
4SA: OPTIMIZING SPACE FILLING CURVE BASED GRID CELL INDEXING TO
SCALABLY MANAGE REMOTELY SENSED IMAGES IN KEY-VALUE DATABASES

C.N. Lokugam Hewage1∗, A.V. Vo1, M. Bertolotto1, N-A. Le-Khac1, D. Laefer2,3

1School of Computer Science, University College Dublin, Ireland - chamin.lokugamhewage@ucdconnect.ie,
(anhvu.vo, michela.bertolotto,an.lekhac)@ucd.ie

2Center for Urban Science and Progress, New York University, USA - debra.laefer@nyu.edu
3Department of Civil and Urban Engineering, New York University, USA

Commission IV, WG IV/9

KEY WORDS: remotely sensed images, key-value databases, space filling curves, grid indexing, scalability

ABSTRACT:

State-of-the-art remote sensing image management systems adopt scalable databases and employ sophisticated indexing techniques
to perform window and containment queries. Many rely on space-filling curve (SFC) based index techniques designed for key-
value databases and are predominantly employable for images that are iso-oriented. Critically, these indexes do not consider the
high degree of overlap among images that exists in many data sets and the affiliated storage requirements. Specifically, employing
an SFC-based grid cell index approach in consort with ground footprint coverage of the images requires storage of a unique image
object identification (IOI) for each image in every grid cell where overlap occurs. Such an approach adversely affects both storage
and query response times. In response, this paper presents an optimization technique for an SFC-based grid cell space indexing. The
optimization is specifically designed for window and containment queries where the region of interest overlaps with at least a 2 x 2
grid of cells. The technique is based on four cell removal steps, thus called “four step algorithm” (4SA). Each step employs a unique
spatial configuration to check for continuous spatial extent. If present, the IOI of the target cell is omitted from further consideration.
Analysis and experiments on real world and synthetic image data demonstrated that 4SA improved storage demands by 41.3% -
47.8%. Furthermore, in the performed querying experiments, only 42% of IOI elements needed to be processed, thus yielding a
58% productivity gain. The reduction of IOI elements in querying also impacted the CPU execution time (3.0% - 5.2%). The 4SA
also demonstrated data scalability and concurrent user scalability in querying large regions by completing the index searching and
concurrent user scalability 1.86% - 3.35% faster than when 4SA was not applied.

1. INTRODUCTION

With the advent of high resolution cameras and more afford-
able modes of aerial and space-borne imagery, there has been an
acute growth in a wide variety of remotely sensed imagery data
(RSID) (Wang et al., 2019). Such high resolution RSID provide
a rich source of information for a multitude of geo-spatial ap-
plications such as spatial data lakes for smart cities (Kafando et
al., 2020). Consequently, increased research efforts are being
geared to develop efficient RSID storage and querying systems.
Ensuring the ability to cope with increased RSID volumes, while
maintaining commensurate storage and querying performance,
are key objectives in these efforts. In other words, providing
scalable, efficient storage for data growth and retrieval by large
number of users and for RSID data sets of ever increasing size
is pivotal for the future of scalable RSID management.

In confronting scalability challenges in RSID, the investigation
of novel spatial indexes has been a key driving force. Typic-
ally, to cope with large data sets and voluminous traffic loads,
such investigations have been performed atop state-of-the-art
databases that are themselves inherently scalable through their
distribution of loads across multiple machines. As a result,
horizontally-scaled, shared-nothing architecture based RSID stor-
age and retrieval solutions are gaining traction in contemporary
RSID data management. These indexing techniques are mainly
geared towards to support window queriesn and/or containment

∗ Corresponding author

queries -i.e. retrieving images or image tiles that are at least
partially overlapping with the query region of interest.

Prominent examples include, GeoMesa (Hughes et al., 2015),
RASDAMAN (Baumann et al., 1997), TileDB (Papadopoulos
et al., 2016), RSIMS (Zhou et al., 2021), and Wang et al.
(2015). Their databases RASDAMAN, TileDB, and RSIMS
employ horizontally scaled, object relational databases. Geo-
Mesa and systems from Wang et al. (2015) and Jing and Tian
(2018) are built atop Key-Value (KV) databases - a class of
NoSQL database that is inherently scalable for high data growth
demands and traffic volume requirements. Both RASDAMAN
and TileDB implement R+-tree and R-tree indexes by organiz-
ing the minimum bounding rectangles (MBRs) of RSID. RSIMS
and the aforementioned KV database oriented systems imple-
ment Space Filling Curve (SFC) based indexes. When organiz-
ing two-dimensional (2D) MBRs, the R-tree and R+-tree enable
overlapping of regions. Thus, space partitioning is not uniform.

In contrast, when adopting SFC based indexing, typically the
space is divided into different levels of grids where every grid
cell in each level has a uniform spatial resolution. Due to this,
current RSID systems that employ SFC-based grid cell, space
indexing organize images or image tiles into a specific grid cell
in a particular grid level according to the spatial coverage of the
image. More specifically, when adopting SFC-based grid cell
space indexing, the images tend to be indexed in one of two
ways. The first approach is to divide images into axis-aligned
or iso-oriented tiles and perform the indexing on the image tiles.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
143



The second approach involves applying an SFC-based grid cell
space index onto precisely formatted iso-oriented images.

ground surface as a
raster grid cells

image footprint

tilted aerial
camera

bounding box of
the image

tilted aerial
camera

Nadir aerial
camera

region of
interest

Figure 1. ground footprint of aerial images

236000

235000

233000

234000

315000 318000316000 317000

Figure 2. High degree of
overlap among images

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
Grid x axis

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62

G
ri

d
 y

 a
x
is

250

50

150

0

Figure 3. Heat-map of
image overlapping

However, the originally captured raw RSID in image mapping
projects are often not iso-oriented and/or not precisely format-
ted to fit into grid cells. Figure 1 demonstrates the near similar1

spatial area coverage of a set of raw RSID that were captured
through different airborne cameras such as nadir cameras and
tilted cameras. For example, the laser scanning and imagery
mapping exercise performed in the city of Dublin, Ireland in
a 2015 were mainly based on a set of nadir and tilted cam-
eras (Laefer et al., 2017). Due to the angle of tilted cameras,
the ground footprint or the spatial coverage of the RSID cap-
ture are not iso-oriented. Similarly, although nadir cameras are
mounted vertically to the earth, due to small rotations and tilts
in the mapping platforms during real data capture, the resulting
images are neither strictly iso-oriented nor precisely sized into
a grid cell arrangement. Thus, the direct application of SFC-
based grid cell space indexing to raw RSID data is challenging.

Images with a high degree of overlap is another recognized
characteristic among raw RSID. Figure 2 demonstrates the over-
lap among the bounding boxes of the RSID captured in Dublin
in 2015 image mapping project. Each image bounding box is
on average about 400 meters (m) in its height and width. Fig-
ure 3 corresponds to the heat map of the RSID overlapping with
respect to a 64 x 64 grid where each unit cell has a height and
width of 60 m. Figure 3 demonstrates that in real world RSID
mappings, the number of RSID that can overlap with a given
geographic location can amount to hundreds of images. A po-
tential solution to address the high degree of image overlap can
be designed by employing SFCs with much larger, coarse-grid
cells (e.g. 500 m x 500 m). However, this strategy is less than

1 In urban areas the footprints are not precise quadrangles, the footprints
are disturbed by relief and occlusion of cameras. Figure 1 is provided
for the purpose conveying the idea that raw images are not iso-oriented.

ideal for representation of much smaller sized RSID. Thus, ad-
opting an SFC-based cell space indexing poses specific chal-
lenges when handling raw RSID collected at different scales
and distinctive resolutions. These challenges are applicable
across both aerial and space-borne raw RSID management.

Importantly SFC-based indexing can be tailored to spatially or-
ganize raw RSID. Specifically, as SFCs decompose the space
into a series of grid cells, the cells that comprise each RSID can
be used to store the image object id (IOI) of each RSID (Gaede
and Günther, 1998; Samet, 2006). Since multiple RSID can
overlap with a single grid cell (cf. Figure 3), this would ne-
cessitate storing multiple IOIs in that individual cell. Once the
IOIs for each grid cell are determined, the cell can be stored
in a highly scalable system such as a KV database. Adoption
of a KV database would make the SFC values associated with
each grid cell be the keys in a key-value arrangement. The list
of IOIs contained in each cell then becomes the values for each
key in the key-value pairs.

While the described solution is scalable, it demands the storage
of the IOI of each RSID in every cell for all RSIDs for which
there is overlap. Unless the size of the unit grid cell is quite
coarse, the storage of the IOIs across every cell covering each
RSID would cause excessive storage consumption (Böhm et al.,
1999). This challenges the storage viability requirements in ad-
opting SFC-based cell space indexing approaches. Addition-
ally, storage of every overlapped IOIs would also lead to pro-
cessing an excessive number of IOIs in the respective window
and containment query algorithms. Thus, these query response
times would then be negatively impacted, as well.

In response to adopting SFC index techniques and impediments
arising from excess storage of in SFC-based grid cell indexing,
this work proposes “four step algorithm (4SA)”. The 4SA is
an optimization technique designed to apply to SFC-based grid
cell indexing for raw RSID management in KV databases. The
goal of 4SA is to maintain the bare minimum number of IOIs
required for each RSID. As the name implies, 4SA is based on
the execution of four steps. The adoption of 4SA is specific-
ally designed towards window and containment queries when
the query region overlaps a minimum 2 x 2 grid of cells. The
experiments and critical analysis of this paper are based on both
real world aerial data and synthetically generated data sets. The
results show 4SA scalability, in terms of storing large data sizes
and querying significant spatial extents with multiple concur-
rent users. The contributions of this work are:

• Introduction of the 4SA- an algorithmic optimization for
SFC based grid cell space indexing for RSID management
within KV databases through the reduction of IOI storage
for RSID.

• Demonstration of the effectiveness of 4SA in improving
storage performance, and intuitively, a qualitative demon-
stration of minimization of write/ update costs of indexes.

• Demonstration of reduction of the processing of IOI ele-
ments and reduction CPU time for window and contain-
ment queries as a result of applying 4SA.

• Demonstration of data scalability and concurrent user scalab-
ility through the adoption of 4SA in querying.

• Statistical and numerical comparisons of incorporating the
4SA for straightforward SFC-based grid indexing adop-
tion and region querying.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
144



2. RELATED WORK

In this section, prominent state-of-the-art, database-oriented
RSID management solutions are presented. The indexing tech-
niques adopted, the scalable databases used, and their limita-
tions are also presented in brief.

RASDAMAN (Baumann et al., 1997), which uses a multidi-
mensional, array data model for processing spatial raster data,
is one of the leading solutions for storage and retrieval of RSID.
The main focus of RASDAMAN is window and range quer-
ies. RSID in RASDAMAN are stored as binary large objects
inside a PostgreSQL database. In its indexing, RASDAMAN
uses built-in index structures such as R+-tree and GiST indexes.
TileDB (Papadopoulos et al., 2016), another array data model
based RSID storage and retrieval system, also employs an R-
tree index to support window queries. Since the R-tree and
the R+-tree allow overlapping of indexed spatial extents, the
raw RSID can be included in multiple overlapping spatial re-
gions. Thus, a high degree of overlapping can be solved, to
some extent. However, HBase KV, database-oriented, spatial
systems that implement an R-tree maintain it as an in-memory
data structure (Huang et al., 2014). When there are a tremend-
ous amount of overlapping images, such an approach is unfeas-
ible. Furthermore, use of in-memory data structures in HBase
settings will impede scalability issues when dealing with high
volumes of RSID indexes in the main-memory.

The RSIMS (Zhou et al., 2021) which is built atop a Postgr-
eSQL database cluster and Ceph distributed object storage sys-
tem, also supports storage and retrieval of RSID. In its index-
ing layer, RSIMS employs a distributed multi-level, Hilbert in-
dex. Specifically, when indexing images or image tiles, first
it determines the level at which the spatial index needs to be
calculated. The level is based on the spatial coverage or the
spatial area of the respective image. Once determined, the cor-
responding Hilbert index for the image is calculated through
the latitude and longitude of the geometric centre of the im-
age. When considering raw RSID, obtaining precise geometric
positions is non-obvious due to the absence of iso-orientation
and/or formatting. Thus, neither RSIMS as a system, nor as an
index strategy, is well suited to be adopted for management of
raw RSID.

Wang et al. (2015), Jing and Tian (2018), and GeoMesa are
three state-of-the-art RSID systems built atop KV databases.
Wang et al. (2015) is based on division of the earth’s surface
into different grids and indexing of each grid cell’s latitude and
longitude on GeoSOT, a global discrete grid system. Jing and
Tian (2018) implements Hilbert like grid cell space indexing.
These two strategies organize RSID with different spatial cov-
erage into cells of specific resolutions in various grid levels.
This technique avoids IOI duplication of RSID. However, this
strategy can only be implemented for RSIDs that are precisely
fit into grid cells and images that are iso-oriented. Thus, the two
systems and their index strategies cannot be adopted directly for
raw RSID storage and retrieval.

GeoMesa, built atop the Accumulo KV database, also supports
window queries. GeoMesa employs XZ-SFC (Böhm et al.,
1999) for indexing of image tiles. Based on the image resolu-
tion, these image tiles are organized into multiple levels to form
an image pyramid. When querying, GeoMesa returns image
tiles from appropriate levels of the pyramid. The XZ-curve uses
the concept of extended region. The concept of extended region
applies when the spatial object overlaps with multiple grid cells.

In such scenarios, to avoid object id duplication across multiple
cells, a much larger region is formed. This is done by increas-
ing the height and width of the bottom left cell by a factor of
2 upwards and to the right. The concept of extended region
works for objects with spatial extents in general. However, in
the original work of XZ-SFC, the authors did not discuss how
this concept could be applied when non-point objects have a
high degree of overlap among them. Therefore, in real world
aerial image mappings, where the image objects overlapping
tends to have a high degree, the adoption of an XZ-SFC-curve
would form a single grid cell. Consequently, all RSID would
reside in a single, large grid cell, which is untenable. Therefore,
GeoMesa and its XZ-SFC-index strategy as currently structured
cannot be adopted efficiently for raw RSID management.

In addition, as previously noted, SFC-based image indexing or-
ganizes images into grids of multiple levels. This can be con-
sidered as a strategy to avoid IOIs across multiple grid cells,
if one grid is adopted. However, this technique demands prior
knowledge of RSIDs with respect to the ground footprint of
each RSID to correctly assign it to the appropriate grid. The
ground footprints of RSID can have a wide spectrum of val-
ues. Thus, pragmatically organizing all RSID into an immut-
ably, pre-defined grid is unfeasible.

To address the research gaps in managing raw RSID, while en-
suring scalability and considering the unique characteristics in-
herent to raw RSID, investigation of new research avenues is
pivotal. As described in Section 1, a solution can be devised by
integrating an SFC-based grid cell space indexing, while adopt-
ing a scalable KV database. However,it demands excessive IOI
storage. In response to that limitation, this work proposed 4SA
optimization. Section 3 describes the rationale of 4SA.

3. METHODOLOGY

The objective of 4SA is to store the bare minimum number of
IOIs when adopting an SFC-based cell indexing for RSID man-
agement in KV databases. The 4SA is also geared toward win-
dow and containment queries where the query regions overlap
with at least a 2 x 2 set of grid cells. Maintaining the bare min-
imum number of IOIs is determined through the spatial cov-
erage or the footprint of each RSID. More specifically, when
an image overlaps with multiple grid cells, each step in of the
4SA attempts to determine if an IOI in a particular cell satisfies
a certain spatial configuration (SC) type that characterizes the
overlap. These SC types in the 4SA are based on the adjacency
of relevant cells in terms of cells that are directly next to or di-
agonal to the cell under investigation. In the 4SA, there are four
SC adjacency shapes. Each is named based on the shape of its
adjacency grid (cf. Figure 4): (i) type “+” (i.e. type “plus”),
(ii) type “X”, (iii) type “Ts” (i.e. different rotations of the letter
“T”), (iv) type “ls” (i.e. different rotations of the letter “l”). If
an IOI in a specific cell satisfies a SC type in one of the steps,
then the 4SA omits storage of the IOI in the respective cell, and
no further consideration is given to that cell.

The rationale for selecting these four SC types was motivated
by minimization of IOI storage through two kinds of grid cells:
(i) those internal to the image’s footprint and (ii) those that
reside along the footprint’s border. Typically, the number of
cells that reside within an image’s footprint is much higher than
the number of cells that reside along its footprint (cf. Figure 5).
Thus, elimination of IOI storage in cells internal to the im-
age’s footprint is prioritized by incorporating the concepts in
4-connected pixels and 8-connected pixels rationales.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
145



IOI

IOI IOI

IOI

IOI

IOI

IOI IOI

IOI

IOI

IOI IOI

IOI

IOI

IOI

IOI

IOI

IOI

IOI IOI

IOI

IOI

IOI

IOI

IOI

Step 1: type "+" Step 2: type "X"

Step 4: type "ls"

Step 3: type "Ts"

IOI

IOI

IOI
IOIIOIIOI

Figure 4. Spatial configuration types in each step of 4SA

In the rationale of 4-connected pixels, the center pixel is the
pixel of interest and touches the borders of four other pixels (2
vertical and 2 horizontal). The rationale of 8-connected pixels
additionally includes the four pixels that touch the corners in
the two diagonal directions. As the prime focus in both the
4-connected pixels and the 8-connected pixels is the direct as-
sociation with the internal cells, two SC types were selected as
the initial pair of 4SA steps to avoid IOI duplication of inner
cells. These are type “+” and type “X”. Type “+” is synonym-
ous with 4-connected pixels. However, in defining the SC for
type “X”, only the cells that touch the corners are considered.

While, the output of steps 1 and 2 increase in the ratio of cells
along the image’s ground footprint to those within the footprint,
many interior cells remain. Thus, a further two SC types are
defined and implemented in steps 3 and 4. The objective of
the third SC type is to eliminate the IOI storage in cells that
reside both along the image’s footprint (i.e. the boundary) and
within its interior. Thus, the SC type “Ts” was devised. Finally,
to minimize the IOI storage of grid cells that reside along the
image’s footprint, the SC type “ls” was introduced as the shape
for step 4.

When storing IOI for an image, 4SA retains both a plethora of
cells that reside along an image’s footprint and a limited number
that are internal to the image’s footprint. This design decision
was conceived as an alternative to total elimination of all in-
ternal cells. The rational was to help ensure that much smaller
queries (e.g. a 2 x 2 cell query) would not falsely omit larger,
image query regions that do not cross the border (i.e. edge) of
the larger image’s boundary.

3.1 Four Step Algorithm (4SA)

Algorithm 1 takes a collection of RSID (i.e. SETRSID) as in-
put for its execution (Line 1). Each image iimg in the SETRSID

overlaps with a set of grid cells (i.e. SETigc ). As such, each
grid cell igc in the SETigc contains the IOI of the respective
iimg . To successfully apply the 4SA, specific knowledge about
the igc of each iimg is essential. Therefore, the calculation of
SETigc for each iimg is required a priori to the execution of the

four steps and is achieved by utilizing the ground footprint of
each iimg and coordinate values of the intended grid cells.

The output of 4SA contains a subset of grid cell ids for each
image and can be defined as SETRSID. The four steps are ex-
ecuted sequentially. The execution of the 4SA algorithm starts
by looping through each RSID iimg in the SETRSID (Line 2).
For each iimg , the algorithm extracts the set of grid cells where
the IOI of the respective iimg is stored (Line 3). This set rep-
resents the full collection of grid cells that the IOI of the iimg

stores. The execution of the four steps on the collection of the
igc of the respective iimg are subsequently performed.

The output of each step becomes the input grid cell set (i.e.
SETigc ) for the next step. Thus, each sequential step in the
4SA analyzes a reduced set of data. Specifically the SETigc is
analyzed based on each igc in the SETigc . This is the function
of the inner for loops of each step in the Algorithm 1. The
method of analyzing each igc within each loop is based on the
SC types (i.e. step 1: sc +, step 2: sc X , etc.). If any of the SC
types exist (i.e. ∃) within the currently processing igc, the igc
will be removed from its SETigc for the considered iimg (i.e.
SETigc .remove(igc)). The process is shown in Figure 5.

Algorithm 1: Four Step Algorithm (4SA)
Input: SETRSID ▷ RSIDs with actual spatial coverage
Output: SETRSID ▷ a filtered sub set of SETRSID

1 Function FourSA(SETRSID):
2 foreach iimg ∈ SETRSID do
3 SETigc ←iimg

▷ Step 1: check for type “+” SCs
foreach igc ∈ SETigc do

if sc + ∃ igc then
SETigc .remove(igc)

end
end
▷ Step 2: check for type “X” SCs
foreach igc ∈ SETigc do

if sc X ∃ igc then
SETigc .remove(igc)

end
end
▷ Step 3: check for type “Ts” SCs
foreach igc ∈ SETigc do

if sc Ts ∃ igc then
SETigc .remove(igc)

end
end
▷ Step 4: check for type “ls” SCs
foreach igc ∈ SETigc do

if sc ls ∃ igc then
SETigc .remove(igc)

end
end

4 end
5 return SETRSID ▷ final filtered sub set of SETRSID

6 End Function

3.2 Example of applying 4SA

Figure 5 presents the steps of 4SA, while demonstrating how
the described SC types can be used to avoid IOI storage in grid
cells when adopting SFC oriented grid cell spaces indexing.
This example is based on a real aerial image of Dublin.

As shown in Figure 5a, the footprint of the aerial image either
fully or partially overlaps with a total of 36 grid cells. Thus,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
146



1

219

4

3

2

8

7

6

5

10

20

19

18

17

16

15

14

13

12

11

22

23

36

31

30

29

28

27

26

25

24

35

34

33

32

1

219

4

3

2

8

7

6

5

10

20

19

18

17

16

15

14

13

12

11

22

23

36

31

30

29

28

27

26

25

24

35

34

33

32

1

9

4

2 6

5

10

17

16

15

13

11

22

23

36

31

30

29

28

26

24

35

34

33

1

219

4

2

7

6

5

10

19

17

16

15

13

11

22

23

36

31

30

29

28

26

24

35

34

33

1

9

4

2 6

5

10

17

16

13

11

22

36

31

29

28

26 35

34

33

1

9

4

2

5

10

17

16

13

11

22

36

31

29

26 35

34

33

(a) Straight forward grid (b) Step 1: type "+" properties

(c) Step 2: type "X" properties

(f) 4SA applied final grid

(d) Step 3: type "Ts" properties

(e) Step 4: type "ls" properties

24

Figure 5. Application of 4SA on real-world RSID

adopting an SFC-based grid cell space translates into indexing
that will store IOIs in 36 cells. Sub-figure 5b checks type “+”
SC types. The 9 grid cells that satisfy type “+” SCs are marked
in yellow (3, 8, 12, 14, 18, 20, 25, 27, and 32); for demon-
stration purposes, the cells that contribute to the inclusion of
cells 3 and 25 are colored in light orange). In this example, step
1, reduced the candidate cells to 27, thereby achieving a 25%
reduction. The remaining cells become the input for step 2.

The influence of applying type “X” in step 2 is presented in
subfigure 5c. The three grid cells that satisfy the SC type ”X”
are 7, 19, and 21 and are marked in yellow. The cells that con-
tribute to qualification of cells 19 and 21 are coloured in light
orange. Step 2 reduces the candidate cells by 3 (a further 8%),
leaving 24 cells as the input for step 3. Application of type
“Ts” SCs - i.e. different rotations of letter “T” are presented in
sub-figure 5d. Three grid cells (15, 23 and 30) satisfied the cri-
terion, thereby reducing the candidate pool by a further 8% and
leaving 21 candidate cells as step 4 input. In step 4, cells 6 and
28 in sub-figure 5e satisfy the SC type “ls”, thereby reducing
the candidate pool an additional 5.6% for a total reduction of
46.6%. The final 19 cells demonstrate the minimum number of
cells whose IOIs that need to be stored for the RSID.

4. EVALUATION

This section presents the impact of applying 4SA to SFC-based
grid cell space indexing. An extensive scalability study and
statistical analysis of applying 4SA against non-4SA applied
scenarios are also presented.

4.1 Study data

All experiments were grounded in a real world aerial image data
set of the city centre of Dublin, Ireland. These include 8,438
aerial images covering an approximate region of 2km2. They
were captured during an airborne laser scanning and imagery
mapping exercise in 2015. The imagery primarily consists of
two classes: (i) oblique images captured from two separate
tilted cameras, (ii) Red-Green-Blue (RGB) [i.e. true colored]
and colored infrared images captured via a nadir camera (Lae-
fer et al., 2017). As the main focus of the experiments was
to demonstrate the impact of 4SA on scalable management of
RSID, this 8,438 image data set was also used as the basis to
generate a series of much larger synthetic data sets. The largest
synthetic image data set consisted of a total of 303,768 RSID
metadata records. The area coverage of the synthetically gener-
ated data set accounted for 576km2 (i.e. 24 km x 24 km region).

4.2 Experimental set-up

The synthetic data set generation and application of 4SA in gen-
erating the filtered grid based on the Algorithm 1 mentioned in
Section 3 were performed locally. Scalability experiments were
conducted on the Peel cluster at New York University (NYU).
The Peel cluster includes 2 login nodes and 18 high-end com-
pute nodes. The hardware specifications of the nodes are as
follows: 2x24 - core Intel ® Xeon ® Platinum 8268 CPU @
2.90 GHz, RAM - 384 GB, disk storage - 8 HDD disks 8 TB
each. Apache Hadoop (version 3.0.0) and HBase (version 2.1.0-
cdh6.3.4) are deployed in the Peel cluster for big data manage-
ment tasks.

4.3 Statistical analysis of each step in 4SA

Statistical evaluations on both the real world and synthetic data
sets were performed to further deepen understanding of 4SA on
reduction of IOI storage in grid cells. For the real world data
set, a 64 x 64 grid with a cell resolution of 60 m x 60 m was
adopted. For the synthetic data set, a 320 x 320 grid with a
cell resolution of 75 m x 75 m was generated. While executing
the 4SA on the actual ground footprints of both the real and
synthetic data sets, a quartet of additional counter variables for
each step were used to better understand the impact of each step
on the overall IOI storage reduction. The final values of each
counter variable in all steps were evaluated against the initial
total IOI count, with respect to the entire images in the two data
sets. The results obtained are presented in Table 1.

As shown Table 1, in both data sets, the total reductions in IOIs
were approximately 40% (i.e. 41.8% for real data set and 38.8%
for synthetic data set). Notably, the contribution of step 1 ex-
ceeded 20% in both cases. Thus, step 1 in the 4SA process
dominated. Intuitively, this can be attributed to step 1 being the
first executing step and subsequent steps only receiving a subset
of cells as input. Furthermore, intuitively, the ground footprints
of RSID occupy more inner cells than the cells that constitute
the border of the ground footprints, and step 1 mainly impacts
cells that reside inside ground footprint. This can be recog-
nized as another reason for using the “+” type for step 1. Al-
though the contribution of the other three steps is comparatively
low, cumulatively they accounted for nearly half of the overall
set of cells. Another important observation is the similarity of
percentage drops by step for every step in both data sets, with
more than half of the reduction occurring in step 1. This may
have been influenced by the similar grid resolutions for the two
data sets (i.e. 60m x 60m and 75m x 75m). To arrive at robust

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
147



conclusions, more methodical tests on RSID that have different
spatial coverage are planned to be performed in future.

Table 1. Impact of each step on overall reduction of IOI storage

Step Actual
data set

Total drop
as a %

Synthetic
data set

Total drop
as a %

Before
4SA 280,847 - 6,988,360 -
1 209,236 25.5 5,447,696 22.0
2 190,336 6.7 5,087,116 5.2
3 180,107 3.6 4,753,768 4.8
4 163,530 5.9 4,299,700 6.5
After
4SA 163,530 41.8 4,299,700 38.8

4.4 Impact on scalable storage

To evaluate scalability with respect to growth of RSID index
storage requirements, tests were performed by measuring disk
usage requirements of three different scenarios with the use of
synthetic data sets and a 320 x 320 grid. For each scenario,
the data were compared when processed with and without the
application of 4SA. Prior to measuring the disk usage of each,
the IOI storage requirement for each image in a 320x320 grid
was determined. The 6 data sets (i.e. 3 scenarios x 2 data sets)
were ingested into separate HBase tables from which their disk
usage was determined. Figure 6 presents the comparison of
storage performance.

151884 227826 303768
Number of images

0
50

100
150
200
250
300
350

HB
as

e 
ta

bl
e 

siz
e 

(M
B)

Straight adoption of SFC
4SA applied SFC indexing

Figure 6. Storage requirements for SFC based indexing with and
without 4SA

The impact of adopting 4SA is depicted in Figure 6. In all three
scenarios, the straightforward SFC-based grid cell space index
demands were compared to the 4SA optimized solution. The
improvements in adopting 4SA were 41.3% for 151,884 im-
ages, 46.6% for 227,826 images, and 47.8% for 303,768 im-
ages. This demonstrates that the 4SA optimization on SFC-
based cell space indexing technique scaled better than the straight
forward adoption of the SFC indexing baseline.

Storage improvements in Figure 6 demonstrate that the applic-
ation of 4SA over a large data set required to write consider-
ably fewer IOIs to the database. Therefore, requiring less stor-
age. Intuitively, that means, the application of 4SA results in
fewer database writes when organizing each RSID in respective
grid cells, as opposed to non-4SA applied scenarios where the
IOIs must write to all the grid cells. Similarly, if updating (or
modifying) an IOI for a specific RSID is required, the applic-
ation of 4SA minimized the number of grid cells that must be
updated/ modified. Consequently, as a qualitative assessment,
4SA also enables the minimization of write/update costs associ-
ated to SFC based cell indexing. For example, for the real world

image in Figure 5, qualitatively, it can be stated that application
of 4SA only required to update its IOI from 19 cells instead 36
cells. Thus updating cost for the image is expected to reduce by
46.6% for the example image.

4.5 4SA’s impact on scalable querying of RSID

Querying scalability was also tested in the HBase cluster. For
this, the largest synthetically generated data set containing
303,768 RSID meta data records was used. The impact of 4SA
was evaluated on five different regions R1, R2, R3, R4 and R5.
Each was larger than than the next, ordered by their size, and
extensions of the smaller regions. In all cases the query regions
covered a minimum of a 2 x 2 cell grid, based on the 4SA’s
designed objective for window and containment queries.

For all regions R1-R5, the number of IOIs processed in each
query execution and the query response times were obtained.
The IOIs processed in each query execution were obtained to
deepen the understanding of 4SA in query processing. The au-
thors hypothesize that as 4SA reduced IOI storage in grid cells,
the total number of IOIs processed in a specific query would be
less compared to the absence of 4SA for the same region. The
response times for window queries were obtained by consider-
ing the images where the image footprints either: (i) fully over-
lap, (ii) partially overlap, or were (iii) fully contained within
the query regions. For containment queries, only the images
that were fully contained within the respective region were con-
sidered. The results obtained for window and containment quer-
ies were similar. Thus, only the results obtained with respect to
window queries are presented herein, as shown in Table 2.

4.5.1 Impact on IOIs processing

Table 2 demonstrates that the use of 4SA contributed to a
42% reduction in the IOI processing for all tested queries. In
other words, compared to the total number of IOIs stored and
processed by non-4SA indexes, 4SA indexes only stored and
processed a 42% of IOI elements. Thus, in return 4SA contrib-
uted to a 58% improvement. The 42% reduction for all regions
could be attributed to the fact that all of the bigger regions were
centered around preceding smaller regions. However, further
investigations is required prior to any generalization. Neverthe-
less, the hypothesis that the use of 4SA requires fewer IOIs to
be processed is demonstrated in Table 2.

Table 2. Impact of 4SA on processing of IOIs on window queries

Region
Images
records
retrieved

Total IOIs
processed
without 4SA

Total IOIs
processed
with 4SA

Reduc-
tion
(%)

R1 22,397 646,800 271,473 42.0
R2 43,939 1,343,066 565,408 42.1
R3 85,926 2,630,048 1,107,689 42.1
R4 177,092 5,791,178 2,436,790 42.1
R5 234,228 7,709,768 3,245,863 42.1

4.5.2 Impact on CPU execution time in query processing

Spatial query execution is computationally-intensive (Simion
et al., 2012), thus, demands more computing time or CPU exe-
cution time. As 4SA reduced the IOI duplication (cf. Table 1),
and processing of IOI elements (cf. Table 2), it was hypothes-
ized that 4SA affects the CPU execution time on the employed
query algorithm. To test the impact of 4SA on CPU execution
time, R1 - R5 queries were executed for a single client scenario
by measuring CPU time for 4SA applied and non-4SA applied

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
148



experimental settings. Each query was executed 25 times to ob-
tain an average CPU execution time. The average CPU times
for R1 - R5 queries are presented in Table 3. The results in
Table 3 demonstrate that 4SA reduced the CPU execution time
for the employed query algorithm by 3.0% - 5.2% (note that the
NYU’s Peel cluster employs high-end CPUs (cf. Section 4.2)).
This reduction in CPU time is primarily attributed to the reduc-
tion in IOI storage and processing for each query.

Table 3. Impact of 4SA on CPU execution time

Region
Avg: CPU time
without 4SA
(miliseconds)

Avg: CPU time
with 4SA
(miliseconds)

Reduction
(%)

R1 1373 1301 5.2
R2 2145 2082 3.0
R3 3505 3337 4.8
R4 6881 6644 3.4
R5 9615 9334 3.0

4.5.3 Impact on query response times

For each region R1-R5, window and containment query, re-
sponse times were obtained. To obtain statistically robust res-
ults, each query for the R1-R5 regions was executed 25 times.
As the impact of IOIs processing for each R1-R5 region was
significant (i.e. 42% reduction or 58% improvement), the ini-
tial assessment on the query response times were preformed
only considering the data sizes. More specifically, the exper-
iments performed on querying of the R1-R5 regions by one cli-
ent/user. The initial objective was to investigate the impact of
4SA on managing retrieval of large numbers of image records.
The obtained percentage reduction on average query response
times for R1 - R5 regions were respectively 0.5%, 2.6%, 0.6%,
1.9%, and 0.9%. This indicated that even for a single client, the
average query response time when adopting 4SA indeed had a
positive impact. Thus, adoption of 4SA for SFC-based grid cell
space indexing was promising. Therefore, to demonstrate the
impact of 4SA on the scalability of querying, more tests were
performed. The objective of the subsequent tests was to demon-
strate the ability of 4SA in managing large data sets with many
concurrent users.

Data scalability in unison with user scalability evaluation was
performed for the R1-R5 regions with multiple concurrent cli-
ents. The concurrent clients were simulated by multi-threading.
Initially, the accessing of the R1-R5 regions by concurrent cli-
ents was performed under two scenarios. In the first, a pool of
64 threads were created and simulated concurrent users of 2, 4,
8, 16, 32, to a maximum of 64 concurrent users. In the second
scenario, each time “x” number of threads and “x” number of
concurrent users were created. For example, for R1, 16 concur-
rent threads and 16 concurrent users were created. In another
instance, 32 concurrent threads and 32 concurrent users created.
This was performed for all R1-R5 regions with 16, 32, 48, and
64 thread pool sizes and for corresponding 16, 32, 48, and 64
concurrent users. The maximum number of threads to be cre-
ated in the thread pool were based on the number logical CPUs
had in the log-in node, which was 96. Also, when calculating
query times, the times incurred on thread pool creation were ex-
cluded. The effectiveness of employing 4SA on query response
times were evaluated by obtaining the average query response
time between the 4SA applied query times and the non-4SA ap-
plied query times. The difference in average response times was
considered as the time improvement in Figure 7 and Figure 8.

Figure 7 and Figure 8 indicate that for larger regions (i.e.. R3,
R4, and R5), and for large number of concurrent users, the time

0 10 20 30 40 50 60
number of concurrent clients

0.0

0.5

1.0

1.5

2.0

tim
e 

im
pr

ov
em

en
t (

s)

region 1
region 2
region 3
region 4
region 5

Figure 7. Scenario 1: 64 threads in thread pool

20 30 40 50 60
number of concurrent clients

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e 

im
pr

ov
em

en
t (

s)

region 1
region 2
region 3
region 4
region 5

Figure 8. Scenario 2: Concurrent execution of “x” threads
and “x” clients

improvements range from several hundreds of milliseconds to
several seconds. In particular approximately 2, and 1.4 seconds
of improvements when we created 64 concurrent threads and
executed 32 concurrent users (cf. Figure 7) and 64 concurrent
users (cf. Figure 8) for R5. This improvement can be attrib-
uted to the reduction in the number of IOIs to be processed
for the query. This improvement indicates application of 4SA
has clear benefits on searches within index structures for larger
data sizes and greater numbers of concurrent users. To further
demonstrate the better scalability of 4SA in terms of querying
large data sizes with large number of concurrent users, two ad-
ditional experiments/ tests were performed. In these two addi-
tional tests, only the three largest regions (R3, R4, and R5) were
considered. Another objective of these additional tests was to
understand the impact on index searching when number of con-
current users exceeds the maximum number of threads in the
pool. Thus, in the first test, a pool of 32 threads created and
a total of 128 concurrent users were tested. In the second test
case, a pool of 64 threads created and a total of 256 concurrent
users were tested. The obtained results are presented in Table 4.

The results for experiment one in Table 4 shows that the over-
all average time reduction for 128 concurrent users to query re-
gions R3, R4, and R5 regions were 0.9 s (0.70%), 2.6 s (1.22%),
and 5.4 s (1.86%). The reduction in query times for R3, R4,
and R5 regions when employing 256 concurrent users were 2.8
s (1.07%), 7.4 s (2.40%), and 13.2 s (3.35%). This further in-
dicates that when the number of concurrent users increased for
larger regions, 4SA had a greater impact when searching within
the indexes. Thus, data scalability and concurrent user scalab-
ility was further demonstrated.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
149



Table 4. Index searching times for large query regions with large
numbers of concurrent clients

Test Region

Avg: query
time without
4SA
(seconds)

Avg: query
time with
4SA
(seconds)

Reduc-
tion
(%)

1
R3 128.2 127.3 0.70
R4 213.5 210.9 1.22
R5 279.2 274.0 1.86

2
R3 263.0 260.2 1.07
R4 309.3 301.9 2.40
R5 393.8 380.6 3.35

5. CONCLUSIONS

This paper introduced an algorithmic optimization for SFC-
based grid cell space indexing for RSID management within
KV databases. The proposed optimization involved four steps,
thus it is named the “four step algorithm” (4SA). The object-
ive of 4SA was to store the minimum number of IOIs within
KV databases for each image so the overall storage and query-
ing performance can be improved. The 4SA mainly focused on
window and containment queries where the query region over-
laps with at least a 2 x 2 cell grids. Each sequential step in the
4SA focused on a unique SC type of the ground footprint of the
RSID, which progressively decreased the candidate cells.

Experiments on real-world and synthetic data sets demonstrated
that 4SA reduced the IOI storage by 41.3% - 47.8% compared
to the non-4SA applied (i.e. original straightforward approach)
SFC-based grid cell space index method. Furthermore, 4SA
demonstrated data scalability for both increasingly large data
sets and greater numbers of concurrent users. Specifically, due
to the storage of fewer IOI in grid cells, the queries processed
42% less IOI elements. As a result, the CPU time required for
data querying reduced by 3.0% - 5.2%. Additionally, this re-
duction had a net positive impact when querying regions with
concurrent clients. The impact was significant when querying
larger regions with larger numbers of concurrent clients. Spe-
cifically, when 128 and 256 concurrent users attempted to re-
trieve 234,228 records, 4SA reduced the index searching by 5
and 13 seconds demonstrating 1.86% and 3.35% reduction in
total index search time.Thus, in overall 4SA also demonstrated
user scalability and data scalability. Some notable future direc-
tions arising from 4SA work are:

• Each task in each step in 4SA can be executed in parallel.
Thus, parallelization of tasks in each step will be investig-
ated in the future.

• It is intend to explore the impact of changing the order of
steps and comparing the accuracy of the different result
sets.

• Apply 4SA to other non-point spatial objects that spread
across multiple cells (e.g. lakes, buildings etc.) and ana-
lyze their impact on storage and query performance.

ACKNOWLEDGMENTS

This publication originated from research supported in part by
a grant from Science Foundation Ireland under Grant number
SFI - 17US3450. Further funding for this project was provided
by the National Science Foundation as part of the project “Urb-
anARK: Assessment, Risk Management, Knowledge for Coastal

Flood Risk Management in Urban Areas” NSF Award 1826134,
jointly funded with Science Foundation Ireland (SFI - 17US3450)
and Northern Ireland Trust (Grant USI 137). The clusters used
for the testing were provided by NYU High Performance Com-
puting Center. The aerial image data of Dublin were acquired
with funding from the European Research Council [ERC-2012-
StG-307836] and additional funding from Science Foundation
Ireland [12/ERC/I2534].

References

Baumann, P., Furtado, P., Ritsch, R., Widmann, N., 1997. The
rasdaman approach to multidimensional database manage-
ment. Proceedings of the 1997 ACM symposium on Applied
computing, 166–173.

Böhm, C., Klump, G., Kriegel, H.-P., 1999. Xz-ordering: A
space-filling curve for objects with spatial extension. Inter-
national Symposium on Spatial Databases, Springer, 75–90.

Gaede, V., Günther, O., 1998. Multidimensional access meth-
ods. ACM Computing Surveys (CSUR), 30(2), 170–231.

Huang, S., Wang, B., Zhu, J., Wang, G., Yu, G., 2014. R-hbase:
A multi-dimensional indexing framework for cloud comput-
ing environment. 2014 IEEE International Conference on
Data Mining Workshop, IEEE, 569–574.

Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert,
A., Ronquest, M., 2015. Geomesa: a distributed architecture
for spatio-temporal fusion. Geospatial Informatics, Fusion,
and Motion Video Analytics V, 9473, International Society
for Optics and Photonics, 94730F.

Jing, W., Tian, D., 2018. An improved distributed storage and
query for remote sensing data. Procedia Computer Science,
129, 238–247.

Kafando, R., Decoupes, R., Sautot, L., Teisseire, M., 2020. Spa-
tial Data Lake for Smart Cities: From Design to Implement-
ation. AGILE: GIScience Series, 1, 1–15.

Laefer, D., Abuwarda, S., Vo, A., Truong-Hong, L., Gharibi,
H., 2017. 2015 Aerial Laser and Photogrammetry Sur-
vey of Dublin City Collection Record. (Last accessed by
20/10/2019).

Papadopoulos, S., Datta, K., Madden, S., Mattson, T., 2016.
The TileDB array data storage manager. Proceedings of the
VLDB Endowment, 10(4), 349–360.

Samet, H., 2006. Foundations of multidimensional and metric
data structures. 1st edn, Morgan Kaufmann, San Francisco,
CA, USA.

Simion, B., Ray, S., Brown, A. D., 2012. Speeding up spatial
database query execution using GPUs. Procedia Computer
Science, 9, 1870–1879.

Wang, L., Cheng, C., Wu, S., Wu, F., Teng, W., 2015. Massive
remote sensing image data management based on hbase
and geosot. 2015 IEEE international geoscience and remote
sensing symposium (IGARSS), IEEE, 4558–4561.

Wang, L., Yan, J., Ma, Y., 2019. Cloud computing in remote
sensing. CRC Press.

Zhou, X., Wang, X., Zhou, Y., Lin, Q., Zhao, J., Meng, X.,
2021. RSIMS: Large-Scale Heterogeneous Remote Sensing
Images Management System. Remote Sensing, 13(9), 1815.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
150




