count decimated from the original video 
data, leaving further analysis into pedestrian direction, weather 
conditions or crowd behaviours unfeasible. In the future, in-
teroperability with proprietary models will require multipartite 
agreement on, and compliance with, exchange standards to best 
ensure downstream value add when public data is feeding com-
mercial implementations.

Efficiency, accuracy and detail need to be considered in order to 
create a convincing and trustworthy analogue of the original en-
vironment that is as easy to use as possible. In terms of scalabil-
ity, increasing levels of detail must not only be accommodated, 
but a DT needs to work with incomplete data inputs. The abil-
ity to develop more complex datasets from known source data 
such as street and rail centerlines, building footprints and de-
rived pedestrian walkways is an efficient way to employ proxy 
data if needed, and presents to opportunity to ingest higher qual-
ity data as they become available.

Using the use-case scenario of shadow casting as an example, 
3D terrain is important for impactful 3D analysis like model-
ling shadow-fall from one building to another, the coverage of 
tree canopy shading, and, when combined with dynamic ped-
estrian data, the interactions between several factors taking into 
account slope, shade, time of day, season and the general built 
environmental context. The automated approach demonstrated 
in deriving integrated 3D environments plays a critical role in 
supporting higher quality analysis in subsequent phases of user-
defined w orkflows, es pecially wh en su ch us ers ma y be  non-
expert in 3D geospatial applications.

An important feature of this DT is the ability to ingest many 
diverse types of urban data into a coherent environment and in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W2-2022 
17th 3D GeoInfo Conference, 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-45-2022 | © Author(s) 2022. CC BY 4.0 License.

 
51



turn, output a variety of ’views’ appropriate for the aims of the 
end-users. The next phase of this project will include user test-
ing with both expert and non-expert users to elicit user feedback 
regarding ease of use and suggestions for future development.

Finally, regardless of the purpose of a DT, it is important that or-
ganisations producing or collecting data ensure their durability 
as much as possible. While this is a significant research topic on 
its own, we believe that open standards are the right way to go 
for future-proofing today’s data for the DTs of tomorrow. They 
also remain the current best practice in terms of interoperability 
through avoidance of unharmonized data schemas and commer-
cial/proprietary lock-ins, while remaining compatible with new 
technological advances (e.g., API, web support, etc.).
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