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ABSTRACT:

An accurate detection, classification, and tracking of vehicles are highly important for intelligent transport systems (ITS) and road 
maintenance. In recent years, the deep learning (DL)-based approach is highly regarded for real-time vehicle classification from 
surveillance cameras. However, the practical implementation of such an approach is affected by the adverse lighting conditions and 
positioning of the cameras. In this research, we develop a DL-based method for near real-time multi-vehicle counting, classifying, 
and tracking on individual lanes of the road. First, we train a DL network of the You Only Look Once (YOLO) family on a custom 
dataset that we have curated. The dataset consists of nearly 30000 training samples to classify the vehicles into seven classes, which is 
more than in the existing benchmark datasets. Second, we fine-tune the trained model into another small dataset collected from the 
surveillance cameras that are used during the implementation process. Third, we connect the trained model to a tracking algorithm that 
we have developed to produce a per-lane report with the calculation of the speed and mobility of the vehicles. We test the robustness of 
the system on different faces of the vehicles and in adverse lighting conditions. The overall accuracy (OA) of classification ranges 
from 91% to 99% in four faces of vehicles (back, front, driver side, and passenger side). Similarly, in an experiment on adverse lighting 
conditions, OA of 93.7% and 99.6% is observed in a noisy and clear lighting conditions respectively. The implications of these results 
will assist in road maintenance with spatial information management and sensing for intelligent transport planning.

1. INTRODUCTION

An assessment of road conditions is necessary to determine
any maintenance program (Radopoulou and Brilakis, 2016)
for a large road network. In a road assessment, a network
of surveillance cameras (Baran et al., 2014), which are used
for security and safety, can be used for observing numerous
vehicles passing through an area of road covered by the
cameras. Continuously moving vehicles on a road, especially
heavy vehicles, causes damage to the pavements of the roads
(Liu, 2015). Detection of these heavy vehicles and vehicle
classification can provide strong support to ITS and road
maintenance (Maungmai and Nuthong, 2019). DL methods are
widely used for vehicle classification in recent years. However,
the practical implementation, robustness, and scalability are the
major concerns of such systems when it comes to the use of an
existing network of surveillance cameras as the data input. In
this study, we make use of an existing network of such cameras
facilitated by the department of the rural road (DRR) of Thailand
and develop a robust and scalable DL-based method to detect,
classify, and track the vehicles in near real-time.

DL networks require training on a large dataset and suffer
from a domain-shift problem due to the difference in train and
test data. These problems often hinder the scalability of the
DL methods. Implementing such method for real-time vehicle
classification and tracking requires a powerful yet lightweight DL
network and a multi-object tracking (MOT) algorithm. We use
the current state-of-the-art (SOTA) DL network called YOLOv5
which belongs to the convolutional neural networks (CNNs) of
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the YOLO family. The network provides the optimal trade-off
between the accuracy and speed of classification. To train
the YOLOv5, we curate a dataset of nearly 30000 samples
for seven classes of vehicles, some which are unavailable in
the existing datasets. The trained model is further fine-tuned
on a smaller dataset prepared from the cameras that are used
during the implementation process. This fine-tuning increases
the scalability of the DL model and minimizes the domain-shift
problem by leveraging the knowledge from a large generic dataset
and a smaller dataset collected from a practical environment. The
fine-tuned model is then connected to a multi-vehicle tracking
algorithm that we have engineered to calculate and report the
count of vehicles, per car unit (PCU), speed of individual
vehicles, per-lane average speed over a time interval, and the
mobility of the vehicles to record the next destination the
vehicle is headed to. The system is tested on different faces of
vehicles and adverse lighting conditions for robustness-check and
practical implementation.

The rest of the paper is structured as: Section 2. provides the
existing literature on the research domain; Section 3. presents
the overall method; Section 4. demonstrates the experiments and
validation; the paper concludes with future remarks in Section 5..

2. BACKGROUND

2.1 Vehicle detection and classification

Object detection is a fundamental problem in computer vision
applications. It deals with locating and classifying the objects
in an image. Several methods for vehicle detection and
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classification have been developed over the years due to
advancements in machine learning and computer vision. Support
Vector Machines (SVM) is used as a machine learning method
for the classification of vehicles based on colour and type (Chen
et al., 2009). The method suffers when the reflection of the
surface and strong sunlight changes the colour of the vehicles.
Histogram Orientation Gradients (HOG) feature-based method
is less affected by the change in illumination to distinguish the
appearance and shape of objects (Cao et al., 2011). This feature
is also used to train an SVM to detect vehicles on videos collected
from low-altitude airborne cameras and is also comparable to
Haar-like features (Negri et al., 2008). OpenCV development
kits is another method to detect moving vehicles on a camera
for traffic count measurement (Uke and Thool, 2013). Other
algorithms include Scale Invariant Feature Transform (SIFT),
Speeded Up Robust Features (SURF) methods, and 3D models
(Ferryman et al., 1995). Despite faster detection, these methods
generate a high number of false negatives and false positives,
especially during adverse lighting conditions, and fail during the
task of vehicle classification.

In recent years, DL has produced a breakthrough performance
in object detection and classification using “hidden layers” of
convolutions. (Jung et al., 2017) propose the localization and
classification of vehicles in traffic surveillance using ResNet50
with added dropping CNN (DropCNN), and fine-tuning the
model to improve the classification. (Zhuo et al., 2017) use a
GoogleNet (Szegedy et al., 2015) CNN to classify vehicles in
large-scale traffic surveillance. They pre-train the GoogleNet on
the ILSVRC-2012 dataset and fine-tune it with another dataset
to improve accuracy. Even though these CNNs show good
performance during object detection in their experiments, they
require heavy computation and are sensitive to scale changes
(Cai et al., 2016). The advancement of CNNs has developed
sophisticated yet faster and more accurate CNNs such as YOLO,
which we elaborate in the next section.

2.2 YOLO (You Only Look Once)

YOLO (Redmon et al., 2016) takes the task of object detection
as a regression problem in a single neural network. The method
has obtained the SOTA in object detection with an overwhelming
performance. Since its introduction, five generations of YOLO
have been produced by different authors: YOLOV2 (Redmon and
Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4
(Bochkovskiy et al., 2020), and YOLOv5 (Jocher et al., 2020).
The recent generations such as YOLOv4 and YOLOv5 have
shown higher performance in terms of accuracy and speed among
the YOLO family. YOLOv5 further has several versions with
depths ranging from the smallest to the largest model size (eg.
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x), providing
different trade-offs between speed and accuracy of detection. The
different versions are compared in terms of speed and accuracy in
Figure 1. For our purpose, we use YOLOv5l after a comparison
among the YOLOv5 family.

To perform vehicle detection and classification, (Sang et al.,
2018) have improved the YOLOv2 by adding a k-means++
algorithm to cluster the bounding boxes of vehicles in the training
dataset, removing some repeated convolution layers to improve
feature extraction, and introducing normalization to improve the
loss due to varying scales of vehicle bounding boxes. They
use BIT-Vehicle (Sang et al., 2018) and CompCars (Yang et al.,
2015) datasets. (Du et al., 2019) propose real-time detection of
vehicles and traffic lights using YOLOv3 to improve detection
in small objects with balanced speed and precision. They use
the traffic light dataset (V-TLD) to train the YOLOv3. (Song

Figure 1: Comparison of various sized models of the 
YOLOv5 family in terms of speed and accuracy of detection 
(adapted from (Jocher et al., 2020)). The more the plots tend 
to the top-left corner, the better the performance of the model.

et al., 2019) use YOLOv3 to detect and classify the vehicles 
and ORB algorithm (Rublee et al., 2011) to obtain driving 
directions. (Mahto et al., 2020) use fine-tuned Y OLOV4 for 
vehicle detection using the UA-DETRAC dataset. With this 
literature as background, next, we present our method design.

3. METHOD

3.1 Data Preparation

Training a DL model requires a large training dataset. The 
existing dataset like COCO (Lin et al., 2014), PASCAL 
VOC (Everingham et al., 2010), KITTI (Geiger et al., 2013), 
BIT-Vehicle and CompCars dataset do not cover the seven classes 
of vehicles – car, bus, taxi, bike, pickup, truck, and trailer –
that the DRR needed to be classify. Therefore, we create a 
dataset called Thai-Vehicle-Classification-Dataset t hat w e have 
introduced in our previous study in (Neupane et al., 2022). The 
dataset is curated from 6.3 terabytes of surveillance videos, taken 
from 23 different cameras for 3 continuous days starting from 
25-27 June, 2020. Training samples are manually annotated from 
carefully selected image frames of the videos to generate varying 
samples on adverse lighting conditions and different faces of 
vehicles. An open-source program called labelimg (Tzutalin, 
2015) is used to annotate the vehicles into seven classes. To 
increase the samples for the class of bus, which is found to be 
less abundant in our dataset, we add 4431 samples of buses from 
a dataset of Hangzhou, China (Song et al., 2019). The total 
number of samples for each class is shown in Table 3.1. From 
all samples, the ratio of the train-validation samples is divided to 
be 90%-10%.

Vehicle
Type

Annotated
Samples

Added from
(Song et al., 2019)

Total
Sample

Car 10478 0 10478
Bus 540 4431 4891
taxi 1605 0 1605
Bike 2572 0 2572
Pickup 6056 0 6056
Truck 2656 0 2656
Trailer 1179 0 1179

Table 1: The total number of samples collected to train 
the YOLOv5 network.

3.2 Training YOLOv5 and fine-tuning

The YOLOv5 network that we use follows a similar architecture 
as YOLOv4 and consists of a backbone of the Cross Stage Partial 
(CSP) network (Huang et al., 2017), (Wang et al., 2020), a neck 
of the Path Aggregation Network (PANet) (Liu et al., 2018)
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with Spatial Pyramid Pooling (SPP) block (He et al., 2015) and
a head of YOLOv3. The YOLOv5 integrates an automated
anchor box selection process into the network, making it learn
the best anchor boxes for the training dataset. This assembly
of the backbone, neck, head, and anchor box selection process
speeds up the space-to-depth conversion process, alleviates the
gradient descent problem, strengthens the feature propagation,
minimizes the network parameters, and generalizes the objects of
different sizes and scales with increased precision. The network
architecture is shown in Figure 2.

Figure 2: The network architecture of YOLOv5 (adapted 
from (Jocher et al., 2020)).

We train the large version of the YOLOv5 called YOLOv5large 
(abbr. YOLOv5l), which is wrapped in Pytorch framework. 
YOLOv5l has a more depth in the network layers than other 
smaller versions. To increase the accuracy of YOLOv5l, it is 
first t rained o n t he T hai-Vehicle-Classification-Dataset without 
initializing weight. The trained model is then fine-tuned on 
a smaller dataset of approximately 5 times smaller samples 
(6612 samples) generated from the cameras that are used in the 
experimental settings. The small dataset contains 2585, 274, 323, 
562, 2042, 666, and 160 samples for class of car, bus, taxi, bike, 
pickup, truck, and trailer respectively. The fine-tuning i s based 
on transfer learning to leverage the knowledge from the larger 
dataset to the model fine-tuned o n a  s maller d ataset. During 
the fine-tuning, t he w eights a re i nitialized f rom t he m odel that 
is previously trained on the larger dataset. Data augmentation 
is done during both training and fine-tuning, t o i ncrease the 
variability in the training dataset. The augmentation steps include 
random scaling, translation, a horizontal flip of 180 degrees, and 
hue–saturation–value (HSV) is randomly changed. The input 
images are resized to 640x640 pixels. Four anchor sizes are 
learned and derived using k-means clustering algorithm from 
the training dataset. The initial and final l earning r ate i s set 
as 0.01 and 0.2, with a momentum of 0.937 and weight decay 
of 0.0005. An Adam optimizer is used to optimize the model. 
The model is trained in the batch size of 8 for 2000 epochs and 
fine-tuned for 300 epochs on a  computer with 128GB of RAM, 
Intel(R) Xeon(R) Silver 4210 CPU, and two NVIDIA GeForce 
2080 GPUs of 11GB memory each. The model is trained in 
approximately 3.4 days.

An improved Intersection of Union (IoU) loss called generalized 
intersection over union (GIoU) loss (Rezatofighi et al., 2019) is 
used to evaluate the YOLOv5 network, which is denoted by Eqn. 
1.

LGIoU (w) = 1− IoU +
| C(A ∪B) |

| C | (1)

where A and B are the bounding boxes of the ground truth and
prediction respectively, C is the smallest rectangle circumscribed

between A and B, and IoU is the intersection of A and B. The
major improvement of GIoU compared to IoU is that it defines A
minimum closed area C such that the borders of A and B are
included in C. GIoU then calculates the area of A and B not
included in C proportionate to the total area of C.

3.3 Tracking algorithm

The next step after training the YOLOv5l model is to use the final
trained model to track individual vehicle classes on a real-time
video stream. For this, we develop a multi-vehicle tracking
algorithm that takes the predicted class and bounding box from
any DL model and performs several tasks to track vehicles, count
the number of vehicles of each class, and calculate the speed in
each lane polygon of the road. The overall method is shown in
Figure 3. This method shows superior performance in terms of
computational power, speed, and matching costs.

Figure 3: Multi-vehicle Tracking Algorithm for a lane-
based count and speed detection of vehicles.

To explain the overall tracking method, the centroid of the 
detected object’s bounding box is first c ross-checked i f i t falls 
inside the lane polygon drawn over the video frame. These 
polygons are pre-defined by the video surveillance team over an 
image frame coming from the video stream from the surveillance 
camera. If the centroid does not fall into the polygon, it is 
“de-registered” meaning that the vehicle class and bounding box 
are stored in the database but do not pass through the tracking 
process. If the centroid falls inside the defined road polygon, then 
these “filtered objects” go through the registration process. If the 
vehicle is new, then it is first registered and passed to the “vehicle 
property calculation process”. If it is an older vehicle but being 
tracked, the updated bounding box and centroid are added to the 
vehicle ID’s array and passed to the “vehicle property calculation 
process”. In the “vehicle property calculation process”, the 
distance between the current position of the centroid of the 
object and the point in the line of the road polygon through 
which the vehicle passed is calculated. This distance is used to 
calculate the speed of the vehicle using the general formula of 
speed = distance/time. The time variable is the difference in 
time between when the object is first r ecorded w ithin t he road 
polygon and the current time recorded. Finally, the vehicle ID, 
speed, and class are saved into the database.
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4. EXPERIMENT AND RESULTS

In this section, we describe the performance of the trained model
and the accuracy of the overall method. First, the training
and validation accuracy of the YOLOv5l model is presented.
Then several video streams collected from different camera
positions and with adverse lighting conditions are used to validate
the overall method. Three accuracy metrics are used for the
experiments:

Recall(R) =
TP

TP + FN
(2)

Precision(P ) =
TP

TP + FP
(3)

OverallAccuracy(OA) =
R+ P

2
(4)

where TP, FP, and FN are the number of true positives, false
positives, and false negatives, respectively.

4.1 Training YOLOv5l

As mentioned before, the total image dataset is divided into
training and validation images in a ratio of 90:10. The selected
YOLOv5l model is trained until the GIoU loss on the training
dataset decreased to 0.027, and the best model is chosen based
on GIoU such that it is minimum on the validation dataset. The
minimum GIoU of 0.025 is obtained in the validation dataset
on epoch 1442, approximately after 2.6 days of training. Even
though the network is trained until the 2000 epochs, the best
model at the 1442 epoch is saved and used as a trained model for
our method. The change in GIoU throughout training is shown
in Figure 4. The validation of count, detection, and classification
are shown in the next section.

4.2 Effects of different faces of vehicles

The overall method of vehicle detection, classification, and
tracking is validated on an experimental setup of four cameras
each facing the four different sides of the vehicles on the road
as shown in Figure 5. The four cameras Cam 1, Cam 2, Cam
3, and Cam 4 face on the back, driver-side, passenger-side, and
front of the vehicles respectively. The cameras are streamed
from the highway of Ratchapruek, Pathum Thani, Thailand to
the computing server using 4G internet broadband and Real-Time
Streaming Protocol (RTSP). A ratio of frame per second (FPS) is
used to measure the rate of the real-time stream. If the computing
server can process the video stream with the same FPS that arrives
from the RTSP, real-time is achieved. A total of 10 frames are
provided per second via RTSP to the server. Our method could
process up to 38 FPS of image frames with some loss in image
frames due to broadband connection, therefore achieving near
real-time speed.

A total of approximately 35000 image frames are used for
validation with 7500, 9060, 8800, and 9575 image frames from
Cam 1, Cam 2, Cam 3, and Cam 4 respectively. The recall
(R), precision (P), and overall accuracy (OA) of count and
classification of individual classes of vehicles are shown in Table
4.3. OA for the class car is the highest (97%) and truck is the
lowest (91%). The smaller vehicles such as cars, taxis, bikes, and
pickups are classified with higher OA of 96% to 97%. However,
the larger vehicles such as buses, trucks, and trailers are classified

Figure 4: A plot to show GIoU loss during training 
of the YOLOv5l model on training and validation samples 
of Thai-Vehicle-Classification-Dataset. (a) On training samples. 
(b) On validation samples.

with relatively lower OA from 90% to 94%. The reasons 
are associated with the placement height of the camera, fewer 
training samples for truck and trailer, and fewer test samples for 
validation. The camera is placed 5.5m high from the road surface, 
which allows better classification of vehicles that are contained in 
small bounding boxes during prediction. However, for the larger 
vehicles, the bounding box of the prediction is larger when the 
vehicles get closer to the camera, leading to false classifications 
in different image frames. On average, OA of 94% is obtained 
for the classification of vehicles from the experimental setup of 
four cameras. Some vehicles like buses and trailers were in low 
abundance in the experimental setup, which will be increased in 
future works.

4.3 Effects of adverse lighting conditions

The performance of the method is highly affected by the adverse 
lighting conditions. Four videos are clipped from the surveillance 
cameras that are different from the experimental setup in the 
previous section to show the limitation of our method in the 
adverse settings. The image frame samples of the four videos 
(Vid 1, ..., Vid 4) are shown in Figure 6. Vid 1 contains noise 
from the dust on the camera. Vid 2 and Vid 3 are taken from a 
newly installed camera at 3 PM and 5 PM respectively of a day. 
The intensity of light at 3 PM is more than at 5 PM. Vid 4 is taken 
in the nighttime at 3 AM. The four experimental videos provide 
a practical environment to test the robustness of the method in 
adverse lighting conditions. The results of the count (detection) 
of vehicles in the four videos are shown in Table 4.3.
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Figure 5: Experimental setup of four cameras (Cam 1, ..., Cam 4) for the validation of vehicle count and classification.

Figure 6: Sample of vehicle classification in the 
four experimental videos to test the robustness of the 
method in adverse lighting conditions.

As seen in Table 4.3, with the proper light intensity, the 
performance of vehicle detection and the count is most effective 
in the daytime at 5 PM and the least effective during the 
nighttime. There are several factors associated with the inefficacy 
of the method at nighttime, such as the black and white (B/W) 
image stream provided by our experimental cameras during the 
nighttime, the light from the headlight of the vehicles, and the

switching between B/W and color during a sudden change in light
intensity from vehicle’s headlight. A maximum OA of 99.6% is
obtained at 5 PM.

For the validation of classification, experiment is carried-out on
Vid 1 (noisy video), Vid 2 (video with high light intensity), and
Vid 3 (video with proper light intensity at 5 PM). The result is
shown in Table 4.3, where the classification is better in the video
with better light intensity. We do not include the performance
at night-time, because the classification is highly affected by
several factors mentioned before. We use the YOLOv5l only for
detection and without classification during the nighttime.

5. CONCLUSION

In this study of vehicle detection, classification using deep
learning, we create a DL-based method to detect, classify, and
track the vehicles on the roads in near real-time. The method
reports the count, per car unit, classification, speed of individual
vehicles, per-lane average speed over different time intervals, and
the mobility of the vehicles that record the next destination of
the vehicle. The system ensures practical use of the method for
the maintenance and monitoring of the highways of Thailand.
A specific focus is on developing a scalable and robust system
for practical implementation. The scalability of the method
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Classes
Cam 1
(Back)

Cam 2
(Driver side)

Cam 3
(Passenger side)

Cam 4
(Front) Avg. OA

P R OA P R OA P R OA P R OA
car 0.99 0.97 0.98 1.00 0.94 0.97 0.98 0.94 0.96 0.95 0.97 0.96 0.97
bus 1.00 0.80 0.90 - - - - - - - - - 0.90
taxi 0.75 1.00 0.88 - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.96
bike 0.95 1.00 0.98 1.00 1.00 1.00 1.00 0.83 0.92 1.00 1.00 1.00 0.97
pickup 0.98 0.96 0.97 0.92 1.00 0.96 0.96 0.98 0.97 0.94 0.90 0.92 0.96
truck 0.60 0.75 0.68 1.00 1.00 1.00 0.92 1.00 0.96 1.00 1.00 1.00 0.91
trailer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.83 - - - 0.94
Avg. 0.90 0.93 0.91 0.98 0.99 0.99 0.98 0.90 0.94 0.98 0.98 0.98 0.94

Table 2: Vehicle count and classification on the experimental setup of four cameras facing on different sides of the vehicles as 
shown in Figure 5.

Video Frames Manual
Count

Method
Count OA

Vid 1 (noisy) 90000 3617 3390 93.7
Vid 2 (3PM) 7500 552 545 98.7
Vid 3 (5PM) 7500 514 512 99.6
Vid 4 (3AM) 7500 14 12 85.7

Table 3: Validation of detection of vehicles (count) in 
adverse lighting conditions.

Video Frames Correct False R P OA
Vid 1 90000 2851 766 78.8 84.1 81.4
Vid 2 15000 598 39 91.6 93.9 92.7
Vid 3 15000 470 30 94.0 94.0 94.0

Table 4: Validation of classification in terms of quality of 
the video stream.

is maximized by training the DL model on a custom large 
dataset that we develop and further fine-tuning on a small dataset 
from the test cameras. To test the robustness, the experiments, 
therefore, investigate the performance of the method on four 
faces of the vehicles and four adverse lighting conditions. The 
experiments report 91%, 95%, 99%, and 94% OA for the back, 
front, driver side, and passenger side of the vehicles. The smaller 
vehicles are classified w ith h igher a ccuracy a nd l arger vehicles 
are classified with relatively lower accuracy due to the placement 
height of the cameras and lower number of training and validation 
samples for larger vehicles. In an experiment of adverse lighting 
conditions, an OA of 93.7%, 98.7%, and 99.6% is observed 
while counting the vehicles on a noisy camera, camera with 
high light intensity at 3 PM, and camera with normal lighting 
condition at 5 PM respectively. Similarly, the OA of classification 
on noisy, 3 PM, and 5 PM video streams is 81.4%, 92.7%, 
and 94% respectively. The classification i n t he n oisy v ideo is 
highly affected, and at nighttime, a reasonable accuracy could 
not be reported. To conclude, a small yet powerful CNN such as 
YOLOv5 that efficiently makes a trade-off between the accuracy 
and speed of detection can be used for real-world implementation 
of multi-object classification in near r eal-time. The domain-shift 
problem can be minimized by fine-tuning the model on a  small 
dataset, avoiding the need to frequently train a CNN on a large 
training dataset. Furthermore, we recommend the researchers 
in the domain of vehicle classification t rain t heir m odel o n the 
proposed Thai-Vehicle-Classification-Dataset t o i mprove upon 
the research problems. In future work, the effects of loads of 
the vehicles on the road conditions will be studied to monitor 
and map the maintenance works, and further support the spatial 
information management and sensing for intelligent transport 
planning.
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