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ABSTRACT:

Earth observation data including very high-resolution (VHR) imagery from satellites and unmanned aerial vehicles (UAVs) are the 
primary sources for highly accurate building footprint segmentation and extraction. However, with the increase in spatial resolution, 
smaller objects are prominently visible in the images, and using intelligent approaches like deep learning (DL) suffers from several 
problems. In this paper, we outline four prominent problems while using DL-based methods (P1, P2, P3, and P4)): (P1) lack of 
contextual features, (P2) requirement of a large training dataset, (P3) domain-shift problem, and (P4) computational expense. In 
tackling P1, we modify a commonly used DL architecture called U-Net to increase the contextual feature information. Likewise, for 
P2 and P3, we use transfer learning to fine-tune the DL model on a smaller dataset utilising the knowledge previously gained from a 
larger dataset. For P4, we study the trade-off between the network’s performance and computational expense with reduced training 
parameters and optimum learning rates. Our experiments on a case study from the City of Melbourne show that the modified U-Net is 
highly robust than the original U-Net and SegNet, and the dataset we develop is significantly more robust than an existing benchmark 
dataset. Furthermore, the overall method of fine-tuning the modified U-Net reduces the number of  training parameters by  300 times 
and training time by 2.5 times while preserving the precision of segmentation.

1. INTRODUCTION

Precise and accurate building footprints are useful for planning
the smart cities in which geo-spatial industries and local agen-
cies are investing and putting their effort. Very high-resolution
(VHR) earth observation (EO) imagery is the primary source for
the highly accurate building footprint extraction. The increase
in spatial resolution of these images has increased the visibility
of smaller objects and provided a forward direction with a posi-
tive impact in the domain of building footprint extraction. Mean-
while, a shift of paradigm from pixel-based image classification
(PBIC) to object-based image analysis (OBIA) and most recently
towards pixel-level semantic segmentation using deep learning
(DL) methods in feature extraction is supporting this forward di-
rection. However, there are several problems associated with DL-
based semantic segmentation due to VHR datasets (Neupane et
al., 2021). In this paper, we focus on four prominent problems in
DL methods:

1. the lack of contextual features in the layers of deep learning
(P1),

2. the requirement of a large labelled training dataset (P2),
3. the domain-shift problem that comes from the difference in

train and test data (P3), and
4. computational expense due to the requirement of a large

number of training parameters (P4).

We design a DL-based semantic segmentation method to tackle
these problems in a case study from the City of Melbourne for
building footprint extraction.

∗Corresponding author.

Commonly used DL architectures like convolutional neural net-
works (CNNs) are effective for object detection, scene-wise clas-
sification, and feature extraction. However, in the case of seman-
tic segmentation of building features, the use of pooling layers in
CNN diminishes contextual information, resulting in inadequate
PBIC in feature maps and predictions. As our solution to P1, we
train and test a DL architecture of a fully convolutional network
(FCN) family. A specific focus is on U-Net (Ronneberger et al.,
2015). Unlike CNN, the symmetrical encoder-decoder architec-
ture of U-Net with skip-connections can leverage both lower and
higher-level contextual information for finer predictions. Multi-
ple layers of convolutions, activation functions like rectified lin-
ear unit (ReLU), and max pooling combine the outputs of lower
layers and higher layers to generate the final output. Batch nor-
malization (BN) and ReLU are heavily applied to accelerate train-
ing and avoid vanishing gradient problems. U-Net learns pat-
terns from all these layers when trained using optimizers such as
Stochastic Gradient Descent (SGD) and backpropagation (BP) of
error. We modify the original U-Net architecture to increase the
contextual feature information.

To tackle P2, we perform a two-step training of the modified U-
Net. The model is first trained on a large training dataset called
WHU Building dataset (Ji et al., 2018). Then we transfer the
learnings from this model to a new model trained on another
dataset from the City of Melbourne. This allowed producing pre-
cise segmentation results on a relatively smaller dataset. Simi-
larly for P3, we use the power of transfer learning (Torrey and
Shavlik, 2010)-based fine-tuning to minimise the effects of do-
main shift between the two training datasets. Likewise for P4,
we reduce the number of training parameters in the second step
of training the models and produce three fine-tuning strategies. It
is important to reduce the number of training parameters to train
on a smaller dataset because a large number of training parame-
ters demand a larger training dataset and vice-versa. We further
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experiment with the lowering of training parameters and increas-
ing the learning rate in order to find optimal ways to reduce the
computational expense.

Transfer learning is used to reduce the domain-shift impact caused
by imaging sensors, resolution, and class representation, and to
increase the performance of a DL model with fewer training sam-
ples and less computational power. First introduced in 1976,
transfer learning (Bozinovski and Fulgosi, 1976) in neural net-
works is defined as “deep transfer learning” much later in 2018
as a task of a non-linear function that reflected a deep neural net-
work (Tan et al., 2018). The reason behind such a time gap could
be the recent spike in the usability of DL due to DL frameworks
such as Tensorflow, Keras, and Pytorch, and the advancement in
memory cards and graphics processing units (GPUs) in a com-
puter. Transfer learning allows the transfer of knowledge gained
from solving one problem to be used for similar problems, mak-
ing it widely used in studies that lack enough training images
and labels (Pan and Yang, 2009, Weiss et al., 2016). A domain-
specific transfer learning to transfer the knowledge obtained from
a global convolutional network (GCN) trained on VHR images
to a network trained on medium resolution images is proposed to
segment urban features (Panboonyuen et al., 2019). It is also used
to transfer the learning between models trained on different satel-
lite images collected from various sensors (QuickBird, Sentinel-
2, and TerraSAR-X) with varying image resolution (Wurm et al.,
2019) in order to segment slum areas on EO images. Some have
used transfer learning to test their model for building extraction
in different ablations of their experiments (Ji et al., 2018, Ji et al.,
2019). Most transfer learning-based approaches are performed
to transfer the weights of a pre-trained model on generic datasets
such as Visual Object Classes (VOC) (Everingham et al., 2010)
and ImageNet (Deng et al., 2009) dataset, and very few from the
above-mentioned studies have used it between existing building
footprint dataset. In our experiments, we evaluate three transfer
learning-based fine-tuning strategies to minimise the effects of
domain-shift, optimize the computational expense and reduce the
training parameters without pre-training on the generic dataset.
Similar techniques to reduce the training parameters have also
been experimented by experimenting with several CNN architec-
tures on a medical image dataset (Taormina et al., 2020).

The rest of the paper is structured as: Section 2. describes the
datasets and method; Section 3. presents the experiments and re-
sults; and Section 4. concludes the paper with future direction.

2. METHOD

2.1 Data Preparation

We perform our experiments on two datasets: (i) WHU Building
dataset and (ii) a new dataset that we build: Melbourne Building
dataset. The WHU Building dataset (abbr. TR1) includes images
of Christchurch collected from QuickBird, Worldview, IKONOS,
and ZY-3, with spatial resolution ranging from 0.3m to 2.5m. The
vector labels were extensively corrected and the original images
were down-sampled from 0.075m to 0.3m by (Ji et al., 2018). The
improvement, therefore, provided better accuracy to their tested
models. We crop their 512x512 sized tiles into four equal parts,
resulting in 256x256 tiles to keep the image size uniform between
the two datasets we experiment on. A total of 23088 and 9664
tiles were prepared as train and test image samples in TR1.

For the second dataset, we develop Melbourne Building dataset
(abbr. TR2). The labels in TR2 are sourced from a shapefile of
building roof samples collected from “2018 Building Footprints”
data provided by the City of Melbourne and image tiles of 1.2m

ground resolution are collected for each building footprint using
Nearmap API. Mask layers are created from the building foot-
print shapefile keeping the size of the image and label pair the
same. Out of 13 Census of Land Use and Employment (CLUE)
areas in the City of Melbourne, one suburb (Carlton) with 16.5%
roof samples is considered as a test area and the remaining as a
train area as shown in Figure 1. With an overlap of 50% between
the adjacent tiles, 4889 and 435 tiles were prepared as train and
test image samples.

Figure 1. Census of Land Use and Employment (CLUE) areas of 
the City of Melbourne.

Melbourne Building dataset (TR2) is a complex small dataset as 
compared to TR1. Some samples of TR1 and TR2 are shown in 
Figure 2. The complexity comes from several factors including 
the smaller size of TR2 (TR2 is five t imes s maller t han TR1), 
lower spatial resolution (TR2 has four times lower resolution im-
ages), and the inclusion of high-rise buildings that are difficult 
to separate. The number of high-rise buildings in the City of 
Melbourne is 753, including 67 skyscrapers that are above 150m 
high. The WHU Building dataset that includes the building foot-
prints of Christchurch, New Zealand contains only three high-rise 
buildings with the highest one of 86.5m, and mostly includes res-
idential and short commercial buildings. The high-rise buildings 
bring other challenges from the shadows and angle of inclina-
tion of the camera sensors. Due to these factors of complexity 
in TR2, there exists a domain shift between the two datasets re-
sulting in poor precision of the DL models trained on TR1 when 
validated on the TR2 dataset. Our methodology, therefore, tack-
les this problem as explained in the next sections.

2.2 Training and fine-tuning the modified U-Net

Our modification to the original U-Net focuses on the increment 
of features in the convolution blocks of the encoder. This modifi-
cation allows extracting more feature information from our small 
TR2 dataset. In the encoder of the original U-Net architecture, 
the feature information is increased in the encoder by adding a 
pair of convolution and batch normalization layers on the bot-
tleneck and two consecutive blocks before it. As the feature in-
formation is increased, the model can learn complex structures 
effectively. The up-sampling convolutions in the decoder later 
concatenate these high-resolution features and spatial informa-
tion coming from the encoding convolutional blocks through skip 
branches. This change increases the number of extracted features 
while still preserving their spatial relationships as our solution to 
the problem (P1).

The training of the modified U-Net is done in two steps as shown 
in Figure 3. First, the modified U-Net is trained on the large TR1 
dataset to produce a base model (M1) with a larger knowledge
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Figure 2. Sample image tiles from WHU Building dataset (TR1) 
and Melbourne Building dataset (TR2).

base. Secondly, M1 is further fine-tuned a nd t rained o n TR2 
to produce a new model M2. The overall architecture, hyper-
parameters, and augmentation steps are kept the same as before, 
but the weights are initialized from M1 using transfer learning-
based fine-tuning strategies. We evaluate three fine-tuning strate-
gies (TL1, TL2, and TL3) on M2 to optimize the number of train-
ing parameters. Also, the three strategies are tested with three 
learning rates of 1e-4, 1e-5, and 1e-6 to find the optimal rate for 
each fine-tuning s trategy. This change of learning rate and fine-
tuning strategies allow a surgical fine-tune of M1 to the training 
data TR2. Furthermore, the fine-tuning also tackles the problems 
(P2) and (P3) by leveraging the knowledge gained from an exist-
ing large dataset TR1 through model M1 and applying it to model 
M2 utilising the smaller TR2 dataset. This ensures the minimisa-
tion of the domain-shift effects from TR1 to TR2.

Explaining the three fine-tuning s trategies, T L1 t rains t he con-
volutional layers from both the encoder and decoder side of the 
modified U -Net. T L2 t rains o nly t he l ayers f rom t he decoder 
side. TL3 trains only the layers from the final block of the de-
coder. The number of training parameters significantly decreases 
from TL1 to TL3, keeping the training time shorter and models 
much smaller in size. The evaluation of these three strategies, 
therefore, helps in identifying the optimal computational expense 
with lower training parameters needed to segment the building 
features from the VHR satellite images, addressing the problem 
(P4). The evaluation of the modified U-Net against the original
U-Net and the evaluation of three fine-tuning strategies with three
different learning rates is presented in the next section.

3. EXPERIMENT AND RESULTS

In our experimental design, we evaluate the modified U-Net against
the original U-Net and SegNet using the two datasets TR1 and
TR2. Further, we test the modified U-Net in the cross-domain
of the two datasets to see the extent of the domain shift problem
and present the efficiency of the fine-tuning strategies in tackling
the problem. We further present a trade-off between the model
performance and computational expense by varying the learning
rates during the surgical fine-tuning of the model.

3.1 Evaluation Metrics

We use several metrics to evaluate the robustness of our method
on the validation dataset: (i) pixel accuracy, (ii) average accu-
racy, (iii) F1 score (aka. Dice Coefficient), (iv) Intersection over

Union (IoU aka. Jaccard Coefficient), and (v) Matthews correla-
tion coefficient (MCC aka. Phi coefficient). Pixel accuracy (Eqn.
1) calculates how often the predictions match binary labels. Av-
erage accuracy (Eqn. 2) is the average of Sensitivity (Eqn. 3)
and specificity (Eqn. 4). Sensitivity and specificity respectively
measure the proportion of actual positives and actual negatives
that are correctly identified. F1 score (Eqn. 5) and IoU (Eqn. 6)
is calculated from the ‘area of overlap’ between prediction and
binary labels and ‘area of union’ that consists of all of the pre-
dictions and binary labels minus the overlap. Lastly, MCC (Eqn.
7) measures the difference between the prediction and binary la-
bels considering the ratio between positive and negative elements.
MCC is considered superior among the other accuracy metrics as
it addresses the problem of imbalanced class (Chicco and Jurman,
2020). The metrics are represented by the following equations:

Pixel accuracy =
TP + TN

TP + TN + FP + FN
(1)

Average accuracy =
Sensitivity + Specificity

2
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity = 1− TN

TN + FP
(4)

F1score =
2× TP

2× TP + FN + FP
(5)

IoU =
TP

TP + FN + FP
(6)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7)

where, TP (true positive) is the case when prediction matches
binary label (i.e. prediction = 1, label = 1); FP (false positive)
is prediction = 1, label = 0; FN (false negative) is prediction =
0, label = 1; and TN (true negative) is prediction = 0, label = 0.
Other than five metrics, we also evaluate the time required to train
the models per step of training.

3.2 Training details

Any experimentation that uses DL-based methods is incomplete
without providing the training details. Here, we provide the train-
ing details of the modified U-Net model on the TR1 and TR2
datasets. We wrap all the models of our experiments in the Keras
framework. Several random augmentation techniques such as ro-
tation, horizontal flip, width and height shift, shear, and zoom
are applied to increase the training dataset during the training of
the models that we experiment on. We use a mini-batch of 2.
The number of steps is set as the ratio of the number of train-
ing images to the batch size. As the number of image samples
is higher in TR1, the number of epochs to train the base mod-
els (M1) is kept lower such that the total number of steps can be
kept approximately similar during all experiments. A learning
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Figure 3. Overall workflow of training and fine-tuning.

rate of 1e-4 is used to train the base model M1, which is changed
to the optimal value during the fine-tuning. A dropout of 50%
is used to avoid over-fitting, and an Adam optimizer is used to
optimize the model with an initializer of He Normal for the acti-
vation function of Rectified Linear Units (ReLU). A binary cross-
entropy (CE) loss function is used to monitor the models. U-Net
and SegNet are used to compare the performance of the modified
U-Net that is developed. The batch normalization, activation, ini-
tializer, optimizer, and learning rate are kept the same as in our
modified U-Net. However, in the SegNet, pooling is done using
the argmax function instead of the maxpooling. All experiments
are carried out on a Macbook M1 Pro with 8-core CPU, 14-core
GPU, 14-core NPU, and 16GB RAM.

3.3 Performance of the base model

Our base model M1 (i.e. the model trained before transfer learn-
ing) of the modified U-Net (our solution to P1) is compared against
the original U-Net and SegNet using both TR1 (WHU dataset)
and TR2 (Melbourne Building dataset). Starting with the number
of training parameters, the modified U-Net has approximately 7
and 5.5 million fewer training parameters than U-Net and Seg-
Net respectively. As TR1 contains almost five times more train-
ing data, the time taken per step to train the models on TR1 is
higher than on TR2. Table 3.3 presents the same-domain vali-
dation results obtained from the first step of training the models
on datasets TR1 and TR2. Same-domain implies the case when
the training and validation data are from the same dataset. The
results show that all three models performed better in the TR1
dataset when compared to the models trained on TR2. This is
due to the complexity of the TR2 dataset as mentioned before.
Despite the complexity, the modified U-Net produced the best
pixel accuracy (0.94 vs. 0.93), average accuracy (0.73 vs. 0.72),
F1 score (0.62 vs. 0.42), IoU (0.53 vs. 0.33), and MCC (0.43
vs. 0.42) in TR2 dataset when compared against U-Net. Seg-
Net is slightly behind both versions of U-Net. Unlike the pixel
accuracy, the other metrics are usually lower because these met-
rics are biased in mainly reporting how well the model identifies
the positive case. The increased average accuracy, F1 score, IoU,
and MCC from the modified U-Net in TR2 dataset shows that the
increment of features while training an FCN on smaller and com-
plex data such as TR2, can produce better segmentation. Figure
4 shows the sample results from the modified U-Net, U-Net, and
SegNet on TR2. The next section presents the cross-domain val-
idation results of the modified U-Net. Cross-domain implies the
case when the training and validation data are from a different
dataset.

3.4 Cross-domain validation and domain-shift

The previous section presented the results from the first step of
training on datasets TR1 and TR2 when tested against the val-

idation data of the corresponding dataset. However, due to the
difference in complexity in the two datasets, the performance
changes when cross-validated against the other’s validation data.
The second columns of Table 3.4 and 3.4 present the performance
of the base model (modified U-Net) trained on TR1 but validated
against TR2 and vice-versa respectively. Compared to the same-
domain validation from Table 3.3, the cross-domain validation of
the model M1 trained on TR1 and validated on TR2 shows sig-
nificantly lower average accuracy (0.85 vs. 0.55), F1 score (0.83
vs. 0.28), IoU (0.66 vs. 0.22), and MCC (0.48 vs. 0.16). Simi-
larly, M1 trained on TR2 and validated on TR1 also shows poor
performance as compared to Table 3.3 and 3.4.

To train a robust model on a small yet complex dataset (solution
to P2) and to minimise the effects of the domain shift (P3) be-
tween the two datasets, we take the base model M1 trained on
TR1 and fine-tune it to TR2 so that fine-tuned model M2 can per-
form in both data domains. For this, we perform the second step
of training using transfer learning to fine-tune the model M1 with
the same number of steps but optimal learning rate. The optimal
learning rate is chosen from the experiments shown in the next
section. We test three surgical fine-tuning strategies (TL1, TL2,
and TL3) with a reduced number of training parameters as ex-
plained before. The study of the trade-off between the network’s
performance and computational expense with reduced training
parameters and optimum learning rate tackles P4.

The number of training parameters significantly decreases from
TL1 to TL3 as shown in Table 3.4. This results in reduced time to
train the three fine-tuned models. When compared to the original
U-Net, the three strategies TL1, TL2, and TL3 are set up with
1.3, 3.6, and approximately 300 times lower training parameters.
Using the strategy TL3, the model trains nearly 2.5 times faster
than using TL1 (119ms vs. 291ms per step). The major differ-
ence however comes in terms of accuracy metrics. Compared
to the base model M1 trained only on TR1, the model M2 pre-
viously trained on TR1 and fine-tuned on TR2 produced better
pixel accuracy (0.94 vs. 0.91), average accuracy (0.75 vs. 0.55),
F1 score (0.64 vs. 0.28), IoU (0.55 vs. 0.22), and MCC (0.45 vs.
0.16) as seen from the results. All three strategies out-performed
M1, with TL3 as the optimal strategy both in terms of computa-
tional expense and evaluation metrics. The sample results from
the cross-validation of M1 and M2 with the fine-tuning strategy
of TL3 on TR2 are shown in Figure 5.

The comparison of M1 trained only on TR2 and M2 trained on
TR1 and fine-tuned on TR2 with the three strategies is shown
in Table 3.4, where the validation data is of TR1. The results
are similar to those from Table 3.4. M2 produced better pixel
accuracy (0.92 vs. 0.89), average accuracy (0.81 vs. 0.74), F1
score (0.67 vs. 0.52), IoU (0.56 vs. 0.40), and MCC (0.55 vs.
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Evaluation
Metrics

Mod. U-Net U-Net SegNet
TR1 TR2 TR1 TR2 TR1 TR2

Train Params 23.949M 31.037M 29.443M
Non-train Params 5504 3968 15874
Steps 57,720 48,980 57,720 48,980 57,720 48,980
Time/step (ms) 321 291 365 345 393 338
Pixel Acc. 0.973 0.938 0.973 0.928 0.969 0.854
Average Acc 0.847 0.730 0.826 0.724 0.831 0.715
F1 score 0.834 0.622 0.844 0.437 0.666 0.356
IoU 0.761 0.532 0.770 0.342 0.584 0.262
MCC 0.688 0.425 0.681 0.419 0.673 0.346

Table 1. Same-domain validation results of the modified U-Net on TR1 and TR2 datasets compared to U-Net and SegNet.

Evaluation
Metrics M1 M2

TL1 TL2 TL3
Train Params - 23.943M 9.229M 0.109M
Non-train Params - 0.011M 14.726M 23.846M
Steps - 48980 48980 48,980
Time/step (ms) - 291 194 119
Pixel Acc. 0.907 0.944 0.933 0.943
Avg. Acc. 0.550 0.743 0.735 0.745
F1 score 0.275 0.643 0.619 0.643
IoU 0.217 0.552 0.521 0.551
MCC 0.156 0.447 0.416 0.447

Table 2. Cross-domain validation results on Melbourne Build-
ing dataset (TR2). M1 refers to the base model trained on the 
WHU Building dataset (TR1) and validated on TR2. M2 refers 
to the model previously trained on TR1 and fine-tuned on TR2 
with three fine-tuning strategies (TL1, TL2, and TL3).

0.42) when compared to M1. Once again, all three strategies out-
performed M1, with TL3 as the most optimal strategy to fine-
tune. The sample results from the cross-validation of M1 and M2 
with the fine-tuning strategy of TL3 on TR1 are shown in Figure 
5.

Evaluation
Metrics M1 M2

TL1 TL2 TL3
Pixel Acc. 0.887 0.922 0.891 0.922
Avg. Acc. 0.739 0.811 0.772 0.809
F1 score 0.517 0.673 0.530 0.673
IoU 0.397 0.560 0.407 0.559
MCC 0.424 0.548 0.456 0.545

Table 3. Cross-domain validation results on WHU Building 
dataset (TR1). M1 refers to the base model of modified U-Net 
that is trained on only the Melbourne Building dataset (TR2). M2 
refers to the model previously trained on TR1 and fine-tuned on 
TR2 with three fine-tuning strategies (TL1, TL2, and TL3)

It has to be noted from the experiments in this section that the 
TR2 dataset is more robust compared to TR1 during cross-domain 
validation in terms of average accuracy, F1 score, IoU, and MCC. 
The domain-shift effects on the base model M1 trained on TR2 
are smaller than the M1 trained on the WHU dataset. The M1 
trained on TR1 produced a 55% lower F1 score (0.83 vs. 0.28), 
while M1 trained on TR2 produced a 10% lower F1 score (0.62 
vs. 0.52). This shows that TR2 is 45% robust in terms of F1-score 
during the cross-validation of TR1 and TR2. Similarly, TR2 is 
31%, 41%, and 32% more robust in terms of average accuracy, 
IoU, and MCC respectively.

3.5 The trade-off between accuracy and computational ex-
pense

As shown by the experiments earlier, the reduced number of train-
ing parameters in the three fine-tuning strategies produced signif-

icantly smaller and faster models ascending from TL1 to TL3.
It is seen that the computational expense to train the DL model
can be reduced without losing the performance by reducing the
training parameters. Another fundamental parameter of training
a deep learning network to lower the computational expense is
the learning rate. Conceptually, a lower learning rate optimizes
the network’s weights allowing an operational fine-tuning of the
network to the training data, while increasing the training and
processing time. A higher learning rate allows the network to
learn faster with smaller training time, but at the cost of preci-
sion of the adjustments. In this section, we experiment with the
three fine-tuning strategies with three learning rates to fine-tune
the base models and see the trade-off between the precision and
computational expense required for fine-tuning. This also helps
in finding the optimal learning rate that results in the highest ac-
curacy metrics without taking many training steps to converge.

We experiment on three learning rates of 1e-4, 1e-5, and 1e-6 as
shown in Table 3.5. The experiment shows that despite no signif-
icant difference being seen in time per step due to the change in
learning rates, there is a mixed difference in evaluation metrics.
In our experiments, reducing the learning rate by 10 times from
1e-4 to 1e-5 produces the best fine-tuning on TL1, while keep-
ing it the same, results in the best fine-tuning in TL2 and TL3.
However, lowering it by 100 times to 1e-6 produces the lowest
evaluation metrics on strategies TL2 and TL3. TL1 performs the
worse at the faster learning rate of 1e-4. From the experiment,
it is seen that smaller training parameters can produce the best
results with a faster learning rate, and higher training parameters
need a slower learning rate.

4. CONCLUSION

Accurate building footprints are advantageous for planning smart
and sustainable cities. Geo-spatial industries and local data cu-
rators have therefore put tremendous efforts into producing accu-
rate and precise building footprint data. The industries rely on
state-of-the-art DL-based methods to extract the buildings from
fundamental EO data and to produce their data products. How-
ever, the data products lack robustness and reliability due to sev-
eral problems associated with the DL-based methods. In partic-
ular, we focus on four prominent problems of DL methods: (P1)
lack of contextual features, (P2) requirement of a large training
dataset, (P3) domain-shift problem, and (P4) computational ex-
pense. We increase the feature information in the layers of con-
volutions in a symmetrical DL model of the FCN family called
U-Net to prepare a modified U-Net to tackle P1. This incre-
ment of features is helpful for our Melbourne building dataset,
which is smaller and complex compared to other existing build-
ing datasets. To address P2, we train the modified U-Net in two
steps to leverage the learning from a larger dataset (WHU Build-
ing dataset) into a model trained on a smaller and more complex
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Figure 4. Sample results from the modified U-Net, U-Net, and 
SegNet on the Melbourne Building dataset (TR2).

Melbourne Building dataset using transfer learning-based fine-
tuning. This fine-tuning not only reduced the number of training 
samples but also produced a model that could achieve increased 
precision in cross-domain validation of the two datasets, minimis-
ing the domain-shift effects (P3). We test three fine-tuning strate-
gies to see how the minimisation of training parameters in the DL 
model affects the precision of the output. Furthermore, we also 
experiment with the reduction of the learning rate during the fine-
tuning of the models to see the trade-off between precision and 
computational expense (P4).

The increment of features in the encoder of the modified U-Net 
significantly improved F1 score (by 18%), and IoU (by 19%) and 
slightly improved MCC on the same-domain evaluation using the 
Melbourne Building dataset. The improved F1 score shows the 
model’s robustness in terms of incorrectly classified p ixels, the 
increased IoU effectively highlights the similarity between the 
ground truth and prediction, and better MCC shows the model’s 
robustness in the majority of both positive and negative cases. 
When performing the cross-domain validation using the WHU 
dataset and the Melbourne Building dataset, the overall method 
of fine-tuning the modified U-Net with reduced training param-
eters with optimal fine-tuning strategy and learning rate shows a

Figure 5. Sample results from cross-validation of the base model 
(M1) of modified U-Net and fine-tuned model (M2) wi th three 
fine-tuning s trategies ( TL1, T L2, a nd T L3) o n t he Melbourne 
Building dataset (TR2).

Figure 6. Sample results from cross-validation of the base model 
(M1) of modified U-Net and fine-tuned model (M2) wi th three 
fine-tuning strategies (TL1, TL2, and TL3) on the WHU Building 
dataset (TR1).

significant increase in all accuracy measures and a remarkable de-
crease in the domain-shift. The experiments from the three fine-
tuning strategies reduced the number of training parameters by 
300 times and training time by 2.5 times at the cost of model per-
formance in our experiments. It is also seen that fine-tuning could 
significantly optimize the training parameters by 300% while also 
producing the most precise segmentation. Furthermore, choosing 
the optimal learning rate during the fine-tuning e ffectively im-
proved the segmentation. To sum up, we successfully tackle the 
four prominent problems of DL methods with our overall method.

Our smaller yet more complex Melbourne Building dataset with 
aerial imagery of four times lower spatial resolution, five times 
smaller number of images, and a higher number of high-rise build-
ings shows significant robustness compared to the WHU Building 
dataset when it comes to cross-domain validation. This dataset 
can further be used by the geospatial industries as well as re-
searchers in the domain of city planning and urban feature mod-
elling. In future works, we recommend the use of robust post-
processing techniques to produce more accurate building foot-
print datasets.
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Learning
Rate

Evaluation
Metric TL1 TL2 TL3

LR = 1e-4 Time/step (ms) 287 194 119
Pixel Acc. 0.907 0.933 0.943
Average Acc. 0.759 0.735 0.745
F1 score 0.597 0.619 0.642
IoU 0.502 0.521 0.551
MCC 0.405 0.416 0.447

LR = 1e-5 Time/step (ms) 291 197 121
Pixel Acc. 0.944 0.926 0.905
Average Acc. 0.743 0.738 0.732
F1 score 0.643 0.582 0.482
IoU 0.552 0.485 0.385
MCC 0.447 0.402 0.359

LR = 1e-6 Time/step (ms) 295 201 123
Pixel Acc. 0.926 0.901 0.886
Average Acc. 0.740 0.738 0.725
F1 score 0.602 0.509 0.457
IoU 0.506 0.411 0.359
MCC 0.412 0.369 0.330

Table 4. Validation results obtained on TR1 and TR2 datasets 
using three fine-tuning strategies TL1, TL2, and TL3, each eval-
uated with three learning rates.
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