
PY3DTILERS: AN OPEN SOURCE TOOLKIT FOR CREATING AND MANAGING 2D/3D

GEOSPATIAL DATA

L. Marnat*,1 C. Gautier,1 C. Colin,2 •3 and G. Gesquiere2

1 Universite de Lyon, UCBL, INSA Lyon, LIRIS, UMR-CNRS 5205, F-69621 Villeurbanne, France
(lorenzo.marnat, corentin.gautier)@universite-lyon.fr

2Universite de Lyon, Univ Lyon 2, UCBL, INSA Lyon, LIRIS, UMR-CNRS 5205, F-69676 Bron, France

(clement.colin, gilles.gesquiere)@univ-lyon2.fr
3Berger-Levrault, Limonest, France

Commission IV, WG IV/9

KEY WORDS: 3D, Urban data, 3D Tiles, Visualization, Standard

ABSTRACT:

In recent years, the production of 3D geospatial data using formats such as IFC, CityGML and GeoJSON, has increased. Visualizing
this data on the web requires solving a variety of problems, such as the massive amount of 3D objects to be visualized at the same
time and the creation of geometry suitable for a 3D viewer. Cesium and OGC introduced the 3D Tiles format in 2015 to solve
these issues. They have created a specific format optimized for streaming and rendering 3D geospatial content, based on the glTF
format developed by Khronos. The recency of the 3D Tiles format implies the need to experiment around this format and to test its
interoperability with other geospatial and urban data formats. There is also the will to innovate on the organization of 3D objects
in order to offer a better control on the visualization. Therefore, there is a need for an open source tool capable of converting 3D
geospatial data into 3D Tiles to visualize them on the web, but also to test and develop new methods of spatial clustering and creating
Levels of Detail (LoD) of urban objects. We propose Py3DTilers in this paper, an open source tool to convert and manipulate 3D

Tiles from the most common 3D geospatial data models: CityGML, IFC, OBJ, and GeoJSON. With this tool, we ensure that the
generated 3D Tiles respect the specification described by the OGC, in order to be used in various viewers. We provide a generic
solution for spatially organizing objects and for creating LoDs, while allowing the community to customize these methods to go
further in finding efficient solutions for visualizing geospatial objects on the web.

1. INTRODUCTION

For the last twenty years, new standards to describe urban ob­
jects have emerged, such as CityGML (Kolbe et al., 2005) for

3D GIS or IFC1 for BIM. These new standards are increasingly
used thanks to the recent development of methods to acquire
3D geospatial data. These data are used, for example, to as­
sist in urban planning and analysis (Hor et al., 2018, Jaillot et
al., 2017). These standards describe structured data models,
containing thematic and geometric information, and are mainly
built around a desire to exchange information. The visualiza­
tion of geometric information of these data in real time on the
web is therefore complex, particularly due to their data model
heterogeneity. The number of objects to display can also be a

problem when we want to visualize a city in its entirety.

To address the emerging need for solutions to visualize massive,

large-area, multi-scale 3D geospatial content, Cesium and OGC
have introduced the 3D Tiles2 community standard. The con­
version of the most common geospatial data models to this
format is a solution increasingly adopted by the community
(Chen et al., 2018, Gaillard et al., 2018, Jaillot et al., 2020) to
visualize these data on the web. 3D Tiles is an evolving stand­
ard supported by the community. It is necessary to propose an
open source tool to create 3D Tiles while offering the possib­

ility to experiment, stress this standard, and innovate. In this
purpose, there is need for a tool to:

1 https://technical.buildingsmart.org/standards/ifc/ifc-schema­
specifications/

2 http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html

• Create and test extensions to the 3D Tiles format.

• Create and test different generic methods of object distri­
bution and LoDs creation to ensure efficient rendering, or
improved relevance to the user (Gaillard et al., 2018).

• Support and test the possible evolution of 3D Tiles

• Support different standards to be reusable on all data
sources.

In this article, we propose Py3DTilers3 , an open source tool
to explore the potentialities of 3D Tiles. It allows the creation
of 3D Tiles from the most popular standards (CityGML, IFC,

OBJ4, GeoJSON5). This work also allows to add semantic in­

formation related to geometries, in order to be able to visualize
them in the same context on the web in real time. This semantic

information can be attributes and types from the input data, or
additional information computed during the creation of the 3D
Tiles. Moreover, a particular attention was addressed to the ar­
chitecture of this tool in order to allow the easy creation of 3D

Tiles from other formats, but also to be able to create, modify,
and test new methods of organization of objects in space and
LoD creation.

This work allows us to test different ways of composing data
with 3D Tiles. It is also a necessary work to achieve different

3 https://github.comNCityTeam/Py3DTilers
4 https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml
5 https://datatracker.ietf.org/doc/html/rfc7946

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

165

(d) Tileset colored by CityGML classes (e) Tileset colored by height (t) Tileset colored by IFC classes

Figure 1. Examples of 3D Tiles created with Py3DTilers

objectives. The first use case can be the computerized main­
tenance management system (Colin et al., 2022) where a multi­

scale view of the same territory is needed (from the city to the

interior building). Many tests have been performed with the
tools proposed in this article to create a multi-scale 3D Tiles.
A second use case can be the possible composition of data in a

given space for a web documentary (Gautier et al., 2022), where

the management of different types of data is also necessary. The
choice was to use 3D Tiles as a pivot format.

We present in Section 2 the 3D Tiles format and its uses in vari­

ous works on the visualization of geospatial data. The architec­

ture of Py3DTilers, its functionalities and Tilers are presented in
Section 3. Some examples of 3D Tiles created with Py3DTilers

will be presented in Section 4, followed by a discussion in Sec­
tion 5 about the difficulties encountered as well as current and
possible future improvements.

2. RELATED WORKS

2.1 3D Tiles

3D Tiles is an open source community standard, described by

Cesium and OGC. It has been designed to support the massive
visualization of 3D geospatial content, while taking into ac­
count streaming and rendering aspects. It differs from the l3S 6

format thanks to its inclusion in the OGC standards. It is used
by numerous different actors and evolve following the Khro­

nos proposals, which ensure a strong link between computer

graphics and geo-information science. Its flexibility and trans­
parency allows the possibility to create extensions adapted to a
specific need (Jaillot et al., 2020). This standard makes it pos­

sible to describe a tree of 3D geospatial tiles called tileset. This
tree allows a spatial organization of the tiles optimized for the

rendering of spatial objects, in particular by supporting various
tiling methods (K-d tree, octree ...) but also the concept of Hier­

archical Level Of Detail. The method used to create the tree and
the tiles can have a direct impact on the visualization of objects

(Zhan et al., 2021). It is therefore necessary to have a tool to
test different tiling methods in order to optimize the rendering

and visualization of 3D models from different sources.

Tiles can have different formats:

6 https://github.com/Esri/i3sspec

• Batched 3D Model (B3DM): Heterogeneous 3D models.
E.g. textured terrain and surfaces, 3D building exteriors

and interiors, massive models.

• Instanced 3D Model (l3DM): 3D model instances. E.g.
trees, windmills, bolts.

• Point Cloud: Massive number of points.

• Composite: Combining tiles of different formats into one
tile.

The B3DM and l3DM formats describe geometries using the
glTF7 format, which is a geometry format described by Khro­
nos that aims to facilitate the streaming and rendering of 3D

models on the web.

Each tile contains a set of features: 3D models representing, for

example, buildings, trees, etc. It is possible to associate specific

semantic to each feature using Feature Tables, like the height

or the color, or to a whole tile using Batch Tables.

2.2 Geospatial data visualization using 3D Tiles

Recent research has made it possible to improve the visualiza­
tion of geospatial data on the web, first by using the glTF format

(Schilling et al., 2016) and then by converting the data to the 3D
Tiles format. This solution is justified by the performance of
this format for this type of data, in particular thanks to the spa­

tial organization of the objects in tiles. An example of this per­

formance is demonstrated by (Kulawiak and Kulawiak, 2017),

allowing a smooth visualization of about 500Gb of point cloud

data, at a precision of about 19 points/m2
, on an area of about

1400km2
•

At the city scale, (Gaillard et al., 2018, Mao et al., 2020) fo­
cused on the conversion of CityGML data to 3D Tiles in two

approaches. The first one for the exchange and representation
of city data; the second one allowing the visualization of simu­

lations of the city. Also, the use of 3D Tiles and its extensions

allowed to visualize the evolution of the city over time (Jaillot

et al., 2020).
For building data, we find solutions to convert IFC data into 3D

Tiles. The work of (Chen et al., 2018) presented a solution com­
pletely based on open source tools. (Xu et al., 2020) improved

7 https://github.com/KhronosGroup/glTF

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

166

<·s:fUe;>

Geos pat!al data

<< r�>­

GeometryTree

W[th LoD

3. LoD Creation

1. Reader

4. 3D G.eospati!al

Manipu!ati:ons

<<Lisi\>>

F,eatur,e

<<Tr,ee;>

GeometryTr,ee

5. 3D Tiles Wr[teir

2. Spatial

Organisation all
Principle

<<fHe>>

3DTrles Til:eset

Figure 2. Activity diagram of the 3D Tiles creation process

this solution by allowing to add semantic information from BIM

in Batch Tables. Finally, (Zhan et al., 2021) have demonstrated

that the method of organizing objects into tiles plays a crucial

role in the fluidity and comprehension of the navigation in BIM

data.

Open source solutions using databases are also starting to ap­

pear: 3DCityDB (Yao et al., 2018) for CityGML and BIMserver

(Beetz et al., 2010) for IFC. They allow glTF exports, in order to

visualize these data on the web. The work (Hijazi et al., 2020)

has shown that the combination of these two solutions allows

visualization of heterogeneous data on the web. Nevertheless,

the 3D Tiles overlay is missing to allow the spatial organiza­

tion of objects. Moreover, to test different methods of spatial

organization of objects or to treat other data formats, it seems

complex to modify the behavior of these two tools at the same

time.

There is a set of solutions on the market, FME8
, rhinocity9

which leaves little control to the user in the creation of tilesets

and does not allow the modification of the tile creation process,

and thus to experiment around the 3D Tiles format. Others are

open, but insufficient. For instance, F4DConverter10 only al­

lows the creation of geometry in F4D format, usable only by

the Mago3D software11.

Py3DTiles12 is an open source Python library allowing the rep­

resentation and creation of 3D Tiles. This library has been de­
veloped by the Liris laboratory and the company Oslandia. It

allows to manipulate two 3D Tiles formats: Batched 3D Mod­

els (B3DM) and Point Clouds (PNTS). Py3DTiles integrates the

possibility to read and write these two formats of 3D Tiles, but

is especially developed with the aim of creating 3D Tiles in

PNTS format from LAS files (lidar point cloud). pg2b3dm13
,

based on this library, could allow to create its own methods of

spatial organization of objects and creation of LoD. However, it

does not provide a solution for extracting geometry from pop­

ular formats for the creation of 3D Tiles because it is based on

geometry stored in PostGIS database. Also, it does not take into

account the current evolution of 3D Tiles. Py3DTiles is used as
a basis of this work.

8 https://www.safe.com/
9 https://www.rhinoterrain.com/en/rhinocity.html
lO https://github.com/Gaia3D/F4DConverter
11 http://www.mago3d.com/
12 https://gitlab.com/Oslandia/Py3DTiles
13 https://github.com/Geodan/pg2b3dm

3. PY3DTILERS

Py3DTilers offers open source tools to create 3D Tiles in B3DM

format. Py3DTilers is based on the Py3DTiles library, to which

it adds Tilers. Each Tiler is a tool that builds 3D Tiles from a

specific data format. The 3D Tiles can be created from a mul­

titude of formats: GeoJSON, OBJ, CityGML, IFC or from ex­

isting 3D Tiles. Each format has its own Tiler, which reads

the geometries and associated data and then represents them in
memory as objects named features.

The process of transformation and writing of these objects in

3D Tiles is shared by all the Tilers. During this transformation,

Py3DTilers offers a large number of options allowing to carry

out 3D geospatial manipulations (translation, scaling, conver­

sion of projection system), customize the method of distribution

of the features in tiles and add levels of detail.

3.1 Py3DTiles

Py3DTilers uses the Py3DTiles library to represent 3D Tiles in

memory and then modify them. Multiple additions, modifica­

tions and corrections have been made to this library in order to

robustify the creation of 3D Tiles in B3DM format. This al­

lows Py3DTilers to produce 3D Tiles in the B3DM format that

conform to the standard.

Modifications have been made to represent all the notions spe­

cific to 3D Tiles in the form of classes. The new classes, for ex­

ample, introduced the notions of tile, tileset or extension. This

allows to have an object oriented representation of an entire 3D

Tiles tileset. This new version of Py3DTiles also facilitates the

creation and writing of glTF materials.

Changes have been made to integrate Batch Tables and Feature

Tables. These tables allow to keep attributes related to the 3D

models of the tile. The attributes that must be present in each of

the tables differ depending on the type of 3D Tiles being created

(B3DM or PNTS). The modifications ensure that the resulting

B3DMs contain all the necessary attributes.

A JSON schema validation system has been implemented to

ensure that the tilesets produced respect the 3D Tiles specific­

ation. These schemas also allow to define new extensions. In

our case, two extensions have been integrated. The first is the

Batch Table Hierarchy, a standard extension to the 3D Tiles

Batch Table. This extension allows to store attributes in a more

flexible way than with a basic Batch Table. In particular, this

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

167

extension integrates the notion of hierarchy and typing of the

models of a tile. The second extension is a temporal extension.
It allows to represent the temporality of the 3D models of the

tiles and to store the operations to be performed to go from one

year to another.

3.2 Global Architecture - Feature

The task of the Py3DTilers is to transform the data provided by

the user into 3D Tiles. Each Tiler is able to read a specific data

format. The process of creating 3D Tiles is described in figure

2.

• Step 1: Reader The Tiler reads the data in order to ex­

tract the objects and their associated data and geometry.

If the geometries are 2D or are not triangulated, the Tiler

also takes care of transforming them into sets of triangles

forming 3D models. The read data will then be represen­

ted by a list of features. Each feature is an object charac­

terized by an identifier, a triangulated geometry and addi­

tional semantic data. Features allow to abstract from the

input format: the objects read from data will always be

represented as features, whatever the input format. This

abstraction allows for a unique process of transforming the

features into 3D Tiles, which is not dependent on the input

format. This also allows objects from different sources to
be manipulated in the same 3D Tiles creation process.

• Step 2: Spatial Organisational Principle. The features are
distributed in a tree of geometries, where each node of the

tree has a subset of the features. This distribution allows

to create a spatial or semantic partition of the objects ac­

cording to the visualization modalities. In our case, there

are three main possible distributions: a spacial partitioning

with a k-d tree14 or a geographical partitioning according

to an external data (for example, districts, blocks of build­

ings, etc). The third and last possibility is to keep the dis­

tribution induced by the data format without performing

any additional operation.

• Step 3: LoD Creation. The creation of levels of detail is

optional, the user can choose to add one, several or none.

The levels of detail take the form of new features with their

own geometry. These features will also be added to nodes,

which will be placed in the tree of geometries as parents
of the already existing nodes. We obtain a tree where the

root nodes are the nodes containing the 3D models with

the lowest level of detail, and where the level of detail in­

creases as we go down towards the root nodes.

• Step 4: 3D Geospatial Manipulations. Optional geospatial

manipulations are applied to the geometries of the models.

These operations are chosen by the user and include, for

example, reprojection, scaling or translation on the (X, Y,

Z) axes.

• Step 5: 3D Tiles Writer. The tree of geometries is trans­

formed into 3D Tiles. Each node of the tree becomes a
tile of the tileset. The hierarchy between the nodes is pre­

served in the tiles: a node with 3 child nodes will become

a tile with 3 child tiles. The features are written in the con­

tent of their respective tiles, materialized by B3DM files.

The semantic data of the features are stored in these files in

the Batch Tables and Feature Tables. The files also contain

14 https://en.wikipedia.org/wiki/K-d.tree

the geometries in glTF format, encoded in binary. Each 3D

model is differentiated from the others by a batch id. This
id is also used to make the link between a model and its

data in the Batch and Feature Tables.

3.3 Possible operation on features

3.3.1 Geometric error and LODs: A Level of Detail

(LoD) corresponds to the complexity of a 3D model. A 3D

model can have several levels of detail, each more or less de­

tailed. Thus, it is possible to switch from one LoD to another

depending on the needs. For example, if a model is too far from

the camera to be seen in detail, choosing to reduce its level of

detail allows to save rendering time without affecting the visu­

alization.

Py3DTilers allows the creation of several levels of detail

for geometries. There are two methods of LoD creation in

Py3DTilers yet, but other methods can be implemented. These

levels of detail are simplifications of models of one or more fea­

tures. The LoDs are contained in tiles, with one tile per level

of detail. These tiles contain the 3D models corresponding to a

lower level of detail of the models of their child tiles.

The first LoD creation method consists in computing a convex

footprint of the features. Those footprints are then extruded

in order to obtain simplified 3D models for each feature. As

shown in figure 3, used on 2.5D buildings, this method allows

to obtain shapes with fewer walls and no roof details.

(a) Original buildings (b) Extruded footprints

Figure 3. 3D extrusion of buildings footprints

The second method uses a set of polygons to split a tile into sev­

eral blocks. Each block is transformed into a 3D volume rep­

resenting several features. In figure 4, these blocks are defined

by the network of roads of the city, where all the buildings in

the same block are represented by a single model.

(a) Original buildings (b) Blocks

Figure 4. Blocks of buildings defined by the roads

In order to allow the passage from one level of detail to another,

3D Tiles integrate a refinement system allowing to prioritize the

tiles when rendering. Refinement is used to choose which tiles

to show or hide. A tile has a refinement method and can have a

parent and one or more children. The two possible refinement

methods are "REPLACE" or "ADD". In the first case, a tile

with children will be replaced by them during a refinement. In

the second case, the child tiles are added to the parent tile.

In a 3D Tileset, the geometric error is the value that defines a

threshold error above which a tile will be refined. A tile must

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

168

always have a lower geometric error than its parent. The tile
at the root of a tileset must always have the highest geometric
error. Leaf tiles must have a smaller geometric error than all
other tiles. The geometric error allows to customize the visual­
ization by choosing at which distance from the camera the tiles
should be refined. A tile with a high error will be refined even
if the camera is still far from the 3D model. On the contrary,
a tile with a low error will be refined only when the camera
is close to it. Py3DTilers integrates the possibility to choose a
geometrical error for each tile according to its position in the
tileset hierarchy. Thus, it is possible to define a geometrical er­
ror for all leaf tiles, root tiles, or the tiles of any other level of

the hierarchy.

3.3.2 Styling: It is possible to create materials with
Py3DTilers that will be written in the glTF content of the 3D
Tiles. These materials can have either a texture (linked to an im­
age) or a solid color defined by an RGBA value. When creating
3D models, each feature has an assigned material and several
features can share the same material.

The materials are created according to the user's modalities.
The user can choose to create textured materials if the input
data already has textures (figure le). The texture images will
be written in texture atlases, with one atlas per textured tile.
It is also possible to create colored materials according to the
attributes of the features, for example, the height (figure le) or
the class (figures ld and lf). The colors applied to the materials
are customizable via JSON files.

3.3.3 Common 3D object manipulations:

• Translation : allows to move 3D models on the X, Y and Z
axes. A 3D vector will be subtracted from the coordinates
of each vertex when creating the 3D Tiles. This operation
makes it possible to correct position errors of the data, as
shown in figure 5, or to place a non-georeferenced model
at geospatial coordinates. Conversely, it is possible to use
translation to center a 3D model around the coordinates (0,
0, 0), which is necessary in many 3D softwares.

Figure 5. Buildings translated on X axis

• Scaling: allows to change the scale of the geometries, by

increasing or reducing it. In the same way, it allows to
switch from one unit of measurement to another (for ex­
ample, from centimeters to meters or vice versa). These
operations can be useful in order to correct problems with
the size of geometries or to display in the same context
features with different scales or units of measurement in
the source data.

• Reprojection: allows to modify the Coordinates Reference
System (CRS) of a dataset. A CRS is a reference system
allowing to locate geographical coordinates on the globe.
A CRS can be global or localized on a more restricted geo­
graphical area. The choice of the CRS is crucial in the pro­
cessing and representation of geospatial data. It is closely
related to the position and extent of the data on the globe.
Many data providers or GIS software impose a specific

CRS. Py3DTilers allows to easily project 3D Tiles from

one CRS to another by indicating during the transforma­
tion which is the input projection and which projection is
wanted as output.

3.3.4 Geometry visualization: In addition to producing 3D
Tiles, Py3DTilers allows to export to the OBJ format. This
format is supported by most 3D visualization tools and can be
easily edited or inspected. Exporting to OBJ allows to quickly
check the appearance of a 3D Tiles tileset or to export 3D Tiles
in a format supported by a larger number of tools. This option
is all the more important as there are very few tools allowing
the visualization and inspection of 3D Tiles. However, the OBJ
format loses a lot of information from 3D Tiles. The tiling and
the division into separate entities of the models of a tile are not
preserved in the OBJ file. In addition, all attributes attached to
the models in the Batch Table and Feature Table are lost.

3.4 Tilers

3.4.1 CityGML: CityGML is a data model used to repres­
ent city objects and the urban landscape. This model describes
buildings, bridges, water bodies and terrain. The 3D objects are
stored as a set of surfaces, where each surface can be linked to
a texture. Py3DTilers is able to create 3D Tiles from CityGML
files through a 3DCityDB database, a geospatial database im­
plementing the CityGML standard.

In order to create the 3D Tiles, the city objects of the chosen
type as well as their surfaces are retrieved from the database.
According to the choice of the user, the surfaces of the same
object are either merged to form a single 3D model, or left in­
dependent. The extension Batch Table Hierarchy allows to keep
the surface/object hierarchy of CityGML in the tiles.

3.4.2 IFC: The IFC data model is mainly used to represent
infrastructures (buildings, bridges, tunnels, etc.) for Building
Information Modelling (BIM). It describes geometric and se­
mantic data of the objects that compose them (walls, ceilings,
water network). Moreover, the hierarchy of the objects is de­

scribed, for example, all the floors associated with a building,
the rooms associated with each floor, etc. Each object is posi­
tioned relative to its parent. In order to create a tileset, the IFC
objects with geometries are retrieved using an open source lib­
rary named IfcOpenShell 15, as well as based on their position
in the real world. Geometries can be described using different
representations (tesselated, brep, boolean operation) within the
model. The translation of IFC geometry into a 3D model is also
performed using the same library. It is possible to group objects
by IFC Class or by IfcGroup, which is a grouping of objects that
can be done in a BIM modeling software.

3.4.3 GeoJSON: The GeoJSON format is used to represent
geospatial data where the geometry is in the form of polygons,
lines, points or a combination of these shapes. Each independ­
ent geometry is called a "feature". Attributes can be associated
to each of these GeoJSON features.

With Py3DTilers, it is possible to read GeoJSON files and trans­
form them into 3D Tiles. To do this, Py3DTilers reads each
GeoJSON feature of a file and retrieves its geometry and at­
tributes. The coordinates of the geometries can be either 2D or
3D. If the geometry is in the form of polygons, these are ex­
truded and triangulated to obtain a 3D model. If the geometry

15 http://ifcopenshell.org/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

169

is in the form of lines, we apply a buffering operation: the lines
are transformed into polygons by adding a thickness. Once the
lines are buffered, they are extruded and triangulated to make
models.

When transforming GeoJSON features into 3D models, the
height of the extrusion, the thickness of the lines or the altitude
at which the 3D models will be placed can be either:

• defined by a value present in the attributes of the features.
The user can indicate which attribute to read for these val­
ues.

• arbitrarily chosen by the user. The chosen values will be
used for all features.

3.4.4 OBJ: Py3DTilers allows to read 3D models in OBJ
format. The models are loaded in memory with the open source
Python library 'pywavefront'16. The geometry of each 3D
model is then cut into a set of triangles to prepare the transform­
ation into glTF. During the transformation, it is also possible to
keep the texture of the OBJ models and write it in the 3D Tiles.

3.4.5 3D Tiles tileset: Py3DTilers is able to read and load
3D Tiles (in B3DM format only) into memory. Once loaded,
the geometry of each 3D model and its associated Batch Table
data are stored as features. The data related to the tiles (bound­
ing volumes, geometric errors, etc.) are also stored in memory.
This allows to make modifications to an existing tileset using
all the operations available in Py3DTilers. For example, it is
possible to project a tileset in another CRS or to move it on the
X, Y, Z axes. The 3D Tiles thus modified are then written to
disk in a new tileset.

Reading 3D Tiles also allows to merge several 3D Tiles tilesets.
Merging preserves the hierarchy and tile distribution of the 3D
Tiles. It is not possible to insert a tileset into the hierarchy of
another tileset. Reading and rewriting 3D Tiles also does not
allow the creation of new tiles or new levels of detail.

4. EXPERIMENTATION

4.1 Validation

The 3D Tiles produced by Py3DTilers conform to the specifica­
tion of the OGC. To ensure this conformity, a double validation
is performed: first by the JSON schemas validator system, then
by Cesium's 3d-tiles-validator17 tool. The first validation en­
sures that the tile and tileset fields are correctly written and that
no necessary fields are left out. The validation tool of Cesium
verifies that the content of the tiles is correctly written and en­
coded.

The geometries are preserved during the transformation into 3D
Tiles. The representations of the geometries vary between each
format, and the treatment of these representations for their visu­
alizations varies from one software to another. Nevertheless, as
shown in the figure 6, the generated 3D models respect the geo­
metry of the input data identically.
Moreover, Py3DTilers preserves the feature partitioning of the
source: each distinct object in the input data will be a distinct
3D model in the tile that contains it. Finally, Py3DTilers can
keep additional semantic data associated with the geometries in
the Feature and Batch Tables of the tiles.
16 https://github.com/pywavefront/PyWavefront
17 https://github.com/CesiumGS/3d-tiles-validator

(a) CityGML in FME

(c) Ifc in Bim Vision a

a https://bimvision.eu/

liJ· .· ..

JJ},
•

-,

- ,.
:;..A "'!P ,

(b) 3D Tiles in UD-Viz

--�

-----------�

��
--�- --

(d) 3D Tiles in UD-Viz

Figure 6. Comparison of the geometries from CityGML and Ifc
with the geometries transformed as 3D Tiles

4.2 Visualization

It is possible to view the tilesets created with Py3DTilers with
all the tools adapted to the display of 3D Tiles (figure 7). In
particular, it is possible to import the 3D Tiles into Cesium ion,
in order to visualize them in Cesium, as long as the 3D Tiles
have been written in the EPSG:4978 projection. The 3D Tiles

can also be viewed in any projection in iTowns18, and in UD­
Viz19 (based on iTowns). UD-Viz allows handling these 3D
Tiles extensions. Unity20 can also display 3D Tiles, thanks to

the Unity3DTiles21 project proposed by NASA. In this case,
it is advised to either choose a projection with low orders of
magnitude of the coordinates, or to use the translation option of
Py3DTilers to obtain non-georeferenced 3D Tiles.

(a) Cesium (b) UD-Viz

(c) Unity

Figure 7. Visualisation of 3D Tiles with different tools

The different Tilers of Py3DTilers allow the creation of 3D Tiles
representing different geospatial data layers: buildings, relief,
rivers, roads, and bridges, as shown in figure 8. Buildings and
bridges can, for example, be produced from CityGML or IFC
data, with several levels of detail (figure 1 b). Roads and rivers
can be created from polygons or lines from GeoJSON files.

The Py3DTilers options offer the possibility to choose the size
of the tiles as well as their geometric errors and levels of de­
tail. This control over the creation of 3D Tiles allows to eas­
ily customize the visualization according to the user's needs.
For example, it is possible to create tileset that is refined at a

18 https://www.itowns-project.org/
19 https://github.com/VCityTeam/UD-Viz
20 https://unity.com/
21 https://github.com/NASA-AMMOS/Unity3DTiles

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

170

Figure 8. 3D Tiles of buildings, relief, roads, bridges and water
bodies

greater distance from the camera or to create a tileset with a
very large number of tiles, each containing very few different
objects. Py3DTilers allows to experiment by creating tiles and
tilesets according to specific needs.

4.3 Reproducibility

To allow easy use of the tool, a docker22 is available for the
community, with a documentation consisting of the technical
architecture of the tool, and tutorials for use according to the
different input formats and the possible options to customize
the creation of 3D Tiles.

In order to reproduce the 3D Tiles of the figures 1f and le, a tu­
torial and dockers are available23

• In addition, the data used are
made available. A solution to visualize the 3D Tiles produced
from these data with UD-Viz is also described.
Finally, some examples of 3D Tiles produced with Py3DTilers
are available24

• Online demonstrations25 allow to visualize
some tilesets produced with Py3DTilers.

4.4 Limitations

3D Tiles standard provides a good opportunity to manage and
visualize a large amount of 3D data at different scales. But even
if the data is loaded in a progressive way, it is currently difficult
to visualize a large dataset, especially if the 3D models are tex­
tured. A first attempt is to use the LoD process to reduce the res­
olution level of irrelevant geometries, but the textures are still
too heavy in RAM. Using LoDs on texture images may induce a
new way of texturing 3D objects in a progressive manner, which
would allow textures to change over time. This problem is not
yet solved: Py3DTilers can't compute progressive textures or
create meshes with more than one textured material.

An other limitation of 3D Tiles, and by extension of
Py3DTilers, is the recency of the format. It is still evolving:
a new version 1.1 is being considerated by the OGC. Thus, ex­
isting tools will need to evolve to follow the standard. Further­
more, the 3D Tiles format is not y et supported by many visu­
alization softwares. It can be difficult to use the 3D Tiles pro­
duced elsewhere than in the few specialized software programs.
Moreover, although the 3D Tiles produced by Py3DTilers are
aligned with the standard, some tools do not support all the fea­
tures or extensions. Hence, work is being done in parallel on

22

23

24

25

iTowns and UD-Viz in order to propose open source tools for
visualizing 3D Tiles and their extensions.

A last problem is the management of additional semantic in­
formation. Although information can be contained in the Batch
and Feature tables, the current 3D Tiles standard limits the stor­
age of semantic data. Py3DTilers supports the Batch Table

Hierarchy extension, which improves the management of se­
mantic data, but the information can still only be associated
with geometries and stored in tiles. It would be interesting
to have a semantic associated with tilesets or groups of tiles,
by supporting the 3DTiles_metadata extension26 or 3D Tiles
Next27

•

5. CONCLUSION

Py3DTilers is a robust tool for creating 3D Tiles that conform
to the specification. This ensures that the tilesets produced can
be used by any 3D Tiles visualization or manipulation software.
Py3DTilers differs from other 3D Tiles production tools by its
flexibility: it offers a large number of transformation and data
distribution options. Moreover, Py3DTilers is able to create 3D
models from several different data formats, while abstracting
from the specificities of each format. This allows to manip­
ulate 3D models from different sources in the same context.
Also, by using Batch and Feature tables, it allows to keep se­
mantic data of each model. Finally, Py3DTilers being an open
source tool, it is possible for everyone to enrich it. The code
architecture allows support for new data formats by develop­
ing only the reading and triangulation of the geometry of the
source data. The transformation into 3D Tiles is common and
can be used without code modifications. It is also possible to
easily integrate extensions to specialize the produced 3D Tiles.
All of these makes it a tool that offers great versatility. It al­
lows the user to have total control over the 3D Tiles creation
process, either through options or through code modification.
Py3DTilers allows the user to customize the tilesets produced,
to test new ways of distributing tiles or creating levels of detail.
Using this tool may help to innovate or experiment around 3D
Tiles, and propose improvements to the standard.

Future work is planned to improve the rendering of 3D Tiles for
city-scale tilesets. First of all, the compression of geometries
and textures would drastically reduce RAM consumption. The
integration of progressive levels of detail and textures would
make it possible to refine the 3D Tiles much more fluidly, for
example, as the camera approaches the 3D models or accord­
ing to a context set by the user. It should also be possible to
generate geometric errors that automatically adapt to the ex­
tent of the tile and its number of levels of detail. In addition,
work is needed to balance the memory weight of the tiles and
to provide more options for the distribution of features in the
tiles. Furthermore, the next evolution of Py3DTilers is the use
of style sheets as proposed by the OGC28. This would allow to
apply a style to the features of a tile via separate files, exploit­
ing the properties of each of the features. Finally, parallel work
is underway to provide correction and validation of geometries.
This will ensure that the 3D models are correct and that their
normals are well oriented. The project also follows closely the
evolution towards 3D Tiles Next announced in 2021.

26 https://github.com/CesiumGS/3d-tiles/tree/main/extensions/3DTILES_metadata
27 https://cesium.com/blog/2021/l l/10/introducing-3d-tiles-next/
28 https://www.ogc.org/standards/se

https://github.corn/VCityTeam/Py3DTilers-docker
https://github.com/VCityTeam/UD-Reproducibility/tree/master/
Articles/2022_Py3DTilers
https://github.corn/VCityTeam/UD-Sample-data/tree/master/3DTiles
https://py3dtilers-demo.vcityliris.data.alpha.grandlyon.com/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

171

ACKNOWLEDGEMENTS

The authors would like to thank the TIGA project29
, funded by

La Banque des Territoires and led by the metropolis of Lyon,

and the Berger-Levrault30 company who allowed the develop­
ment of this open source tool in order to experiment around the

3D Tiles format.

This work was conducted as part of the VCity project of Liris.
The authors would like to thanks the member of this project for

the gratefull help in this work.

REFERENCES

Beetz, J., van Berlo, L., de Laat, R., 2010. Bimserver.org - an
Open Source IFC model server. 9.

Chen, Y., Shooraj, E., Rajabifard, A., Sabri, S., 2018. From
IFC to 3D Tiles: An Integrated Open-Source Solution for

Visualising BIMs on Cesium. ISPRS International Journal

of Geo-Information, 7(10), 393. http://www.mdpi.com/2220-

9964/7/10/393.

Colin, C., Samuel, J., Servigne, S., Bortolaso, C., Gesquiere,
G., 2022. Creating contextual view of CMMS assets using geo­
spatial 2D-3D data.

Gaillard, J., Peytavie, A., Gesquiere, G., 2018. Visualisation
and personalisation of multi-representations city models. In­

ternational Journal of Digital Earth, 1-18. https://hal.archives­

ouvertes.fr/hal-01946770.

Gautier, C., Delanoy, J., Gesquiere, G., 2022. Integrating multi­
media documents in 3D city models for a better understanding
of territories.

Hijazi, I. H., Krauth, T., Donaubauer, A., Kolbe, T., 2020.
3DCITYDB4BIM: a System Architecture for Linking Bim
Server and 3d Citydb for Bim-Gis. ISPRS Annals of Photo­

grammetry, Remote Sensing and Spatial Information Sciences,

V-4-2020, 195-202. https://www.isprs-ann-photogramm­
remote-sens-spatial-inf-sci.net/V-4-2020/195/2020/.

Hor, A.-H., Sohn, G., Claudio, P., Jadidi, M., Afnan, A., 2018.
A semantic graph database for bim-gis integrated information
model for an intelligent urban mobility web application. ISPRS

Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, IV-4, Copernicus GmbH, 89-96. ISSN:
2194-9042.

Jaillot, V., Pedrinis, F., Servigne, S., Gesquiere, G., 2017. A

generic approach for sunlight and shadow impact computa­

tion on large city models. 25th International Conference on

Computer Graphics, Visualization and Computer Vision 2017,

Proceedings of WSCG2017, 25th International Conference on
Computer Graphics, Visualization and Computer Vision 2017,
Pilsen, Czech Republic, 10 pages.

Jaillot, V., Servigne, S., Gesquiere, G., 2020. De­

livering time-evolving 3D city models for web

visualization. International Journal of Geograph-

ical Information Science, 34(10), 2030-2052. ht-

Kolbe, T., Groger, G., Pltimer, L., 2005. CityGML - Interop­

erable access to 3D city models. Geo-information for Disaster

Management.

Kulawiak, M., Kulawiak, M., 2017. Application of Web­

GIS for Dissemination and 3D Visualization of Large-Volume
LiDAR Data. I. Ivan, A. Singleton, J. Horak, T. Inspektor (eds),

The Rise of Big Spatial Data, Lecture Notes in Geoinformation
and Cartography, Springer International Publishing, Cham, 1-
12.

Mao, B., Ban, Y., Laumert, B., 2020. Dynamic Online 3D Visu­
alization Framework for Real-Time Energy Simulation Based

on 3D Tiles. ISP RS International Journal of Geo-Information,

9(3), 166. https://www.mdpi.com/2220-9964/9/3/166.

Schilling, A., Bolling, J., Nagel, C., 2016. Using glTF for

streaming CityGML 3D city models. Proceedings of the 21st

International Conference on Web3D Technology, ACM, Ana­
heim California, 109-116.

Xu, Z., Zhang, L., Li, H., Lin, Y.-H., Yin, S., 2020. Combining
IFC and 3D tiles to create 3D visualization for building inform­

ation modeling. Automation in Construction, 109, 102995. ht­
tps ://linkinghub.elsevier.com/retrieve/pii/S09265 80519304285.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB -
a 3D geodatabase solution for the management, analysis, and

visualization of semantic 3D city models based on CityGML.

Open Geospatial Data, Software and Standards, 3(1), 5.

https :/ /opengeospatialdata.springeropen.com/articles/1 O. l 186/s40965-
018-0046-7.

Zhan, W., Chen, Y., Chen, J., 2021. 3D Tiles-Based High­

Efficiency Visualization Method for Complex BIM Models

on the Web. ISP RS International Journal of Geo-Information,

10(7), 476. https://www.mdpi.com/2220-9964/10/7/476.

tps://www.tandfonline.com/doi/full/10.1080/13658816.2020.1749637.

29 https://www.tuba-lyon.com/projet/tiga-mediation-industrielle/
30 https://www.research-bl.com/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W3-2022
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-W3-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

172

